13.3.1_等腰三角形说课稿

合集下载

八年级数学《等腰三角形的性质》说课稿

八年级数学《等腰三角形的性质》说课稿

《等腰三角形的性质》说课稿各位评委、老师:你们好!我是车站中学的xxx,我说课的课题是《等腰三角形的性质》,下面,我从教材、教法、学法、教学过程等几个方面对本课的设计进行说明,并就教学效果进行课后反思.一、说教材1.教学内容:《等腰三角形的性质》是人教版数学的八年级上册第十三章第三节《等腰三角形》的第一课时,本节课的主要内容就是研究等腰三角形的两个性质.2.在教材中的地位与作用:本节课是在学生已经学习了三角形的基本概念、全等三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,在培养学生的思维能力和推理能力等方面有重要的作用;而等腰三角形的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,也是后续学习等边三角形、菱形、正方形、圆等内容的重要基础.3.教学目标:知识与技能:1.了解等腰三角形的概念.2.掌握等腰三角形性质并运用其进行证明和计算.过程与方法:1.通过亲身观察、证明等腰三角形性质,锻炼推理能力.2.经历折纸活动,培养猜想、探究的能力.情感、态度及价值观:1.从动手操作中,激发数学学习的兴趣.2.从实践活动中,感受数学来源于生活,并应用于生活.4.教学重点与难点:重点:等腰三角形的性质的探索和验证.难点:等腰三角形的性质的应用.5.教学准备:教师课前准备:课件,三角板.学生课前准备:等腰三角形纸片.二、说教法《新课程标准》要求课堂教学要充分体现以学生发展为本的精神,因此结合学生实际情况及教材内容,我主要采用了以下教学方法:教师启发引导、学生动手操作、观察、分析、猜想、验证得出等腰三角形的性质;教师规范板书,指导学生性质的文字语言、图形语言、符号语言;学生课堂完成练习题,教师点评并规范格式方法.针对猜想的得出,主要采用教师提问学生回答的问答法的学习方法;针对性质2的证明,主要采用类比法的教学方式;针对有难度练习题,主要采用合作探究教学方式.三、说学法《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来.通过学生动手实践,培养学生的观察能力、分析能力;通过自主探索,调动学生思维的积极性,使学生自主地获取知识;通过合作交流,学生分组讨论,使学生在沟通中创新,在交流中发展,在合作中获得新知.四、说教学过程(一)回顾与引入各小组展示各组课前准备的三角形纸片.(设计意图:通过让学生动手剪纸,获得图形的直观感受,并为下面的折纸操作做好铺垫,为学生提供参与数学活动的时间和空间,调动学生的主观能动性,激发其好奇心和求知欲.)教师提问:你们的三角形纸片都是怎么剪成的?(课堂实录片段)(有的同学是先画一个等腰三角形再剪,由此回顾等腰三角形的定义)1.回顾:学生回顾等腰三角形的定义,教师归纳并板书:在△ABC中,AB=AC,像这样有两边相等的三角形叫等腰三角形.结合图形介绍“腰”、“底边”、“顶角”、“底角”等概念.(设计意图:结合自已剪出的等腰三角形和画出的图形学习相关概念,加深印象.)(课堂实录片段)(有的同学是将长方形纸片对折之后剪一个靠近对称轴的角,展开就得到一个等腰三角形.由此引出等腰三角形的轴对称性.)2.引入:教师引入课题:下面,我们利用轴对称的知识来研究等腰三角形的性质.(设计意图:在正式进行探索和发现前,让学生对探索的目标、意义有十分明确的认识,做好探索前的物质准备和精神准备.)(二)猜想与证明1.猜想1:教师引导学生动手把等腰三角形ABC对折,作出等腰三角形ABC和折痕AD.找出其中重合的线段和角,并填在书上的表格中.(课堂实录片段)拿掉折痕,只关注三角形ABC的边角.①AB=AC →两条腰相等②B=∠C →两个底角相等(设计意图:将两个性质分开探究、简化进行猜想的过程.)教师引导学生用文字语言归纳出猜想1:猜想1 等腰三角形的两个底角相等;(设计意图:在这个过程中训练学生文字语言与符号语言的互换,培养学生自主探究的学习品质和观察分析、归纳概括的能力,发展形象思维.)2.猜想1的证明:教师引导学生根据猜想1的条件和结论画出相应的图形,写出已知和求证,师生共同分析证明思路,提出以下两个问题引导学生思考证明方法:①如何证明两个角相等?②如何构造两个全等的三角形?(课堂实录片段)(设计意图:引导学生在全等三角形的基础上完成这一证明.同时做不同的辅助线得出这一证明的三种不同方法.)3.性质1:在学生证明的基础上,教师板书性质1:等腰三角形的两个底角相等.(“等边对等角”).并强调符号语言的表达.4.猜想2:(课堂实录片段)由性质一的三种证明方法所做的三条辅助线实际是同一条线段,同时也回顾性质一的猜想过程,对剩下的相等线段、相等角进行分析,进而得出第二个猜想:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(设计意图:在性质一完全得证后探究性质二,将本节课两个重要的内容分开,降低学生的掌握难度.)5.猜想2的证明:猜想2这个命题的符号语言对学生来说有难度,于是我设计了一个填空题.如图,① 已知:AB=AC ∠BAD=∠CAD (即AD 是顶角的角平分线), 求证: ② 已知AB=AC BD=BC (即AD 是底边上的中线), 求证:③ 已知AB=AC AD ⊥BC (即AD 是底边上的高线)求证:(设计意图:弱化将这一命题条件、结论区分清楚的难度,引导学生将语言文字转化为符号文字.)(课堂实录片段)类比猜想1的证明,探究猜想2的证明.选三个明天中的一个进行证明.6.性质2:在学生证明的基础上,教师板书性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(“三线合一”).并强调符号语言的表达.(第(二)环节设计意图:等腰三角形的性质的探索与验证是本节课的重点,本环节中,充分调动学生的主观能动性,让学生大胆猜想、小心求证,经历性质证明的过程,增强理性认识,体验性质的正确性和辅助线在几何论证中的作用,在学生的自主探索中,完成了重点知识的教学,突出了教学重点,培养了学生的合情推理能力和演绎推理的能力.)(三)应用与提高1.课件出示:练习1(1)△ABC 中, AB =AC , ∠A =36°, 则∠B = °;(2)△ABC 中, AB =AC , ∠B =36°, 则∠A = °;(3)已知等腰三角形的一个内角为70°,则它的另外两个内角的度数分别是 .(设计意图:应用“等边对等角”,结合三角形内角和求三角形的角.第三问在第一二问的铺垫下应用分类思想.)2.课件出示:例:如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD.求△ABC 各角的度数.(设计意图:课本例题,使学生认识到从复杂图形中分解出 等腰三角形是利用性质解决问题的关键,培养学生数形结合的能力和方程的思想.)B AC D3.课件出示:练习2如图,在△ABC 中,AB=AC ,D 、E 在AC 、AB 上,BC=BD,AD=DE=EB,求∠A 的度数.(设计意图:在讲解例题的基础上让学生再练习一个同类型题目,巩固解决这一题型的方法步骤,进一步培养学生数形结合能力,强化方程思想的应用.)4.课件出示:练习3如图⑴∵AB=AC ,AD ⊥BC∴∠_=∠_,_=_;⑵∵AB=AC ,BD=DC∴∠_=∠_,_⊥_;⑶∵AB=AC ,AD 平分∠BAC∴_⊥_,_=_(设计意图:让学生再次理解和运用等腰三角形的“三线合一”性质,再次以填空的形式强化三线合一的符号表达形式,及时巩固所学知识,了解学生的学习效果,增强学生应用知识的能力.)5.课件出示:练习4如图,在△ABC 中,AB=AC ,点D 、E 在BC 上,且AD=AE.求证:BD =CE.(设计意图:本题考察学生对“三线合一”这一性质的灵活运用,体现这一性质有时候可以代替证全等的方法证线段相等.)(第(三)环节设计意图:等腰三角形的性质的应用,是这节课的难点,本环节就是通A B CDE过运用这一性质解决有关问题,让学生在解答活动中提高运用知识和技能的能力,在掌握重点知识的同时,获得成功的体验,建立学习的自信心.)(四)小结与作业请学生总结:(1)本节课学习了哪些主要内容?(2)我们是怎么探究等腰三角形的性质的?(3)本节课你学到了哪些证明线段相等或角相等的方法?(通过对本节课的回顾,增强学生对等腰三角形的理解和对轴对称图形的理解,培养学生“学习——总结——学习——反思”的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心.)作业:课本77面练习1、2、3(五)板书设计13.3等腰三角形第一课时等腰三角形的性质1.定义:有两边相等的三角形叫做等腰三角形.△ABC 中,AB =AC2.三角形的性质:性质1 “等边对等角”.在△ABC 中,∵AB =AC∴∠B=∠C性质2 “三线合一”.①∵AB =AC,AD平分∠BAC∴AD平分BC,AD⊥BC②∵AB =AC,AD平分BC∴AD平分∠BAC,AD⊥BC④∵AB =AC,AD⊥BC∴AD平分BC,AD平分∠BAC五、课后反思现代数学教学观念要求学生从“学会”向“会学”转变.所以本节课在教学设计上,我尝试将两个性质的探究分开进行,降低学生自主探究的难度.先让学生通过剪纸来认识等腰三角形;再通过折纸注意等腰三角形的相等边、相等角,从而得出等腰三角形的两个底角相等之一猜想;然后运用全等三角形的知识加以论证,再由性质1的不同证明方法关注等腰三角形对折的折痕,猜想这条线段既是等腰三角形顶角的角平分线,也是底边上的高,也是底边上的中线,再类比性质1的证明进行证明得出性质2.但在教学过程中还需要注意以下几点:1.学生参与了知识的形成过程,但有些学生没有投入到自主探索过程中.改进:教师引导,学生为主体,放手让学生展示、学生说.2.师生间、学生间的互动不够多.改进:增加谈论环节,共同提高;3.由于课堂时间的原因,性质2的证明只提了思路,学生课堂上没有完全完成.改进:分组证明,集中展示.以上是我关于《等腰三角形的性质》这一节的教学设计,不足之处,请各位评委老师批评指正,谢谢大家.。

人教版八年级数学上册13.3《等腰三角形》说课课件

人教版八年级数学上册13.3《等腰三角形》说课课件

综合小测
1.(中考•盐城)若等腰三角形的顶角为40°,则它的 底角度数为( )
A.40° B.50° C.60° D.70°
2.等腰三角形底边中点到两腰的距离相等吗?如 A
图,DE⊥AB,DF⊥AC,垂足分别为E、F.将等腰三角形 ABC沿对称轴AD翻折,观察DE与DF的关系.
设计意图:考查学生对等腰三角形的性质的 E
(2)把剪出的等腰三角形ABC沿折痕AD对折, 找出其中相等的线段和角,填入下表?
重合的线段
重合的角
B
C
D
等腰三角形除了两腰相等以外, 你还能发现它的其他特征吗?
设计意图:通过动手剪,折,直观发现规律, 从而培养学生的概括总结能力。
活动2: 探索等腰三角形的性质 A
等腰三角形的性质:(板书)
(1)等腰三角形的两个底角相等 B D C (2)等腰三角形的顶角平分线、底
4.变式训练:若已知∠BAC=100 º, 你能否求出顶架上∠B、
∠C、∠BAD、∠CAD的度数.
A
设计意图
B
D
C
让学生进一步理解等腰三角形的性质的意义—它既是全等
知识的运用和延续,又是证明两个角相等、两条线段相等、线
段垂直关系的更为简捷的途径和方法。
5.课堂小结
(1)本节课学习了哪些主要内容? (2)我们是怎么探究等腰三角形的性质的? (3)“三线合一”的含义是什么? (4)本节课你学到了哪些证明线段相等或角相等的
.
(4)如图3, AB=AC ,AD⊥BC交BC于点D,BD=5cm,那么BC的长度为

)A
A
A
图1
图2
图3
B
CB
C B DC

八年级数学《等腰三角形的性质》说课课件

八年级数学《等腰三角形的性质》说课课件
问答法类比法探究法
说学法

实验法探究法讨论法
说教学过程

(一)回顾与引入(二)猜想与证明(三)应用与提高(四)心得与体会(五)作业与巩固
你们的三角形都是如何剪成的?
对折长方形纸片,剪下靠近对称轴一个角再展开。
先画一个等腰三角形,再剪下来。
教师提问
(一)回顾与引入
一学生回答
另一学生回答
1、回顾等腰三角形的定义
图1
图2
(三)应用与提高
例 : 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求△ABC各角的度数
(三)应用与提高
练习2:如图,在△ABC中,AB=AC,D、E在AC、AB上,BC=BD,AD=DE=EB,求∠A的度数。
(三)应用与提高
练习3 填空:如图⑴∵AB=AC,AD⊥BC∴∠_=∠_,_=_; ⑵∵AB=AC,BD=DC∴∠_=∠_,_⊥_;⑶∵AB=AC,AD平分∠BAC∴_⊥_,_=_
重合的线段
重合的角
AB=AC
BD=CD
AD=AD
∠B = ∠C.
∠BAD = ∠CAD
∠ADB = ∠ADC
猜想2
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.
①已知:AB =AC,AD平分∠BAC 求证:②已知: AB =AC,AD平分BC 求证:③已知: AB =AC,AD⊥BC 求证:
WHAT MAKES USDIFFERENT?
85%
《等腰三角形的性质》是人教版数学的八年级上册第十三章第三节第一小节《等腰三角形》的第一课时,本节课的主要内容就是研究等腰三角形的两个性质。
1、教学内容

2、教材的地位和作用

等腰三角形说课稿

等腰三角形说课稿

13.3.1等腰三角形各位评委老师,同学们大家好,我是XX号选手,今天,我说课的题目是《等腰三角形》。

下面我将从教材分析 、学情分析、教学目标及教学重难点、教法学法分析、教学过程、板书设计及教学评价七个方面对本课进行介绍。

一、教材分析1、教材的地位和作用本节课选自人教版《数学》八年级上册第13章第3 节第1课时,主要学习等腰三角形的概念和“等边对等角”和“等腰三角形的三线合一”两个性质,它既是前面所学知识的延伸与拓展,又是今后学习等边三角形的基础知识,还是今后证明角相等、线段相等及两直线互相垂直的依据,在教材中起着承上启下的重要作用。

并且学生在小学已经对等腰三角形有了初步的感性认识,通过对本节课的学习,学生将经历从实验几何到论证几何的过渡,从合情推理到演绎推理的飞跃,提高学生分析问题解决问题的能力,这恰好符合新课程标准螺旋上升的特点。

因此本节课的学习,在知识,技能等方面都起着十分重要的作用。

二、学情分析从学生的知识储备方面,学生已经学习了全等三角形、轴对称等相关知识 ,并且八年级学生观察,操作,猜想的能力较强,己经具备了独立思考的能力,这为学习本节内容奠定了知识基础和能力基础.但是,八探索新知。

充分发挥学生的主体作用,尽可能调动每一位学生的积极性。

三、教学目标算,以及运用所学的知识去解决实际问题。

三、教学重难点(而教学的重难点是一节课怎样开展的导向)基于以上分析,我确定本节课的教学重点为等腰三角形性质的探索和证明,难点为性质1中辅助线的添加和对性质2的理解。

那么如何突出重为教学活动的组织者,引导者,合作者的基本要求,我将采用:启发探究式教学方法,教师启发引导学生动手操作、观察、分析、得出猜想,推理论证、归纳得出等腰三角形的性质,通过问题分析,引导学生深入思考,提高学生自身分析问题和解决问题的能力。

引导学生通过自主探究,合作交流的方式经历知识的形成过程,从而在学习中学会学习。

五、教学过程鉴于以上分析,我将教学过程分为以下6个步骤展开。

《等腰三角形》 说课稿

《等腰三角形》 说课稿

《等腰三角形》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《等腰三角形》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析(一)教材的地位和作用“等腰三角形”是初中数学中的重要内容,它既是对三角形知识的深化和拓展,又为后续学习等边三角形、直角三角形以及四边形等知识奠定了基础。

通过对等腰三角形性质和判定的研究,有助于培养学生的观察、分析、推理和论证能力,以及数学转化的思想。

(二)教材内容本节课主要包括等腰三角形的定义、性质和判定。

其中,等腰三角形的性质包括“等边对等角”“三线合一”;判定方法是“等角对等边”。

二、学情分析(一)学生已有的知识基础学生在之前已经学习了三角形的基本概念和性质,对三角形有了一定的认识和了解。

同时,也具备了一定的观察、分析和推理能力。

(二)学生可能遇到的困难对于等腰三角形性质和判定的证明,需要学生具备较强的逻辑思维能力和几何推理能力,这可能是学生学习过程中的一个难点。

另外,学生在运用性质和判定解决实际问题时,可能会出现思路不清晰、方法不当等问题。

三、教学目标(一)知识与技能目标1、理解等腰三角形的定义,掌握等腰三角形的性质和判定。

2、能够运用等腰三角形的性质和判定进行简单的计算和证明。

(二)过程与方法目标1、通过观察、操作、猜想、论证等活动,培养学生的观察能力、动手操作能力、逻辑思维能力和推理能力。

2、让学生经历探索等腰三角形性质和判定的过程,体会数学转化的思想。

(三)情感态度与价值观目标1、通过对等腰三角形的研究,激发学生的学习兴趣,培养学生勇于探索的精神。

2、在合作交流中,培养学生的团队合作意识和创新精神。

四、教学重难点(一)教学重点1、等腰三角形的性质和判定。

2、等腰三角形性质和判定的证明。

(二)教学难点1、等腰三角形“三线合一”性质的理解和应用。

2、运用等腰三角形的性质和判定解决实际问题。

等腰三角形的说课稿(通用4篇)

等腰三角形的说课稿(通用4篇)

No matter what you do, do not rush to return, because sowing and harvesting are not in the same season, and there is a period of time between them. We call it persistence.(页眉可删)等腰三角形的说课稿(通用4篇)等腰三角形的说课稿1一、教材分析1、教材的地位和作用《等腰三角形的性质》是“华东师大版八年级数学(上)”第十三章第三节第一课时的内容。

本节先课利用轴对称的知识来探索发现等腰三角形的有关性质,然后利用全等三角形的知识证明这些性质。

学习过程中运用的“操作——观察——发现——猜想——论证——应用”的方法是探究数学知识的常用方法。

同时“等边对等角”和“三线合一”的性质是又是接下来学习等边三角形知识以及等腰三角形的判定的基础知识,更是今后论证两个角相等、两条线段相等、两条线垂直的重要依据。

起着承前启后的作用。

2、教材的教学目标:①知识与技能目标:掌握等腰三角形的有关概念和相关性质,能运用它们解决等腰三角形的边、角计算问题。

②过程与方法目标:通过实践、观察、同组间学生以及小组与小组间的合作与交流,培养学生多角度思考问题和分析问题、解决问题的能力。

③情感与态度目标:通过合作交流培养学生团结协作、乐于助人的品质。

3、教学重点与难点:重点:等腰三角形“等边对等角”和“三线合一”性质的探究和应用。

难点:等腰三角形性质的推理证明。

二、学情分析八年级上期学生学习几何知识有了初步的抽象思维感知,有一定的形象直观思维能力,能进行简单的推理论证。

但其运用数学思维的广阔性、紧密性、灵活性比较欠缺,在学习过程中要加强引导和培养。

三、教法与手段根据本课内容特点和初二学生思维活动的特点,在教学中我将采用“操作——观察——发现——猜想——论证——应用”的教学法,利用分组活动,组间合作与交流从而达到对“等边对等角”和“三线合一”的性质的探究的层层深入。

等腰三角形的性质说课文字稿(省级一等奖)

等腰三角形的性质说课文字稿(省级一等奖)

13.3.1等腰三角形(一)说课稿尊敬的各位评委、老师:下面我主要从以下五个方面对本节课的内容加以分析:一、大家好!我是来自.................,今天我说课的课题是等腰三角形,一、说教材二、说目标三、说教法、学法四、说教学过程五、说板书设计和反思一、说教材《等腰三角形》是人教版义务教育课程标准八年级上册第十三章第三节的第1课时。

等腰三角形是特殊的三角形,它除了具有一般三角形的性质外,还有许多特殊的性质。

而这些特殊性质,又和它是轴对称图形有关,因此教科书把本节内容安排在《轴对称》这章中。

本节课就是以轴对称图形为切入点,研究等腰三角形“等边对等角”和“三线合一”的性质,这不仅是对前面所学知识的深化和应用,也是学习特殊等边三角形等的后备知识,同时也为证明线段相等、角相等及两条直线互相垂直提供了重要依据。

因此,本节课在教材中处于非常重要的地位,起着承上启下的作用。

二、说目标根据教材的地位和作用,依据课程标准的要求(了解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高线、中线及顶角平分线互相重合),结合我班学生的实际情况,制定了以下教学目标:知识技能:通过探究性学习理解并掌握等腰三角形的性质并加以应用。

数学思考:经历操作、发现、猜想、证明的过程,引导学生学会几何证明题的思路,培养学生的逻辑思维能力。

问题解决:初步学会从数学的角度发现问题和提出问题,综合运用已有的知识解决新的问题,体验解决问题方法的多样性。

情感态度:体验数学中的对称美,激发学生的审美意识。

在数学活动树立自信心。

由以上对教材的分析以及教学目标的确立,我认为本节课的重点和难点分别是:重点:等腰三角形性质的探索、证明;难点:用文字语言叙述的几何命题的证明;对于推理学习刚刚入门的八年级学生来说,对文字语言叙述的几何命题的证明从写已知、求证到画图形直至完成证明。

对学生来说都有一定的难度,因此我确定本节课的难点为:用文字语言叙述的几何命题的证明,设计折纸活动实验到论证的过渡,突出重点、突破难点。

人教版数学八年级上册第十三章13.3.1-等腰三角形说课稿

人教版数学八年级上册第十三章13.3.1-等腰三角形说课稿

《13.3.1等腰三角形的性质》说课稿教学内容:义务教育课程标准试验教科书八年级数学上册第十三章第三节等腰三角形的性质,下面我从六个方面对本课的教学设计进行说明:一、说教材本节课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。

通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。

它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。

因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

二.说教学目标1.探索并证明等腰三角形的两个性质。

2.能利用性质证明两个角相等或两条线段相等。

3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用。

说重点:探索并证明等腰三角形的性质。

说难点:性质1证明中辅助线的添加和对性质2的理解。

三.说教法在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,“教必有法而教无定法”,只有方法得当,才会有效。

根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

使学生全面参与、全员参与、全程参与,真正确立其主体地位。

而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。

四.说学法只有好的学习方法才能培养能力,在学生探索知识的过程中培养他们掌握好的学习文教解题方法,并且通过自己动手操作、动脑思考,动口表述,培养学生的观察、猜想、概括、表述、论证的能力。

五.课标对本节课的要求探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。

六.如何利用学案是为了让学生在课前预习时有方向、有目标地进行自主预习,是辅助课堂学习的一种方式。

七.说教学过程(一)知识回顾,导入新课(多媒体出示)学生独立思考,然后回答。

《等腰三角形》获奖说课稿(通用13篇)

《等腰三角形》获奖说课稿(通用13篇)

《等腰三角形》获奖说课稿《等腰三角形》获奖说课稿(通用13篇)作为一名无私奉献的老师, 常常需要准备说课稿, 编写说课稿助于积累教学经验, 不断提高教学质量。

如何把说课稿做到重点突出呢?下面是小编帮大家整理的《等腰三角形》获奖说课稿(通用13篇), 欢迎大家借鉴与参考, 希望对大家有所帮助。

《等腰三角形》获奖说课稿篇1一、教学目标1.知识技能:(1)掌握等腰三角形的性质。

(2)运用等腰三角形的性质进行证明和计算。

2.数学思考:(1)观察等腰三角形的对称性, 发展形象思维。

(2)经历等腰三角形性质的探究过程, 在实验操作、观察猜想、推理论证的过程中发展学生合情推理和演绎推理能力。

3.问题解决:(1)通过观察等腰三角形的对称性, 培养学生观察、分析、归纳问题的能力。

(2)通过运用等腰三角形的性质解决有关问题, 提高运用知识和技能解决问题的能力, 发展学生的应用意识、创新意识、反思意识。

4、情感态度:引导学生对图形的观察、发现, 激发学生的好奇心和求知欲, 并在运用数学知识解决问题的活动中获取成功的体验, 建立学习的自信心。

二、教学方法实验法和探究法。

三、重难点重点是等腰三角形的性质及应用。

难点是等腰三角形性质的证明。

四、教学过程(一)创设情境, 引入新课人类的聪明智慧让我们看到了一个又一个令人惊叹的奇迹, 下面请同学们观察这几幅图片, 看看这些伟大的人类建筑中都含有一个什么样的基本图形?师1: 同学们, 这几张图片中共同存在的基本图形是什么?等腰三角形以它那对称、和谐、庄重、典雅之美成为我们数学殿堂的一枚瑰宝, 可现实生活中为什么这些建筑要设计成等腰三角形的形式呢?等腰三角形有什么特殊的性质吗?今天就让我们一同来走进这个美妙的图形。

(板书)12.3.1等腰三角形(二)探究发现, 学习新知1.认识等腰三角形师1: 在小学时我们就知道两条边相等的三角形叫做等腰三角形。

下面我们利用剪纸的方法将手中的矩形纸片变变形。

等腰三角形的性质说课稿范文模板5篇 初中数学等腰三角形说课稿范文模板

等腰三角形的性质说课稿范文模板5篇 初中数学等腰三角形说课稿范文模板

等腰三角形的性质说课稿范文模板5篇初中数学等腰三角形说课稿范文模板下面是整理的等腰三角形的性质说课稿5篇初中数学等腰三角形说课稿,以供参考。

等腰三角形的性质说课稿1一说教材《等腰三角形的性质》是人教版教科书八年级上册第13章第三节第1课时的教学内容。

在此之前,学生们已经学习了等腰三角形的定义以及轴对称,学生已经具备了一定的动手操作能力。

这些知识为本节课的学习等腰三角形的性质起到了铺垫的作用。

而本节课的知识为以后将为以后学习的四边形及多边形的相关知识奠定了基础。

二说教学目标根据教学大纲和新课程标准的要求,我认真钻研教材,特制定以下三个教学目标:1掌握等腰三角形的性质2知道等腰三角形的性质的推理过程3会灵活运用等腰三角形的性质解决相关的数学问题三说教学重、难点结合八年级学生的年龄特点、心理特征和现有的知识结构。

我认为本节课的重点是等腰三角形的两个性质即“等边对等角”;“三线合一”。

由于八年级学生的逻辑推理能力和理解运用能力还较弱,因此等腰三角形的性质的推理过程及会灵活运用等腰三角形的性质解决相关的数学问题是本节课的难点。

四说教法和学法本节课我采用的教法是启发式教学法、动手操作法。

学生的学法是:自主探究法、合作讨论法。

五说教学过程本节课我主要是根据“四步五环节”教学法从以下五个环节进行教学的。

1 复习导入通过教师在黑板上画一个三角形(任意取一个点为圆心,适当的长为半径画弧,在所画的弧上任意取两个点顺次连接这三个点所得的三角形是什么三角形?)的方法能确定是所画的三角形是等腰三角形。

这样导入可以让学生知道如何用尺规作图做一个等腰三角形,并引导他们回忆等腰三角形的概念及腰、底边、顶角、底角的概念。

2探究新知在同学们已经学习了轴对称的基础上通过对折剪纸观察猜想得出等腰三角形的性质,这样设计既能提高学生的动手操作能了,又能更直观的发现等腰三角形的三条性质即:对称性、等边对等角、三线合一。

在此基础上教师在引导学生写出推理过程,同时也提高了学生的逻辑思维能力.3理解与运用为了让学生熟练的掌握等腰三角形的三个性质,我设计了一道相关证明题,让学生先自主探究不会的同学请教会做的给其讲解进行兵练兵,再找一名学生将解题过程板术黑板上,教师进行点评,以提高学生书写完整、简洁的解题过程的能力。

人教版数学八年级上册13.3等腰三角形说课稿

人教版数学八年级上册13.3等腰三角形说课稿
3.等腰三角形的判定方法:以实例为基础,引导学生总结出等腰三角形的判定方法,并解释其背后的原理。
4.等腰三角形的面积计算:讲解等腰三角形面积计算公式,结合具体例子,让学生掌握如何运用公式进行计算。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我将设计以下巩固练习或实践活动:
1.课堂练习:针对等腰三角形的性质、判定方法和面积计算,设计具有梯度的问题,让学生独立完成。
3.拓展题:布置一些与等腰三角形相关的拓展题目,激发学生的求知欲,培养他们的探究精神。
作业的目的是帮助学生巩固所学知识,培养他们独立解决问题的能力,并激发学生对数学学习的兴趣。
五、板书设计与教学反思
(一)板书设计
我的板书设计将遵循清晰、简洁、结构化的原则。板书布局分为三个部分:左侧为标题和定义,中间为主要性质和判定方法,右侧为面积计算公式和应用实例。
2.作业批改:分析学生作业完成情况,了解他们在哪些方面存在困难。
3.学生反馈:听取学生对教学过程的意见和建议。
具体的反思和改进措施包括:
1.针对学生掌握不牢固的知识点,进行针对性的讲解和练习。
2.调整教学方法,如增加小组合作、讨论环节,提高学生的参与度和积极性。
3.注重培养学生的几何直观和空间想象能力,提高他们在实际问题中的运用能力。
我将采用的主要教.启发式教学法:通过提出问题,引导学生思考,激发学生的好奇心和求知欲。这种方法的理论依据是建构主义学习理论,认为学习是学生在原有知识基础上主动建构的过程。
2.探究式教学法:组织学生进行小组合作探究,让学生在探究过程中发现问题、解决问题。这种方法的理论依据是发现学习理论,强调学生在学习过程中的主动性和探究性。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:

13.3.1等腰三角形的判定教案

13.3.1等腰三角形的判定教案
1.讨论主题:学生将围绕“等腰三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
其次,我发现通过小组讨论和实验操作,学生们的参与度和积极性得到了很大提高。他们在交流分享中碰撞出思维的火花,有助于加深对等腰三角形知识点的理解。但同时,我也注意到在讨论过程中,部分学生过于依赖小组其他成员,自己思考不足。因此,我需要在接下来的教学中,引导学生独立思考,提高他们的自主学习能力。
此外,对于教学难点的处理,我认为自己在引导学生突破难点方面做得还不够。在今后的教学中,我需要更加耐心地解答学生的问题,用更生动形象的语言和例子来帮助他们理解。同时,加强课堂练习,让学生在实践中不断提高。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与等腰三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作一个等腰三角形的模型,演示其性质和判定定理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
13.3.1等腰三角形的判定教案
一、教学内容
《13.3.1等腰三角形的判定教案》
1.等腰三角形的定义:两边长度相等的三角形。
2.等腰三角形的性质:等腰三角形的两底角相等。
3.等腰三角形的判定定理:
a.两边相等的三角形是等腰三角形。
b.两角相等的三角形是等腰三角形。

(说课稿)13.3.1等腰三角形的性质

(说课稿)13.3.1等腰三角形的性质

(说课稿)13.一、教材分析1、教学内容:本节课是华师版八年级数学上册第十三章第三节《等腰三角形》的第一课时的内容——等腰三角形的性质,等腰三角形是一种专门的三角形,它除了具有一样三角形的性质以外,还具有一些专门的性质。

它是轴对称图形,具有对称性。

本节课确实是要利用对称的知识来研究等腰三角形的有关性质,并利用全等三角形的知识证明这些性质。

2、在教材中的地位与作用:本节课是在学生把握了一样三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,担负着进一步训练学生学会分析、学会证明的任务,在培养学生的思维能力和推理能力等方面有重要的作用;而“等边对等角”和“三线合一”的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,本节课是第三课时研究等边三角形的基础,是全章的重点之一。

3、教学重点与难点:重点:等腰三角形的性质的探究和应用。

难点:等腰三角形的性质的验证。

二、教学目标:知识技能:1、明白得把握等腰三角形的性质。

2、运用等腰三角形的性质进行证明和运算。

数学摸索:1、观看等腰三角形的对称性进展形象思维。

2、通过实践、观看、证明等腰三角形的性质,进展学生合情推理能力和演绎推理能力。

解决问题:1通过观看等腰三角形的对称性,培养学生观看、分析、归纳问题的能力。

2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,进展应用意识。

情感态度:通过引导学生对图形的观看、发觉激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中猎取成功的体验,建立学习的自信心。

教学预备:CAI课件,长方形的纸片,剪刀,常用画图工具。

三、教法及学法分析1、教法设想——让学生参与教学过程,注重培养学生的建构适应,提高学生的数学素养。

《新课程标准》要求课堂教学要充分表达以学生进展为本的精神,因此,在本节课的教学设计中,我采纳了“问题情境——建立模型——说明、应用与拓展”的教学模式,让学生经历知识的形成与应用的过程,从而更好地明白得数学知识的意义,把握必要的基础知识和差不多技能,进展应用数学知识的意识与能力,增强学好数学的愿望和信心。

等腰三角形的性质的说课稿

等腰三角形的性质的说课稿

等腰三角形的性质的说课稿一、说教材本文“等腰三角形的性质”在几何学中占据着重要的地位。

首先,它是初中数学教学的重要组成部分,对于学生理解几何图形的性质,培养空间观念有着关键作用。

等腰三角形作为基本的几何图形之一,其性质不仅有助于学生掌握三角形的知识体系,而且对于后续学习其他图形,如圆、多边形等有着基础性的影响。

(1)作用与地位等腰三角形作为特殊的三角形,其性质的学习是构建几何知识框架的基石。

它不仅连接了基本的三角形知识和更高阶的几何图形理论,而且在实际生活中的应用也极为广泛,如建筑、工程等领域。

(2)主要内容本文主要围绕等腰三角形的三个基本性质展开:- 两边相等,即腰相等;- 两角相等,即底角相等;- 脐点、中线、高线合一,即等腰三角形的顶点角平分线、底边的中点以及底边上的高线三点共线。

(3)与其他章节的联系等腰三角形的性质不仅是三角形章节的核心,它还为后续学习全等三角形、相似三角形等内容打下基础。

通过等腰三角形的性质,可以引导学生理解几何图形的对称美和内在的数学逻辑。

二、说教学目标学习本课,学生需要达到以下教学目标:(1)知识目标- 掌握等腰三角形的基本性质,并能运用这些性质解决相关问题;- 理解并掌握等腰三角形中各线段(如高线、中线、角平分线)的关系及其应用。

(2)能力目标- 培养学生的观察能力和逻辑思维能力;- 提高学生的空间想象力和几何图形的构造能力。

(3)情感目标- 激发学生对几何学习的兴趣,增强对数学美的感受;- 培养学生团队合作意识,通过讨论与分享,增强自信心。

三、说教学重难点(1)重点- 等腰三角形性质的准确理解和记忆;- 性质的实际应用,特别是在解决问题时的灵活运用。

(2)难点- 理解并证明等腰三角形各性质之间的内在联系;- 在复杂问题中,如何识别并利用等腰三角形的性质进行解题。

这些重难点的把握直接关系到学生对整个几何知识体系的理解和运用,因此不容忽视。

在教学过程中,需要通过多种教学手段和学法指导,帮助学生克服这些难点,达到教学目标。

13.3.1等腰三角形(第二课时) 教案 人教版数学八年级上册

13.3.1等腰三角形(第二课时) 教案 人教版数学八年级上册

13.3.1等腰三角形(第二课时) 教案人教版数学八年级上册一、教材分析本节课位于人教版第十三章轴对称的第二课时。

等腰三角形是一类特殊的三角形,因而它比一般的三角形在理论和实际中的应用更为广泛。

等腰三角形的判定是初中数学一个重要定理,也是本章的重点内容。

本节内容是在学生已有的平行线性质判定、全等三角形判定以及等腰三角形性质等知识的基础上进一步研究的问题。

该判定的特点之一是揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明线段相等的新方法,为以后学习提供了证明和计算的依据,有助于培养学生思维的灵活性和广阔性。

二、教学目标1.会阐述、推证等腰三角形的判定定理。

2.通过学习等腰三角形的判定,进一步发展学生的抽象概括能力。

3.经历综合应用等腰三角形性质定理和判定定理的过程,体验数学的应用价值。

三、教学重、难点1.重点:等腰三角形的判定定理的探索。

2.难点:“等角对等边”的证明四、教学方法“实验——发现——归纳——论证”法五、教学过程1、知识回顾:等腰三角形的相关知识师生共同回顾:(1)定义:有两条边相等的三角形叫做等腰三角形。

注意:等腰三角的定义既是性质又是判定(2)等腰三角形性质1:等腰三角形的两个底角相等,简称“等边对等角”。

(3)等腰三角形性质2:等腰三角形顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”设计意图:复习等腰三角形的定义及性质为判定作铺垫。

2、欣赏生活中美丽的图片:教师提出问题:(1)图中有哪些你熟悉的图形吗?(2)如何证明一个三角形是等腰三角形?设计意图:结合生活中的图片,目的是为了唤起学生的好奇,激发学生兴趣和探究欲,体会生活中处处都有数学,并能自然地过渡到本节课的课题。

3、探索新知、发现猜想:教师提出问题:假设一个三角形有两条边相等,那么它们所对的角相等。

反过去,假设一个三角形有两个角相等,那么它们所对的边有什么关系?师生活动:教师提出问题,学生自由交流,大胆猜想。

《等腰三角形》说课稿

《等腰三角形》说课稿

小学数学《等腰三角形》说课稿范文《等腰三角形》说课稿 1一、教材分析等腰三角形是一种特殊的三角形,它除了具备有普通三角形的所有性质外,还有许多特殊的性质,由于它的这些特殊的性质,使它比普通的三角形应用更广泛,而等腰三角形的许多特殊性质,又都和它是轴对称图形有关,它也是证明两个角相等,两条线段相等,两条直线互相垂直的方法,学好它可以为将来初三解决代数、几何综合题打下良好的基础。

它在理论上有这样重要的地位,并在实际生活中也有广泛的应用,因此这节课的教学显得相当重要。

根据本班学生的特点我确定如下:(一)教学目标:1、知识与技能:能够探索,归纳,验证等腰三角形的性质,并学会应用等腰三角形的性质2、过程与方法:经历剪纸,折纸等探索活动,进一步认识等腰三角形的定义和性质,了解等腰三角形是轴对称图形。

3、情感态度与价值观:培养学生的观察能力,激发学生的好奇心和求知欲,培养学习的自信心(二)教学重点与难点等腰三角形性质的探索和应用是本节课的重点。

由于初二学生的几何知识有限,而本节课性质的证明又添加了辅助线,所以等腰三角形性质的验探索是本节课的难点。

二、教学方法本节课中我遵循教师为主导,学生为主体的原则,针对当前学生的厌学情绪,我运用课件,实物演示等多种教学手段激发学生的学习兴趣,让学生感到容易学,采用创设情景、实验法来分散难点让学生感到愿意学,并设置适当的追问、探索,让学生来主宰课堂,成为学习的主人。

三、学法指导及能力培养好的学习方法才干培养能力,在学生探索知识的过程中培养他们掌握好的学习和解题方法,并且通过自己动手操作、动脑思量、动口表述,培养学生的观察、猜想、概括、表述论证的能力四、教学过程(一)情景设置首先我用一个三角形测平架,测量黑板的下边是否水平,并让学生猜想其中的道理和奥妙,这样的引入既明确了本节课的主要内容,也激发了学生的学习兴趣,又使学生了解到数学来源于生活又合用于生活。

教育学中有句谚语:“告诉我我会忘记,做给我看我会记得,让我去做我才会懂”,由此可见实验法在教学中具有重要的作用。

人教版八年级上册13.等腰三角形说课课件

人教版八年级上册13.等腰三角形说课课件

六、说教学过程

作业布置

必做题:
与 作
书P77,1 书P81,1
性质1的反馈

书P77,2
六、说教学过程
活动:剪纸
活 拿出提前准备好的A4纸,按下图方 动 式折叠与裁剪。 引 裁剪后,你能得到一个什么图形? 入
设计意图:剪纸活动既能活跃课堂气氛, 又能让学生亲身体验到数学来源于生活。
六、说教学过程
认 概念: 识 有两条边相等的三角形为等腰三角形。

A
A

顶角


B 底边 C
底角 B
C 底角
六、说教学过程

1.直接写出下列等腰三角形顶角或底角度 数。


60°
75°
知 2.填空
(1)等腰三角形一个底角为70°,它的另外两个为 。
(2)等腰三角形一个顶角为80°,它的另外两个角为 。
(3)等腰三角形一个角为50°,它的另外两个角为 。 (4)等腰三角形一个角为110°,它的另外两个角为___。
六、说教学过程
本节课重点——性质1
探 等腰三角形两个底角相等。
A
究 简称:等边对等角。
性 质
几何语言: ∵AB=AC
B
C
∴∠B=∠C
设计意图:规范几何语言,根据学生学习的情 况,给予一定的补充与解释说明,例如对等角 是指哪两个角,如何找这两个角等等,
六、说教学过程
本节课重点——性质2
探 等腰三角形的顶角平分线、底边上 A 究 的中线、底边上的高相互重合。
性 几 在△ABC中,AB=AC
质 何 ∵ ①BD=CD(底边中线)
语 ∴ ②AD⊥BC(底边的高) B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等腰三角形的性质》说课稿
教学内容:义务教育课程标准试验教科书八年级数学上册第十三章第三节等腰三角形的性质,下面我从六个方面对本课的教学设计进行说明:
一、说教材
本节课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。

通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。

它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。

因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

二.说教学目标
1.探索并证明等腰三角形的两个性质。

2.能利用性质证明两个角相等或两条线段相。

3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用。

说重点:探索并证明等腰三角形的性质。

说难点:性质1证明中辅助线的添加和对性质2的理解。

三.说教法
在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,“教必有法而教无定法”,只有方法得当,才会有效。

根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

使学生全面参与、全员参与、全程参与,真正确立其主体地位。

而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。

四.说学法
只有好的学习方法才能培养能力,在学生探索知识的过程中培养他们掌握好的学习文教解题方法,并且通过自己动手操作、动脑思考,动口表述,培养学生的观察、猜想、概括、表述、论证的能力。

五.课标对本节课的要求
探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。

六.如何设置导学单
是为了让学生在课前预习时有方向、有目标地进行自主预习,是辅助课堂学习的一种方式。

五.说教学过程
(一)知识回顾,导入新课(多媒体出示)
学生独立思考,然后回答。

设计意图:通过问题,了解等腰三角形的相关概念,复习等腰三角形的轴对称性,为突破教学难点(探究及证明等腰三角形的性质)做铺垫,分解教学难度。

(二)探究新知
【活动一】动手操作
如图,把一张长方形的纸按图中虚线对折后,剪去阴影部分,再把它展开,得到的三角形有什么特点。

它是轴对称图形吗? ②折叠过程中重合的线段和角有哪些?
小组讨论、探究。

教师指导学生折叠、剪纸。

教师重点关注:
1.学生操作过程的主动性与积极性;
2. 学生的合作意识及结果的正确性。

3.能否发现三角形的特点。

填表:
根据表格所填内容,学生尝试总结等腰三角的性质。

角:①∠B=∠C →两个
底角相等
②∠ADB=∠ADC →AD 是底边BC 上的高
③∠BAD=∠CDA →AD 为顶角∠BAC 的平分线。

边:④BD=CD →AD 为底边BC 上的中线 由此总结等腰三角形的两个性质。

设计意图:通过实验激发学生求知欲,调动学生参与教学的积极性。

经历自己去操作、实验、发现的过程,认识数形结合的美妙,体验成功的喜悦。

学生养成乐于思考,善于观察,总结的学习品质和归纳、概括能力及语言表达能力。

[活动二]小组讨论
如何证明等腰三角形性质1
学生分析性质1的条件和结论,并转化为数学符号
B C
已知:如图△ABC 中,AB=AC 求证:∠B=∠
C
D C
B
A
重合的角
重合的线段
在教师的引导下,得出由添加辅助线的方法来构造两个全等的三角形,来证明∠B=∠C
经过讨论,总结得出三种作辅助线构造两个三角形全等的方法: (1) 作底边上的中线 (2) 作顶角的角平分线 (3) 作底边上的高线
老师在多媒体上展示证明过程并讲解。

教师强调:(1)三种辅助线的添加方法要选最简单的方法;(2)利用性质1的前提是“在一个三角形中”。

设计意图:在教师的引导下逐步完成性质的证明,使学生加深了对辅助线的理解,培养学生完整的推理证明能力。

【活动三】小组讨论
如何证明等腰三角形性质2.
学生分析性质2的条件和结论,并转化为数学符号。

思考: 由△BAD ≌ △CAD ,除了可以得到∠ B= ∠C 之外,你还可以得到那些
相等的线段和相等的角?和你的同伴交流一下,看看你有什么新的发现?
学生由全等三角形对应角相等,对应边相等。

得到∠
BAD=∠CDA ,∠ADB=∠ADC ,从而AD ⊥BC 。

由BD=DC
得到AD 为△ABC 的中线,这也就证明了性质2.
教师引导学生从以上证明发现等腰三角形的对称轴就是底边上的中线(顶角的角平分线、底边上的高)所在的直线。

设计意图:在教师的引导下逐步完成性质的证明,使学生加深了对辅助线的理解,培养学生完整的推理证明能力。

学生积极参与,各抒己见。

培养学生的合作意识,以及观察、思考、分析问题的能力. 【活动四】应用新知,体验成功
例1.如图,在△ABC 中,AB=AC,点D 在AC 上,且BD=BC=AD,求△ABC 各角的度数.
在老师的引导下小组讨论,交流,并将解题过程写在小黑板上。

师生共同批改各小组的解题过程,之后老师在黑板上展示正确的解题过程。

设计意图:培养学生正确运用所学知识的应用能力.并能综合运用所学知识解决
D C B A A B C D
问题.对性质1、2进行巩固运用,渗透方程思想、分类思想等数学思想方法,提高学生运用所学知识解决问题的能力。

(三)跟踪训练,学以致用(导学单)
学生独立思考并回答
设计意图:对本节课的教学效果进行检测,激发学生主动参与的意识,为每一位学生创造在数学学习活动中获得成功的体验机会,并为不同程度的学生提供充分展示自己的机会。

(四)课堂小结
通过本节课的学习,谈谈自己的收获!
教师重点关注:
①归纳、总结能力;
②不同层次的学生对本节知识的认识程度;
③辅助线的添加方法。

设计意图:学会总结、反思.
(五)作业安排:课本第81页习题第1题
板书设计:13.3.1等腰三角形
性质1:等边对等角例1:
性质2:三线合一
教学反思:在本节教学中,我始终坚持以学生为主体,教师为主导,师生互动,学生互动,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展。

相关文档
最新文档