第5章 受压构件的截面承载力
终极版:第5章(受压构件的截面承载力)例题讲解
x
N f y As f y As
1 f c b
396 103 360 710 360 1742 1.0 14.3 300
h0 h as 600 45 555mm
ea h 30 600 30 20mm
N 4600 103 轴压比 1.15 0.9 f cbh 16.7 400 600
需考虑 P- 效应。
例 5-10 讲解
M1 Cm 0.7 0.3 0.7 0.3 0.5 0.85 M2
45 2 4600 103 206.74 2 0.8 360 615 1 2 0.518 0.8116.7 400 555 555 116.7 400 555 1.2358
u u 2 v 0.1136
例 5-10 讲解
h Ne f cbh h0 2 As as f yh0 4600 103 247 16.7 400 600 555 600 2 360 555 45 615mm 2 min bh 0.002 400 600 480mm 2
取 Cm ns 1
例 5-10 讲解
M Cm ns M 2 1130 130kN m
第5章 受压构件
M 130 106 28.26mm ( 通常取 e0 28mm 计算即可 ) e0 3 N 4600 10 ei e0 ea 28.26 20 48.26mm
第5章 受压构件
第5章 受弯构件的斜截面承载力
第5章 受弯构件的斜截面承载力5.1概述上一章讲了钢筋混凝土受弯构件在主要承受弯矩的区段内,会产生垂直裂缝,如果正截面受弯承载力不够,将沿垂直裂缝发生正截面受弯破坏。
钢筋混凝土受弯构件在弯矩和剪力共同作用下,当正截面受弯承载力得到保证时,则有能产生斜截面破坏。
斜截面破坏包括斜截面受剪破坏和斜截面受弯破坏两方面。
因此为了保证受弯构件的承载力,除了进行正截面受弯承载力计算外,还必须进行斜截面受剪承载力计算,同时斜截面受弯承载力则是通过对纵向钢筋和箍筋的构造要求来满足的。
钢筋混凝土受弯构件在出现裂缝前的应力状态,由于它是两种不同材料组成的非均质体,因而材料力学公式不能完全适用。
但是当作用的荷载较小,构件内的应力也较小,其拉应力还未超过混凝土的抗拉极限强度、亦即处于裂缝出现以前的I a 阶段状态时,则构件与均质弹性体相似,应力-应变基本成线性关系,此时其应力可近似按一般材料力学公式来进行分析。
在计算时可将纵向钢筋截面按其重心处钢筋的拉应变取与同一高度处混凝土纤维拉应变相等的原则,由虎克定律换算成等效的混凝土截面,得出一个换算截面,则截面上任意一点的正应力和剪应力分别按下式计算,其应力分布见图5-1。
图5-1 钢筋混凝土简支梁开裂前的应力状态(a )开裂前的主应力轨迹线;(b )换算截面;(c )正应力σ图;(d )剪应力τ图正应力 0I My =σ (5-1) 剪应力 0bI VS =τ (5-2) 式中 I 0——换算截面惯性矩。
由于受弯构件纵向钢筋的配筋率一般不超过2%,所以按换算截面面积计算所得的正应力和剪应力值与按素混凝土的截面计算所得的应力值相差不大。
根据材料力学原理,受弯构件正截面上任意一点在正应力σ和剪应力τ共同作用下,在该点所产生的主应力,可按下式计算主拉应力 2242τσσσ++=tp (5-3)主压应力 2242τσσσcp +-= (5-4) 主应力的作用方向与构件纵向轴线的夹角α可由下式求得:στα22-=tg (5-5)在中和轴附近,正应力很小,剪应力大,主拉应力方向大致为45°。
第五章 受弯构件正截面承载力答案
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
1.“噢,居然有土龙肉,给我一块!”2.老人们都笑了,自巨石上起身。
而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。
第五章 钢筋混凝土受弯构件正截面承载力计算一、填空题:1、钢筋混凝土受弯构件,随配筋率的变化,可能出现 少筋、 超筋 和 适筋 等三种沿正截面的破坏形态。
2、受弯构件梁的最小配筋率应取 %2.0m i n =ρ 和 y t f f /45min =ρ 较大者。
3、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b ξξ ,说明 该梁为超筋梁 。
4.受弯构件min ρρ≥是为了____防止产生少筋破坏_______________;max ρρ≤是为了___防止产生超筋破坏_。
5.第一种T 形截面梁的适用条件及第二种T 形截面梁的试用条件中,不必验算的条件分别是____b ξξ≤___及__min ρρ≥_______。
6.T 形截面连续梁,跨中按 T 形 截面,而支座边按 矩形 截面计算。
7、混凝土受弯构件的受力过程可分三个阶段,承载力计算以Ⅲa 阶段为依据,抗裂计算以Ⅰa 阶段为依据,变形和裂缝计算以Ⅱ阶段为依据。
8、对钢筋混凝土双筋梁进行截面设计时,如s A 与 's A 都未知,计算时引入的补充条件为 b ξξ=。
第五章1 钢筋混凝土受压构件正截面承载力计算w
5-6弯曲变形
5-7轴心受压长柱的破坏形态
试验结果表明长柱的承载力低于相同条件短柱的承载 试验结果表明长柱的承载力低于相同条件短柱的承载 力,目前采用引入稳定系数Ψ的方法来考虑长柱纵向 挠曲的不利影响, 挠曲的不利影响,Ψ值小于1.0,且随着长细比的增大 而减小。 而减小。
表5-1 钢筋混凝土轴心受压构件的稳定系数面承载力计
5.2.1 受力过程及破坏特征 轴心受拉构件从开始加载到破坏, 轴心受拉构件从开始加载到破坏,其受力过程可 分为三个不同的阶段: 分为三个不同的阶段: 1.第I阶段 开始加载到混凝土开裂前, 属于第I 阶段。 从 开始加载到混凝土开裂前 , 属于第 I 阶段 。 此 纵向钢筋和混凝土共同承受拉力, 时 纵向钢筋和混凝土共同承受拉力,应力与应变大致 成正比,拉力 N与截面平均拉应变 ε 之间基本上是线 成正比, 性关系, 性关系,如图5-2a中的OA段。
当现浇钢筋混凝土轴心受压构件截面长边或直径 小于300㎜时 ,式中混凝土强度设计值应乘以系数0.8 (构件质量确有保障时不受此限)。 4. 构造要求 (1)材料 混凝土强度对受压构件的承载力影响较大, 混凝土强度对受压构件的承载力影响较大,故宜 采用强度等级较高的混凝土 强度等级较高的混凝土, 采用强度等级较高的混凝土,如C25,C30,C40等。 在高层建筑和重要结构中, 在高层建筑和重要结构中,尚应选择强度等级更高的 混凝土。 混凝土。 钢筋与混凝土共同受压时, 钢筋与混凝土共同受压时 , 若钢筋强度过高 ( 如 则不能充分发挥其作用, 高于 0.002Es) , 则不能充分发挥其作用 , 故 不宜用高 强度钢筋作为受压钢筋。同时, 强度钢筋作为受压钢筋。同时,也不得用冷拉钢筋作 为受压钢筋。 为受压钢筋。
混凝土结构设计原理-05章-受弯构件的斜截面承载力
第5章 受弯构件的斜截面承载力
主要内容
● ● ● ●
重点
斜裂缝、剪跨比及斜截面受剪破坏形态 简支梁斜截面受剪机理 斜截面受剪承载力计算公式及设计计算 保证斜截面受剪承载力的构造措施
● 斜裂缝、剪跨比及斜截面受剪破坏形态 ● 简支梁斜截面受剪机理 ● 斜截面受剪承载力的设计计算 ● 保证斜截面受剪承载力的构造措施
图形。 材料抵抗弯矩图:按实际配置的受力钢筋计算的各个
正截面受弯承载力 Mu 所绘制的图形。
5.5 保证斜截面受弯承载力的构造措施
第5章 受弯构件的斜截面承载力
对承受均布荷载的单筋矩形截面简支梁:
Mu
As
fsd (h0
fsd As ) 2 fcdb
每根纵筋所承担的
M ui可近似按钢筋面积分配, M ui
5.4 斜截面受剪承载力计算
第5章 受弯构件的斜截面承载力
公式的适用范围 ■ 截面的最小尺寸(上限值) 为防止斜压破坏,要求:
0Vd (0.51 103 ) fcu,k bh0
否则,应加大截面尺寸或提高混凝土强度等级。 ■ 构造配箍条件(下限值)
0Vd (0.5 103 ) 2 f tdbh0
而略有降低。 T形截面梁的受剪承载力高于矩形截面梁。
5.4 斜截面受剪承载力计算
第5章 受弯构件的斜截面承载力
2. 斜截面受剪承载力计算公式
由于抗剪机理和影响因素的复杂性,目前各国规范的斜
截面受剪承载力计算公式均为半理论半经验的实用公式。
《公路桥规》中的斜截面受剪承载力计算公式以剪压破
坏为建立依据,假定梁的斜截面受剪承载力Vu由剪压区混凝 土的抗剪能力Vc、与斜裂缝相交的箍筋的抗剪能力Vsv 和与斜 裂缝相交的弯起钢筋的抗剪能力Vsb 三部分所组成。
第五章 受压构件的截面承载力
12
3.受压短柱承载力
N 混凝土压碎 钢筋凸出
钢筋屈服
混凝土压碎
N
达到最大承载力时混凝土压坏。 o
l
c' f c 应变 c' 0
如果 y 0则钢筋已经屈服 s' f y' 如果 y 0则钢筋未屈服但 f
' s ' y
fc f y As
(注意f y' 取值原则)
6e0 N 弹性材料 ( 1 ) A h
钢筋混凝土偏心受压构件的破坏形态与 偏心距e0和纵向钢筋配筋率有关
20
一、偏心受压短柱的破坏形态
(一)受拉破坏(大偏心受压破坏)
条件:偏性距较大且As不过多。 靠近纵向力一侧受压,远离纵向力一侧受拉。截面受拉侧混 凝土较早出现裂缝,As的应力随荷载增加发展较快,首先达 到屈服强度。此后,裂缝迅速开展,受压区高度减小,压区 混凝土压碎而达到破坏。受压侧钢筋A‘s 一般能受压屈服。
普通箍筋柱:
螺旋箍筋柱:箍筋的形状为圆形, 且间距较密,其对混凝土的约束作 用较强。
9
纵筋的作用:
◆ ◆ ◆
协助混凝土受压减小截面尺寸、改善截面延性。
承担弯矩作用
减小持续压应力下混凝土收缩和徐变的影响。
箍筋的作用: 与纵筋组成空间骨架,避免纵筋受压外凸。
10
一、配有纵向钢筋和普通箍筋柱
1.试验分析
混凝土:混凝土强度等级对受压构件的承载影响较大,一 般应采用强度等级较高的混凝土。目前我国一般结构中柱 的混凝土强度等级常用C30~C40,在高层建筑中, C50~C60级混凝土也经常使用。 钢筋:纵筋:HRB400 HRB500。箍筋:HRB400 HPB300。
混凝土考试简答题总结
第一章绪论混凝土结构:包括素混凝土结构、钢筋混凝土结构、预应力混凝土结构。
钢筋混凝土结构:由配置受力的普通钢筋,钢筋网或钢筋骨架的混凝土制成结构。
配筋的作用与要求。
作用:在混凝土中配置适量的受力钢筋,并使得混凝土主要承受压力,钢筋主要承受拉力,就能充分起到利用材料,提高结构承载力和变形能力的作用。
要求:在混凝土中设置受力钢筋构成钢筋混凝土,这就要求受力钢筋与混凝土之间必须可靠地粘结在一起,以保证两者共同变形,共同受力。
钢筋和混凝土为什么能有效地在一起共同工作?1)混凝土结硬后,能与钢筋牢固地粘结在一起,相互传递内力。
即粘结力。
2) 由于钢筋和混凝土两种材料的温度线膨胀系数十分接近。
当温度变化时钢筋与混凝土之间不会产生由温度引起的较大相对变形造成的粘结破坏。
3)钢筋埋置于混凝土中,混凝土对钢筋起到了保护和固定作用,使钢筋不容易发生锈蚀,且使其受压时不易失稳,在遭受火灾时不致因钢筋很快软化而导致结构整体破坏。
因此,在混凝土结构中,钢筋表面必须留有一定厚度的混凝土作保护层,这是保持二者共同工作的必要措施。
钢筋混凝土有哪些主要优点和主要缺点。
优点:取材容易,合理用材,耐久性较好,耐火性好,可模性好,整体性好。
缺点:自重较大。
(对大跨度,高层结构抗震不利。
也给运输带来困难)抗裂性较差,施工复杂,工序多,隔热和隔声性能较差。
结构有哪些功能要求?建筑结构的功能包括安全性,适用性和耐久性三个方面。
简述承载力极限状态和正常使用极限状态的概念?承载力极限状态:结构或构件达到最大承载力或变形达到不适用继续承载状态。
正常使用极限状态:结构或构件达到正常使用或耐久性能某项规定限度的状态。
第二章混凝土结构材料的物理力学性能混凝土的变形模量:割线混凝土的弹性模量(原点模量):原点切线混凝土的切线模量:切线。
图2-14徐变:结构或材料承受的应力不变,而应变随着时间增长的现象称为徐变。
徐变对混泥土影响:使构件的变形增加,在钢筋混凝土截面中引起应力重分布的现象,在预应力混凝土结构中会造成预应力损失。
受压构件的截面承载力
第3章 受压构件的截面承载力本章提要受压构件是钢筋混凝土结构中的重要章节,它分为轴心受压和偏心受压(单向偏心受压构件和双向偏心受压构件)两部分。
轴心受压构件截面应力分布均匀,两种材料承受压力之和,在考虑构件稳定影响系数后,即为构件承载力计算公式。
对于配有纵筋及螺旋箍筋的柱,由于螺旋箍筋约束混凝土的横向变形,因而其承载力将会有限度的提高。
偏心受压构件因偏心距大小和受拉钢筋多少的不同,截面将有两种破坏情况,即大偏心受压(截面破坏时受拉钢筋能屈服)和小偏心受压(截面破坏时受拉钢筋不能屈服)构件。
在考虑了偏心距增大系数后,根据截面力的平衡条件,即可得偏心受压构件的计算公式。
截面有对称配筋和不对称配筋两类,实用上对称配筋截面居多。
无论是对称配筋或不对称配筋,计算时均应判别大、小偏心的界限,分别用其计算公式对截面进行计算。
本章学习目标:了解轴心受压构件的受力全过程,偏心受压构件的受力工作特性;熟悉两种不同偏心受压构件的破坏特征及由此划分成的两类偏心受压构件,掌握两类偏心受压构件的判别方法;掌握轴心受压构件、两类偏心受压构件的正截面承载力计算方法;掌握偏心受压构件的斜截面承载力计算方法;熟悉受压构件的构造要求。
课堂教学学时:12学时主要教学内容:3.1 受压构件一般构造要求3.1.1 截面型式及尺寸1. 截面型式一般采用方形或矩形,有时也采用圆形或多边形。
偏心受压构件一般采用矩形截面,但为了节约混凝土和减轻柱的自重,较大尺寸的柱常常采用I形截面。
拱结构的肋常做成T形截面。
采用离心法制造的柱、桩、电杆以及烟囱、水塔支筒等常用环形截面。
2. 截面尺寸:(1) 方形或矩形截面柱截面不宜小于300mm×300mm。
为了避免矩形截面轴心受压构件长细比过大,承载力降低过多,通常取l0/b≤30,l0/h≤25。
此处l0为柱的计算长度,b为矩形截面短边边长,h为长边边长。
为了施工支模方便,柱截面尺寸宜使用整数,截面尺寸≤800mm,以50mm 为模数;截面尺寸>800 mm ,以100mm 为模数。
结构设计原理第5章受扭构件承载力计算
结构设计原理第5章受扭构件承载力计算(Chapter 5 Calculation to Carrying Capacity of Torsional Members)本章目录5.1 纯扭构件的破坏特征和承载力计算5.2 在弯、剪、扭共同作用下矩形截面构件的承载力计算5.3 T形和工字形截面受扭构件5.4 箱形截面受扭构件5.5 构造要求教学要求了解矩形截面纯扭构件破坏特征。
理解变角度空间桁架模型和扭曲破坏面极限平衡理论。
掌握矩形截面弯扭构件的承载力计算方法,了解T 形和箱形截面受扭构件计算特点。
掌握受扭构件的构造要求。
第5章受扭构件承载力计算5.1 纯扭构件的破坏特征和承载力计算5.2 在弯、剪、扭共同作用下矩形截面构件的承载力计算5.3 T形和工字形截面受扭构件5.4 箱形截面受扭构件5.5 构造要求学习内容材料特性 受弯构件受剪构件受扭构件桥梁工程基础知识结构设计,后续课程设计方法 偏压、偏拉构件 轴拉构件轴压构件变形、裂缝预应力混凝土结构构件设计简介工程中常见受扭构件1、曲线梁(弯梁桥)、斜梁(板)2、支撑悬臂板的梁曲线梁示意图3、偏心荷载作用下的梁4、螺旋楼梯板螺旋楼梯中扭矩也较大雨蓬梁要承受弯矩、剪力和扭矩。
工程中只承受纯扭作用的结构很少,大多数情况下结构都处于弯矩、剪力、扭矩等内力共同作用下的复杂受力状态。
由于扭矩、弯矩和剪力的共同作用,构件的截面上将产生相应的主拉应力。
图5-1 曲线梁截面内力示意图当主拉应力超过混凝土的抗拉强度时,构件便会开裂。
因此,必须配置适量的钢筋(纵筋和箍筋)来限制裂缝的开展和提高钢筋混凝土构件的承载能力。
5.1 纯扭构件的破坏特征和承载力计算图5-2为配置箍筋和纵筋的钢筋混凝土受扭构件,从加载直到破坏全过程的扭矩T和扭转角θ的关系曲线。
图5-2 钢筋混凝土受扭构件的T-θ曲线图5-3 扭转裂缝分布图钢筋混凝土构件抗扭性能的两个重要衡量指标是:(1)构件的开裂扭矩;(2)构件的破坏扭矩。
钢筋混凝土受压构件
§5-3 偏心受压构件正截面承载力计算
1.2 第二类破坏情况——受压破坏
(3)偏心距较大,受拉钢筋配置过多。(超筋) 如图,当偏心距较大时,本应发生第一类大偏心受压破 坏,但若受拉钢筋配置过多,则受拉一侧的钢筋应力达 不到屈服强度,这种破坏与超筋梁类似。设计应避免。
实际工程中真正的轴心受压 构件是没有的。 我国规范目前仍把这两种构 件分别计算。 对偏心很小的构件可略去不 计,构件按轴心受压计算。
(a)轴心受压
(b)单向偏心受压 (压构件的构造要求
1.截面形式和尺寸 ❖为了模板的制作方便,受压构件一般均采用方形或矩形截面。
§5-1 受压构件的构造要求
4. 箍筋
3)间距:柱中箍筋直径不应小于0.25倍纵筋的最大直径,也不应小 于6mm。 箍筋间距s应符合下列三个条件: І)s 15d(绑扎骨架)或s 20d(焊接骨架),d为纵筋的最小直径。 П)s b,b为截面的短边尺寸。 Ⅲ) s400mm。 4)当纵筋的接头采用绑扎搭接时,则在搭接长度范围内箍筋应加密。
根据上述试验分析,配置普通箍筋的钢筋砼短柱的正截面极限承载 力由砼及纵向钢筋两部分受压承载力组成。即
Nu
fc Ac
f y
As
适用于比较粗的短柱
Nu——破坏时的极限轴向力; Ac——混凝土截面面积; As’——全部纵向受压钢筋截面面积。
§5-2 轴心受压构件正截面承载力计算
2. 普通箍筋短柱正截面极限承载力
§5-2 轴心受压构件正截面承载力计算
2. 普通箍筋短柱正截面极限承载力
受压构件的计算长度l0与其两端的约束情况有关,可自表5-2查得。
§5-2 轴心受压构件正截面承载力计算
3. 普通箍筋柱的计算
水工钢筋混凝土结构学第5章PPT课件
三、 纵筋
纵筋:采用Ⅱ、Ⅲ级钢筋,不宜采用高强度钢筋。 轴心受压构件纵筋沿截面的四周均匀放置,钢筋根数不得少于4 根,直径不小于12mm,常用12~32mm。。 偏心受压构件纵筋放置在偏心截面的两边,截面高度≥600mm时, 侧面应设置直径10~16mm的纵向构造钢筋,并设附加箍筋或拉 筋。
承重墙内竖向钢筋的直径不应小于10mm,间距不应大于300mm。
荷载较小,砼和钢筋应力比符合弹模比。
荷载加大,应力比不再符合弹模比。
荷载长期持续作用,砼徐变发生,砼与钢筋之间引起
应力重分配。
破坏时,砼的应力达到 f c ,钢筋应力达到
f
y
。
精选
5.2 轴心受压构件正截面承载力计算
不同箍筋短柱的荷载—应变图
普通钢箍柱
A——不配筋的素砼短柱; B——配置普通箍筋的钢筋砼短柱; C——配置螺旋箍筋的钢筋砼短柱。
令 x h0
KN
Nu
1 d
( fcb h0
f y As
f y As )
KNe
fc
s
b
h
2 0
f y As ( h0 a ' )
得到
s
KNe
f y As ( h0
Байду номын сангаас
f
c
b
h
2 0
a')
1- 1-2 s
若 b ,可 以 保 证 构 件 破 坏 时 受 拉 钢 筋 的 应 力 先 达 到 fy ,因 而
y y f ?sin px
le f
考虑二阶效应的计算方法目前主要有非 线性有限元法和偏心距增大系数法精选
ei N
le
【精】06第五章钢筋混凝土受压构件承载力计算(1)(免费阅读)
第五章钢筋混凝土受压构件承载力计算以承受轴向压力为主的构件称为受压构件(柱)。
理论上认为,轴向外力的作用线与构件轴线重合的受压构件,称为轴心受压构件。
在实际结构中,真正的轴心受压构件几乎是没有的,因为由于混凝土材料组成的不均匀,构件施工误差,安装就位不准,都会导致压力偏心。
如果偏心距很小,设计中可以略去不计,近似简化为按轴心受压构件计算。
若轴向外力作用线偏离或同时作用有轴向力和弯矩的构件称为偏心受压构件。
在实际结构中,在轴向力和弯矩作用的同时,还作用有横向剪力,如单层厂房的柱、刚架桥的立柱等。
在设计时,因构件截面尺寸较大,而横向剪力较小,为简化计算,在承载力计算时,一般不考虑横向剪力,仅考虑轴向偏心力(或轴力和弯矩)的作用。
§5-1 轴心受压构件承载力计算轴心受压构件按其配筋形式不同,可分为两种形式:一种为配有纵向钢筋及普通箍筋的构件,称为普通箍筋柱(直接配筋);另一种为配有纵向钢筋和密集的螺旋箍筋或焊接环形箍筋的构件,称为螺旋箍筋柱(间接配筋)。
在一般情况下,承受同一荷载时,螺旋箍筋柱所需截面尺寸较小,但施工较复杂,用钢量较多,因此,只有当承受荷载较大,而截面尺寸又受到限制时才采用。
(一)普通箍筋柱1、构造要点普通箍筋柱的截面常采用正方形或矩形。
柱中配置的纵向钢筋用来协助混凝土承担压力,以减小截面尺寸,并用以增加对意外弯矩的抵抗能力,防止构件的突然破坏。
纵向钢筋的直径不应小于12mm,其净距不应小于50mm,也不应大于350mm;对水平浇筑的预制件,其纵向钢筋的最小净距应按受弯构件的有关规定处理。
配筋率不应小于0.5%,当混凝土强度等级为C50及以上时应不小于0.6%;同时,一侧钢筋的配筋率不应小于0.2%。
受压构件的配筋率按构件的全截面面积计算(图5.1-1)。
柱内除配置纵向钢筋外,在横向围绕着纵向钢筋配置有箍筋,箍筋与纵向钢筋形成骨架,防止纵向钢筋受力后压屈。
柱的箍筋应做成封闭式,其直径应不小于纵向钢筋直径的1/4,且不小于8mm。
第五章 钢筋混凝土受弯构件斜截面承载力(第二课)
第五章 受弯构件斜截面受剪承载力
3、计算公式的适用范围
1)截面的最小尺寸(上限值):
为防止斜压破坏及梁在使用阶段斜裂缝过宽,对梁的 截面尺寸作如下规定: 斜压破坏主要由腹板宽度,梁截面高度及混凝土强度决定。
hw 4 ––– 一般梁 b hw 6 ––– 薄腹梁 b hw 4 6 b
V ≤ 0.25βc fcbh0
第五章 受弯构件斜截面受剪承载力
3). 混凝土强度等级
梁斜压破坏时,受剪承载力取决于混凝土的抗压强度;
梁斜拉破坏时,受剪承载力取决于混凝土的抗拉强度; 剪压破坏时,混凝土强度的影响则居于上述两者之间。
4). 纵筋配筋率 纵筋的受剪产生了销栓力,所以纵筋的配筋越大,梁 的受剪承载力也就提高。
第五章 受弯构件斜截面受剪承载力
2)连续梁受剪承载力的计算
设计规范规定,连续梁与简支梁采用相同的受剪承 载力计算公式:
Vu Vcs
Asv 0.7 f t bh0 1.25 f yvh0 s
A 1.75 f t bh0 1.0 sv f yv h0 1.0 s
…5-11 …5-12 …5-13
Vu Vcs
第五章 受弯构件斜截面受剪承载力
►(2)集中荷载作用下的矩形截面、T形、工形截面独
立简支梁(包括多种荷载作用,其中集中荷载对支座截面产
生的剪力值占总剪力值的75%以上的情况)。(特殊情况)
Asv 1.75 Vu Vcs f t bh0 1.0 f yv h0 1.0 s
λ ––– 计算截面剪跨比,=a/h0;
(b) 双肢箍
(c) 四肢箍
图5-14 箍筋的肢数
第五章 受弯构件斜截面受剪承载力
第五章受压构件的截面承载力(小偏压三种情况说明)
h ¢ ¢ N u e 1 f c bh0 (h0 ) f y¢ As (h0 a¢ s) 2
e¢ h a¢ s (e0 ea ) 2
f ¢yAs
a1f cbx h0 – a¢ s h¢ 0
ssA¢s
a¢ s
as
大偏心受压不对称配筋
不对称配筋
小偏心受压不对称配筋 实际工程中,受压构件常承受变号弯矩作用,所以采用对称配筋
对称配筋不会在施工中产生差错,为方便施工通常采用对称配筋
大偏心受压对称配筋 对称配筋 小偏心受压对称配筋
5.6 非对称配筋截面的承载力计算
大小偏心分界限
当 < b 属于大偏心破坏形态 > b 属于小偏心破坏形态
e0b
Nb
界限破坏时: =b,由平衡条件得 f y As 1 fcbh0b
界限破坏
当受拉钢筋屈服的同时,受压边缘混凝土应变 达到极限压应变。
大小偏心受压的分界:
As h0
A¢s
x h0
xb b h0
s y
g h 0.002
当 < b ––– 大偏心受压 ab
b c d e f
x0
a¢¢ a¢ a xcb
= b ––– 界限破坏状态 ad
cu
(1)偏心距小,构件全截面受压,靠近纵向力一侧压应力 大,最后该区混凝土被压碎,同时压筋达到屈服强度,另一 侧钢筋受压,但未屈服。 (2)偏心距小 ,截面大部分受压,小部分受拉,破坏时压区 混凝土压碎,受压钢筋屈服,另一侧钢筋受拉,但由于离中 和轴近,未屈服。 (3)偏心距大,但受拉钢筋配置较多。由于受拉钢筋配置较多, 钢筋应力小,破坏时达不到屈服强度,破坏是由于受压区混 凝土压碎而引起,类似超筋梁。 特征:破坏是由于混凝土被压碎而引起的,破坏时靠近纵向力 一侧钢筋达到屈服强度,另一侧钢筋可能受拉也可能受压, 但都未屈服。
(完整版)混凝土结构设计原理填空题库(带答案)全解
绪论1.在混凝土内配置钢筋的主要作用是提高结构或构件的承载能力和变形能力.2.混凝土内配置钢筋的主要作用是提高结构或构件的承载能力和变形能力。
3.钢筋混凝土结构的主要缺点有:自重大、抗裂性差以及费模费工等。
第一章混凝土结构的设计方法1.混凝土结构对钢筋主要有强度、塑性、___可焊性____和与混凝土的粘结四个性能要求。
2.钢筋的冷加工包括冷拉和冷拔,其中_____冷拔_____后既可以提高抗拉强度又可以提高抗压强度。
3.有明显屈服点钢筋的主要强度指标是____屈服强度________。
4.伸长率包括断后伸长率和___断裂总伸长率__________。
5.反映钢筋塑性性能的主要指标是____断后伸长率___和冷弯性能(p9)。
6.要使配筋后的混凝土结构能够提高承载能力和变形能力,就要求:①钢筋与混凝土两者变形一致,共同受力;②钢筋的位置和数量等也必须正确.7.混凝土的应力不变,__应变___随时间而增长的现象称为混凝土的徐变。
8.钢筋与混凝土之间的粘结,包括两类问题:①沿钢筋长度的粘结;②钢筋端部的锚固 .9.混凝土强度等级是根据___立方体抗压___强度标准值确定的。
10.结构或构件破坏前没有明显预兆的,属脆性破坏;破坏前有明显预兆的,属_延性_破坏。
11.为了保证可靠锚固,绑扎骨架中受拉光圆钢筋末端应做__半圆弯钩___.12.钢筋的伸长率是反映其___塑性____性能的指标。
13.在钢筋长度保持不变的条件下,钢筋应力随时间增长而逐渐降低的现象称为钢筋的__应力松弛____。
14.钢筋与混凝土之间的粘结力主要由胶着力、摩擦力和__机械咬合力____三部分组成.15.为使钢筋与混凝土变形一致、共同受力,钢筋端部要有足够的__锚固长度____.16.过混凝土应力—应变曲线原点所作切线的斜率为混凝土的_弹性模量_____。
17.混凝土在三向受压下,不仅可提高其____抗压强度______,而且可提高其变形能力。
混凝土结构设计原理 第5章 受压构件的截面承载力
《混凝土结构设计规范》采用稳定系数来表示长柱承载力的降 低程度。
5.1 轴心受压构件承载力计算
第5章 受压构件的截面承载力
受压钢筋应力一般都能达到屈服强度
受拉破坏的主 要特征:
破坏从受 拉区开始,受 拉钢筋首先屈 服,而后受压 区混凝土被压 坏。
§5.3 偏心受压构件正截面的破坏形态
第5章 受压构件的截面承载力
受压破坏(小偏心受压破坏) 产生受压破坏的条件有两种情况:
⑴当相对偏心距e0/h0较小,截面全部受压或大部分受压 ⑵或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时
§5.2 轴心受压构件正截面受压承载力
第5章 受压构件的截面承载力
试验研究
长柱的承载力<短柱 的承载力(相同材料、 截面和配筋)
原因:长柱受轴力和 弯矩(二次弯矩)的 共同作用
§5.2 轴心受压构件正截面受压承载力
第5章 受压构件的截面承载力
轴心受压长柱的破坏过程
由于初始偏心距的存在,构件受荷后产生附加弯矩,伴之发 生横向挠度。
r
2 f y Ass1 sd c or
2 f y Ass1d cor
4
d
2 cor
s
f y Ass0 2 Acor
4
f ——为被约束后混凝土的轴心抗压强度;
β——为系数。
间接钢筋 的换算面 积
核心区混 凝土的截 面积
螺旋式或焊接环式间接钢筋柱的承载力计算公式
第05章 受压构件的截面承载力
第5章 受压构件
2.承载力计算计算
轴心受压短柱 轴心受压长柱
N f c A f y As
s u
N N
l u
s u
稳定系数
N N
l u s u
稳定系数 主要与
柱的长细比l0/b有关
N N u 0.9 ( f c A f y As )
可靠度调整系数 0.9是考虑初始偏心的影响,以及主要承受恒 载作用的轴心受压柱的可靠性。
第5章 受压构件
箍筋
第5章 受压构件
截面形状复杂的构件,不可采用具有内折角的箍筋
第5章 受压构件
箍筋的作用
(1)与纵筋形成骨架,便于施工; (2)防止纵筋的压屈; (3)对核心混凝土形成约束,提高混凝土的抗压强度,增加构件的延性。
第5章 受压构件
柱钢筋图
第5章 受压构件
电渣压力焊
第5章 受压构件
第5章 受压构件
表5-1
6.1 轴心受压构件的承载力计算
第5章 受压构件
5.2.2 轴心受压螺旋箍筋柱的正截面受压 承载力计算
Õ ¨Ö ¿ ù Æ Í ¸ ¹ Ö
Ý ý Ö ¿ ù Â Ð ¸ ¹ Ö
6.1 轴心受压构件的承载力计算
第5章 受压构件
混凝土圆柱体三向受压状态的纵向抗压强度
f f c r
第5章 受压构件
(2)随着荷载的增大,构件变形迅速增大,此时混凝
土塑性变形增加,弹性模量降低,应力增加缓慢,而钢
筋应力的增加则越来越快。在临近破坏时,柱子表面出 现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间 的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏。 破坏时混凝土的应力达到棱柱体抗压强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N N u 0.9 f c A f A
' y
' s
可靠度调整系数 0.9是考虑初始偏心的影响,以及主要承受恒 载作用的轴心受压柱的可靠性。
承载力计算简图
5.2 轴心受压构件正截面受压承载力
第5章 受压构件的截面承载力
5.2.2 轴心受压螺旋箍筋柱的正截面受压承载力计算
5.2 轴心受压构件正截面受压承载力
质量的不均匀性等原因,往往存在一定的初始偏心距。
◆ 但有些构件,如以恒载为主的等跨多层房屋的内柱、桁架中的
受压腹杆等,主要承受轴向压力,可近似按轴心受压构件计算。 普通钢箍柱:箍筋的作用? 纵筋的作用? 螺旋钢箍柱:箍筋的形状 为圆形,且间距较密,其 作用?
Õ Í Æ ¨¸ Ö ¹ ¿ Ö ù Ý Ð Â ý ¸ Ö ¹ ¿ Ö ù
⑵在焊接骨架中则不应大于20d(d为纵筋最小直径),且不应大于 400mm,也不大于构件横截面的短边尺寸。
箍筋直径:
不应小于d∕4(d为纵筋最大直径),且不应小于6mm。当纵筋配筋率超过 3%时,箍筋直径不应小于8mm,其间距不应大于10d(d为纵筋最小直径), 且不应大于200mm。
5.1 受压构件一般构造要求
' y ' s
8 f y Ass1 s dcor
5.2 轴心受压构件正截面受压承载力
第5章 受压构件的截面承载力
(a)
(b)
2
s
(c)
dcor Ass1 s Ass 0
Ass 0
fyAss1
dcor
d cor Ass 1
s
s
2
fyAss1
1 f c 4 2
Nu fc Acor f y' As' 2 f y Ass 0
轴心受压构件的纵向受力钢筋 的配置形式如左图所示。 更正:左图应b≤400
5.1 受压构件一般构造要求
第5章 受压构件的截面承载力
偏心受压构件的纵向受力 钢筋的配置形式如左图所 示。
5.1 受压构件一般构造要求
第5章 受压构件的截面承载力
5.1.4 箍筋
柱中的箍筋应做成封闭式; 箍筋间距:
⑴在绑扎骨架中不应大于15d,
第5章 受压构件的截面承载力
§5.1 受压构件一般构造要求
5.1.1 截面形式及尺寸 轴心受压构件截面一般采用方形或矩形,有时也采用圆形或 多边形。 偏心受压构件一般采用矩形截面,但为了节约混凝土和减轻 柱的自在自重,特别式在装配式柱中,较大尺寸的柱常常采用I 形截面。 拱结构的肋常做成T形截面。 采用离心法制造的柱,桩,电杆以及烟囱,水塔支筒等常用 环形截面。
5.1 受压构件一般构造要求
第5章 受压构件的截面承载力
方形柱:
l0 h 25 。 不宜小于250×250mm。常取 l0 b 30,
I形柱: 翼缘厚度不宜小于120mm,腹板厚度不宜小于100mm。 5.1.2 材料强度要求
一般采用C25,C30,C35,C40,对于高层建筑的底层柱, 必要时可采用高强度等级的混凝土。
第5章 受压构件的截面承载力
混凝土圆柱体三向受压状态的纵向抗压强度
1 f c 4 2
5.2 轴心受压构件正截面受压承载力
第5章 受压构件的截面承载力
(a)
(b)
2
s
(c)
dcor fyAss1
s fyAss1
2
5.2 轴心受压构件正截面受压承载力
第5章 受压构件的截面承载力
(a)
(b)
2
s
(c)
2 sdcor 2 f y Ass1
dcor fyAss1
2
2
2 f y Ass1 s dcor
8 f y Ass1 s dcor
Acor
1 fc 4 2
s
fyAss1
1 fc
' y ' s
达到极限状态时(保护层已剥落,不考虑)
Nu 1 Acor f A f c Acor f A
第5章 受压构件的截面承载力
对于截面形状复杂的构件,不可采用具有内折角的箍筋, 避免产生向外的拉力,致使折角处的混凝土破损,如上图所示。
5.1 受压构件一般构造要求
第5章 受压构件的截面承载力
§5.2 轴心受压构件正截面受压承载力计算
◆ 在实际结构中,理想的轴心受压构件几乎是不存在的。 ◆ 通常由于施工制造的误差、荷载作用位置的不确定性、混凝土
纵向钢筋一般采用HRB400级,HRB335级和RRB400级,不宜 采用高强度钢筋,这是由于它于混凝土共同受压时,不能充分发 挥其高强度的作用。箍筋一般采用HPB235级,HRB335级钢筋, 也可采用HRB400级钢筋。
5.1 受压构件一般构造要求
第5章 受压构件的截面承载力
5.1.3 纵筋
轴心受压构件,偏心受压构件全部纵筋的配筋率不应小于: 按钢筋级别分三档0.5%(500Mpa),0.55(400Mpa),0.6%(300,335Mpa), C60以上混凝土增加0.1%;(8.5.1条)同时,一侧钢筋的配筋率 不应小于0.2%。
达到极限状态时(保护层已剥落,不考虑)
5.2 轴心受压构件正截面受压承载力
第5章 受压构件的截面承载力
纵筋的作用:
◆
协助混凝土受压
受压钢筋最小配筋率:0.6% (单侧0.2%)
◆ 承担弯矩作用 ◆ 减小持续压应力下混凝土收缩和徐变的影响。
实验表明,收缩和徐变能把柱截面中的压力由混凝 土向钢筋转移,从而使钢筋压应力不断增长。压应 力的增长幅度随配筋率的减小而增大。如果不给配 筋率规定一个下限,钢筋中的压应力就可能在持续 使用荷载下增长到屈服应力水准。
N N
l u s u
稳定系数
N N
l u s u
稳定系数 主要与柱的长细 比l0/b有关
当l0 b 8 ~ 34时, 1.177 0.012 l0 b 当l0 b 35 ~ 50时, 0.87 0.012 l0 b
5.2 轴心受压构件正截面受压承载力
第5章 受压构件的截面承载力
5.2 轴心受压构件正截面受压承载力
第5章 受压构件的截面承载力
5.2.1 轴心受压普通钢箍柱的正截面承载力计算
⒈受力分析和破坏形态
短柱的破坏形态
长柱的破坏形态5.Fra bibliotek 轴心受压构件正截面受压承载力
第5章 受压构件的截面承载力
⒉承载力计算公式
轴心受压短柱 轴心受压长柱
Nus fc A f y' As'