最新纳米材料讲综述

合集下载

纳米材料的制备技术综述

纳米材料的制备技术综述

纳米材料的制备技术综述纳米材料的制备技术,听上去是不是有点高大上?其实也没那么神秘,咱们聊聊就能搞懂。

说实话,纳米这个词说得多了,很多人可能还不太明白,啥叫“纳米”?其实就是非常非常小的东西,咱们说得简单点,就是比我们眼睛能看到的还要小得多得多的小东西。

要是你拿个针尖放大个几百倍,可能就能看到这些纳米级的玩意儿。

为什么大家对这些小东西这么感兴趣呢?因为它们能做的事儿太牛了!从医学到能源,从环境保护到电子产品,几乎无所不能。

不过,要把这些纳米材料做出来,可不是随便乱搞的事儿,它需要技术、需要工艺,得讲究“心思”。

现在就让咱们来聊聊这些技术。

想要制备纳米材料,最常见的办法之一就是化学气相沉积(CVD)。

这个名字听起来挺吓人,其实不难懂,就是把一些气体材料,通过加热、反应等方式,沉积到一个表面上,最后变成纳米级的薄膜、颗粒什么的。

说白了,就是通过“气体变成固体”这件事儿,把小小的东西固定下来。

要是你还记得小时候吹过的泡泡,那泡泡里的水蒸气凝结成液滴差不多,CVD的原理就有点像这个。

只不过它可不是吹泡泡那么简单,而是需要高温、特殊的气氛、精准的控制,才能让这些纳米材料顺利“成型”。

是不是有点神奇?再来说说溶胶凝胶法,这也是一种特别有意思的技术。

其实它的名字就告诉你大概是怎么回事:先把一些材料溶解在液体里,形成溶胶,然后通过化学反应把它们凝结成固体,也就是纳米材料。

这个方法简单来说就像做菜一样,先把材料“泡”在液体中,激活它们,让它们变得“活跃”,然后等到合适的时机,它们就会自己变成纳米颗粒,接着凝聚成你想要的形态。

你要是做过豆腐脑,就知道这个道理。

豆腐脑一开始也是液体,经过“老母鸡”和大豆的“配合”,慢慢变成了一个个嫩滑的块状物。

这种方法不需要特别复杂的设备,也能做到高质量的纳米材料,所以很多研究者都喜欢用它。

再说说球磨法,简单说就是用机械力把大颗粒的材料磨成小颗粒。

你可以想象一台超级强力的“搅拌机”,把大块的材料放进去,几千转的高速旋转让它们变得越来越小,最后变成纳米级别的颗粒。

纳米材料的综述

纳米材料的综述

xx学院材料与文明学号:xxxxxxxxx 专业:xxxxxxxxx 学生姓名:xxxx任课教师:xxxx纳米材料的综述摘要:纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚爱好。

80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。

它所具有的独特的物理和化学特性,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。

纳米材料的应用前景十分广阔。

近年来,它在化工、催化、涂料等领域也得到了一定的应用,并显示出它的独特魅力。

关键词:纳米材料性能应用领域制备工艺纳米尺寸开辟科学新领域,介绍纳米材料的神奇特性及在生活中的应用。

人类对物质世界的研究,曾小到原子、分子,大到宇宙空间。

从无限小和无限大两个物质尺寸去认识物质,使人们了解到世界是物质的。

物质是由原子或分子构成的,原子、分子是保持物质化学、物理特性的最小微粒。

这为人类认识世界、改造世界推进科学的向前发展提供了坚实的理论基础,也产生了一个个的科学原理和定理,推动了人类生产和生活的不断向前发展。

随着科学研究的进一步发展,人们发现当物质达到纳米尺度以后,大约在1~100纳米这个范围空间。

物质的性能就会发生突变,出现特殊性能。

这种既不同于原来组成的原子、分子,也不同于宏观物质的特殊性能的物质构成的材料,即为纳米材料。

过去,人们只注意原子、分子,或者宇宙空间,常常忽略他们的中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度的范围的性能。

第一个真正认识到它的性能并引用纳米概念的是日本科学家。

他们发现:一个导电,导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电,也不导热。

材料在尺寸上达到纳米尺度,大约是在1~100纳米这个范围空间,就会产生特殊的表面效应,体积效应,量子尺寸效应,量子隧道效应等及由这些效应所引起的诸多奇特性能。

拥有一系列的新颖的物理和化学特性,这些特性在光、电、磁、催化等方面具有非常重大应用价值[1]。

材料科学领域纳米材料设计方法综述

材料科学领域纳米材料设计方法综述

材料科学领域纳米材料设计方法综述引言:随着纳米科学与技术的迅猛发展,纳米材料引起了广泛关注,并在各个领域展现出巨大的潜力。

纳米材料具有特殊的物理、化学和生物学性质,以及较大的比表面积和界面效应等独特特性。

纳米材料的设计方法和制备技术对于开发新型材料、提高材料性能和创新功能材料具有重要意义。

在材料科学领域,纳米材料的设计方法一直是研究热点之一。

本文将对目前纳米材料设计方法进行综述,包括理论模拟计算方法、实验设计方法以及混合方法等。

一、理论模拟计算方法1. 密度泛函理论(DFT)密度泛函理论是纳米材料设计中经常采用的一种计算方法。

它基于量子力学原理,通过求解Schrödinger方程获得材料的电子结构和物理性质。

DFT可以预测纳米材料的能带结构、原子和分子间的相互作用等重要性质,并能够通过模拟计算进行材料的优化和组装。

然而,DFT也存在一些局限性,如计算复杂度较高,对于大尺寸纳米材料的计算非常困难。

2. 分子动力学模拟(MD)分子动力学模拟是一种基于经典力学原理的计算方法,适用于研究纳米材料的结构和动力学行为。

通过分子间的相互作用力和运动方程,可以模拟出纳米材料的力学性质、热力学性质等。

分子动力学模拟可以预测纳米材料的形貌,优化材料的构型,研究材料的力学响应等。

然而,分子动力学模拟也存在一些局限性,如模拟的时间尺度和空间尺度有限。

二、实验设计方法1. Top-down方法Top-down方法是一种将大尺寸的材料通过加工和刻蚀等方法逐渐减小至纳米尺寸的方法。

例如,通过光刻和电子束曝光等技术,可以在大面积的材料上制备出纳米图案。

Top-down方法适用于制备尺寸较大的纳米材料,具有操作简单、可扩展性强的优点。

但是,这种方法对原料材料的选择和加工工艺的控制要求较高。

2. Bottom-up方法Bottom-up方法是指通过分子自组装和化学合成等方法逐步构建起纳米尺寸的材料。

通过控制反应条件和材料的自组装过程,可以精确调控纳米材料的形貌和结构。

新型纳米材料

新型纳米材料

新型纳米材料纳米材料是指至少在一维尺度上具有至少一个尺寸小于100纳米的材料。

由于其特殊的尺寸效应、表面效应和量子效应,纳米材料在光学、电子、磁学、力学和化学等方面表现出许多独特的性质,因此被广泛应用于材料科学、生物医学、环境保护等领域。

在过去的几十年里,科学家们不断探索新型纳米材料,并取得了许多重要进展。

一种重要的新型纳米材料是石墨烯,它是由碳原子构成的二维晶体结构。

石墨烯具有极高的导电性、热导率和机械强度,因此被认为是一种理想的材料用于电子器件、传感器、储能材料等领域。

此外,石墨烯还具有良好的透明性和柔韧性,因此在柔性电子、柔性显示器等方面也具有广阔的应用前景。

另一种备受关注的新型纳米材料是量子点,它是一种由几十个到几百个原子构成的纳米粒子。

由于其尺寸约在1到10纳米之间,量子点表现出许多特殊的光电性能,如发光、吸收、荧光等。

因此,量子点被广泛应用于显示技术、生物成像、光电器件等领域。

与传统的半导体材料相比,量子点具有更广泛的发光波长范围、更高的荧光量子产率和更好的光稳定性,因此备受研究者们的青睐。

此外,金属有机骨架材料(MOFs)也是一类备受关注的新型纳米材料。

MOFs 是一种由金属离子和有机配体组成的多孔晶体材料,具有高比表面积、可调控的孔径和丰富的化学功能团。

由于其独特的结构和性能,MOFs在气体吸附、分离、储存等方面具有广泛的应用前景。

此外,MOFs还可以用于催化、药物传递、光电器件等领域。

综上所述,新型纳米材料具有许多独特的性能和广阔的应用前景,对于推动材料科学和相关领域的发展具有重要意义。

随着科学技术的不断进步,相信新型纳米材料将会在更多的领域展现出其独特的魅力,为人类社会的发展做出更大的贡献。

纳米材料综述功能材料与应用论文(已处理)

纳米材料综述功能材料与应用论文(已处理)

纳米材料综述功能材料与应用论文(已处理)纳米材料综述摘要概述了纳米材料的基本概念、分类方法及结构特征, 重点介绍了纳米材料的光谱、催化、光电化学及反应性等化学特性及应用.1、纳米材料的基本概念纳米材料是指颗粒尺寸为纳米量级 0.11 nm, 100nm 的超微粒子纳米微粒及由其聚集而构成的纳米固体材料。

纳米固体材料分为纳米晶体材料、纳米非晶态材料及纳米准晶态材料。

其中纳米晶体材料按其结构形态又可分为四类:1 零维纳米晶体, 即纳米尺寸超微粒子;2 一维纳米晶体, 即在一维方向上晶粒尺寸为纳米量级, 如一维纤维, 一维碳纳米管;3 二维纳米晶体, 即在二维方向上晶粒尺寸为纳米量级, 如纳米薄膜、涂层;4 三维纳米晶体, 指晶粒在三维方向上均为纳米尺度, 如纳米体相材料, 纳米陶瓷材料。

另外, 还有纳米复合材料, 以复合方式不同分为0-0、0-2、0-3 型复合, 即零维纳米粒子分别与纳米粒子、二维及三维材料复合而成的固体材料。

纳米材料科学是现代化学、物理学、材料学、生物学等多门学科相互交叉、相互渗透的新兴学科, 其研究内容主要包括两个方面:1 系统地研究纳米材料的性能、微结构和谱学特性,通过和常规材料对比, 找出纳米材料的特殊规律, 建立描述和表征纳米材料的新概念和新理论, 发展完善纳米材料科学体系;2 探索新的制备方法, 发展新型的纳米材料, 研究制备工艺与材料结构、性能之间的关系规律, 并拓宽其应用领域。

2、纳米材料的性质2.1、纳米微粒的结构和特性纳米粒子处于原子簇和宏观物体交界的过渡区域,是由数目很少的原子或分子组成的聚集体。

由于纳米粒子具有壳层结构。

粒子的表面原子占很大比例,并且是无序的类气状结构, 而在粒子内部则存在有序-无序结构,这与体相样品的完全长程有序结构不同。

纳米粒子的结构特征使其产生了小尺寸效应、表面界面效应、量子尺寸效应及宏观量子隧道效应,并由此派生出传统固体材料所不具备的许多特殊性质。

材料科学前沿综述

材料科学前沿综述

材料科学前沿综述
材料科学是一门不断发展的学科,不断涌现出新的前沿技术和新
材料。

下面我们从三个方面来综述材料科学的前沿发展。

一、纳米材料
纳米是指粒子的直径在1~100纳米范围之内的材料。

纳米材料是自由程、表面积、氧化活性等物理和化学性能都发生了很大变化的材料。

纳米材料的研究与应用已经渗透到许多领域,如化学、生物学、物理学、医学、农业等,已成为当今世界的热点研究领域。

二、能源材料
能源材料是指能够直接或间接地转化、储存和传递能量的材料。

能源
材料的研究与发展一直是人类探索可再生能源和资源的重点。

目前,
太阳能、风能、水能等可再生能源越来越受到关注,新型材料的研发
也为其提供了良好的支持。

能源材料的研究不仅在环保领域非常重要,还对国家经济发展具有重要意义。

三、生物材料
生物材料是指用于治疗、修复和替代生物组织的材料。

随着医学技术
的不断进步,对生物材料的研究和应用也越来越广泛。

目前,生物医
学材料已经成为了医学界的重要分支。

通过研究生物材料,可以开发
出更加安全、有效的医疗产品,为人类健康做出贡献。

综上,纳米材料、能源材料和生物材料是当今材料科学中的前沿
领域。

这些领域的研究为人类提供了更多的可能性,让我们相信在不
久的将来,科技对人类生活的帮助将会越来越大。

纳米材料综述范文

纳米材料综述范文

纳米材料综述范文纳米材料是自上世纪90年代以来兴起的一项新兴科技,其具有独特的物理、化学和生物性能,因此受到了广泛的关注和研究。

本文将综述纳米材料的定义、制备方法、应用领域以及潜在的风险和挑战。

首先,纳米材料是指至少在一个维度上具有纳米级尺寸(1-100纳米)的材料。

由于其尺寸处于微观和宏观之间,纳米材料往往具有与传统材料不同的物理和化学性质。

例如,纳米颗粒表面积大大增加,导致其在催化、光学和磁性等方面具有更高的活性和敏感性。

此外,纳米材料还具有较高的比表面积和功率密度,使其在能源存储、传感器和生物医学等领域有着广泛的应用前景。

纳米材料的制备方法多种多样,但可以分为两大类:自下而上和自上而下。

自下而上方法是通过控制和组装分子、原子或离子来构建纳米结构。

例如,溶液法、气相沉积和电化学沉积等方法可以制备出纳米颗粒、纳米薄膜和纳米线等结构。

自上而下方法则是通过纳米加工工艺将材料从大尺寸逐渐减小到纳米级。

常见的自上而下方法包括球磨、机械研磨和激光刻蚀等。

纳米材料具有广泛的应用领域,包括能源、环境、生物医学、电子等。

在能源领域,纳米材料被广泛应用于太阳能电池、燃料电池和储能材料中。

纳米材料的高比表面积可以提高电池的能量密度和效率。

在环境领域,纳米材料可以用于水处理、污染物检测和空气净化等方面。

例如,纳米颗粒可以作为催化剂用于有害气体的催化转化和光催化分解。

在生物医学领域,纳米材料可以用于药物输送、分子成像和组织修复等方面。

纳米颗粒可以通过控制其大小和表面修饰来实现药物的靶向输送和释放。

在电子领域,纳米材料可以用于制备纳米电子元件和纳米传感器等。

纳米材料的尺寸效应和表面效应使其在电子器件的性能和灵敏度方面具有巨大的优势。

然而,纳米材料的应用也面临着一些潜在的风险和挑战。

首先,纳米材料的生产和处理过程中可能释放出有害物质,并对环境和人体健康造成潜在风险。

此外,由于纳米材料的小尺寸和特殊性质,其对生物体的毒性和生物互作性尚不完全了解。

纳米材料的自组装综述

纳米材料的自组装综述

纳米材料的自组装综述纳米材料的自组装是一种具有巨大潜力的新兴领域,通过利用分子间的相互作用和动力学行为来自组装出具有特殊结构和性质的纳米材料。

自组装方法不仅能够制备出高度有序的纳米结构,还能够在纳米尺度上控制物质的形貌、结构和性能,因此被广泛应用于纳米科学、纳米技术和材料科学等领域。

自发性自组装是指纳米材料在适当条件下,由于分子间的相互作用和动力学行为,自行组装形成特定的纳米结构。

自发性自组装方法包括溶液中的自组装、蒸发结晶法、自组装膜的自发生成等。

其中,溶液中的自组装是一种常见的方法,通过溶液中的分子之间的静电相互作用、范德华力、水合作用等力来实现自组装。

在适当的溶剂和浓度条件下,纳米材料可以通过纳米粒子的互相吸引和排斥形成特定结构。

蒸发结晶法是一种将溶液中的纳米材料通过蒸发水分使其自行形成纳米结构的方法。

自组装膜的自发生成是指将自组装分子散布在固体基底上,通过控制其组装行为,使其在固体基底上形成自组装膜。

外界控制下的自组装是指通过外界参数的调控来实现纳米材料的自组装。

外界控制下的自组装方法包括利用电场、磁场、光场、温度等外界参数的调控来实现纳米材料的组装行为。

例如,电场可以通过调控分子之间的电荷来实现纳米材料的组装行为;磁场可以通过控制磁性纳米材料的相互作用来实现纳米材料的组装行为;光场可以通过控制光的强度、波长和方向来实现纳米材料的组装行为;温度可以通过调控纳米材料的热运动来实现纳米材料的组装行为。

纳米材料的自组装不仅能够制备出具有特殊结构和性能的纳米材料,还能够为纳米技术和材料科学的发展提供新的方法和途径。

自组装方法可以实现纳米材料的可控制备和自组装膜的可控形成,为纳米技术的实现和材料科学的发展提供了重要的基础。

此外,纳米材料的自组装还具有很多独特的优势,例如可以在大面积上实现纳米尺度的组装、可以制备出高度有序的纳米结构、可以通过改变组装条件来调控纳米材料的性能等。

总之,纳米材料的自组装是一种具有巨大潜力的新兴领域,通过自发性自组装和外界控制下的自组装方法,可以实现纳米材料的有序组装和控制形貌、结构和性能。

纳米材料分散的综述

纳米材料分散的综述

纳米材料分散的综述一、纳米材料简介纳米材料是指尺寸在纳米级别的材料,具有优异的物理、化学和机械性能。

由于其独特的性质,纳米材料在能源、环保、医疗、信息技术等领域具有广泛的应用前景。

二、纳米材料制备方法纳米材料的制备方法多种多样,主要包括物理法、化学法以及生物法。

物理法包括机械球磨法、真空蒸发法等;化学法包括溶液法、气相法等;生物法则利用生物分子的自我组装和生物模板法。

不同的制备方法适用于不同类型的纳米材料,且具有各自的优势和局限性。

三、纳米材料的应用领域纳米材料因其优异的性能被广泛应用于以下领域:1.能源领域:太阳能电池、燃料电池、储能电池等;2.环保领域:空气净化器、水处理设备等;3.医疗领域:药物输送、生物成像、癌症治疗等;4.信息技术领域:电子器件、量子计算等。

四、纳米材料的分散技术纳米材料的分散技术是实现其应用的关键。

纳米材料由于其高比表面积和表面能,容易发生团聚,因此需要对其进行分散。

分散技术可分为物理分散和化学分散。

物理分散包括机械搅拌、超声波分散等;化学分散则是利用表面活性剂或偶联剂进行分散。

五、纳米材料分散的物理化学原理纳米材料分散的物理化学原理主要包括表面能作用、静电力作用和空间位阻作用。

表面能作用是纳米材料分散的主要驱动力,静电力作用则是在带电纳米粒子间的相互作用,空间位阻作用则是利用高分子物质对纳米粒子进行稳定分散。

六、纳米材料分散的方法与技术纳米材料分散的方法与技术主要包括以下几种:1.机械搅拌分散:通过机械搅拌的方式将纳米材料分散在溶剂中,可加入适量的表面活性剂或分散剂以增强分散效果。

2.超声波分散:利用超声波的振动能将纳米材料打散在溶剂中,可有效破解团聚现象。

3.化学分散:利用化学反应改变纳米材料的表面性质,如通过偶联剂对纳米材料进行改性,使其具有更好的分散稳定性。

4.溶剂热法:在高温高压条件下,利用溶剂的性质将纳米材料溶解分散在溶剂中。

此方法可用于制备一些具有特殊性质的纳米材料。

纳米材料的介绍

纳米材料的介绍

纳米材料的介绍一、纳米材料概述纳米材料是指纳米级尺寸的材料,具有良好的化学、光学等性能。

纳米材料泛指三维空间中至少有一维处于纳米尺寸或由它们作为基本单元构成的材料。

根据物理形态的不同,纳米材料可划分为五类:纳米薄膜、纳米粉体、纳米纤维、纳米块体、纳米相分离液体。

纳米材料的性能一般由量子力学决定,其光、电、磁、热性能与普通材料存在明显的差异。

相较于传统材料制品,纳米材料制品在光学、热学、力学、化学等性能方面具有明显优势。

从概念来说,纳米材料是由无数个晶体组成的,它的大小尺寸在1-100纳米范围内的一种固体材料。

主要包括晶态、非晶态的金属、陶瓷等材料组成。

因为它的大小尺寸已经接近电子的相干长度,它有着特殊的性质。

这些特殊性质所表现出来的有导电、导热、光学、磁性等。

目前国内、国际的科学家都在研究纳米材料,试图打造一种全新的新技术材料,将来为人类创造更大的价值。

二、纳米材料定义纳米材料是指三维空间尺度至少有一维处于纳米量级(1-100nm)的材料,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。

由于其组成单元的尺度小,界面占用相当大的成分。

因此,纳米材料具有多种特点,这就导致由纳米微粒构成的体系出现了不同于通常的大块宏观材料体系的许多特殊性质。

纳米体系使人们认识自然又进入一个新的层次,它是联系原子、分子和宏观体系的中间环节,是人们过去从未探索过的新领域,实际上由纳米粒子组成的材料向宏观体系演变过程中,在结构上有序度的变化,在状态上的非平衡性质,使体系的性质产生很大的差别,对纳米材料的研究将使人们从微观到宏观的过渡有更深入地认识。

三、纳米材料的性质1、"强" 在电子,医保,环保,能源等领域具有更多的优势。

2、"高" 适用纳米材料制作的器材,拥有更高的耐热,导电,高磁导性,可塑性。

3、"轻" 纳米材料更加轻更加便利,体积变小的同时还可以提高效率。

二维纳米材料综述

二维纳米材料综述

二维纳米材料综述近年来,二维纳米材料作为一种新型材料,在材料科学领域引起了广泛关注。

二维纳米材料是指具有一维或零维尺度大小的纳米结构,在另外两个维度上具有几乎无限延伸的材料。

本文将从制备方法、结构特点、性质表现和应用领域等方面对二维纳米材料进行综述。

首先,二维纳米材料的制备方法多种多样。

一种常见的方式是通过机械剥离法获得单层或少层的二维纳米片。

这种方法可以从层状材料中剥离出单层材料,如石墨烯、硫化钼等。

此外,还可以通过化学气相沉积法、水热合成法、溶剂热法、电化学剥离法等方法制备二维纳米材料。

这些方法的选择取决于所需材料的性质及制备的要求。

二维纳米材料具有独特的结构特点。

首先,它们具有大比表面积和高纵横比。

由于纳米尺度的存在,二维纳米材料的比表面积远大于宏观材料。

这使得它们在吸附、催化和传感等方面表现出优异的性能。

其次,二维纳米材料具有层状结构,层与层之间的键合较弱,使其表现出较好的柔韧性和可调控性。

最后,二维纳米材料还具有较好的光学和电学性质,可应用于传感器、电池、超级电容器等领域。

二维纳米材料的性质表现也非常丰富。

以石墨烯为例,它的高导电性、高热导率和超高比表面积使其成为理想的催化剂和电子器件材料。

硫化钼具有优异的光电特性,可应用于太阳能电池领域。

钼酸盐纳米片具有独特的离子传输通道,使其成为优秀的超级电容器材料。

此外,二维纳米材料还具有良好的机械、热学和光学性能,以及特殊的表面效应和量子大小效应等。

根据不同的应用领域,二维纳米材料有着广泛的应用前景。

在能源领域,二维纳米材料可用于太阳能电池、储能器件和催化剂等。

在环境保护领域,二维纳米材料可应用于废水处理、污染物检测和纳米传感器等。

在电子器件领域,二维纳米材料可以用于柔性显示、纳米电子元件和光电子器件等。

除此之外,二维纳米材料还可以应用于生物医学、光催化和超级电容器等领域。

总之,二维纳米材料作为一种新型材料,具有独特的结构特点和多样的性质表现。

二维纳米材料-石墨烯.综述

二维纳米材料-石墨烯.综述

1、发现之路
“二维结构”从想象到现实
石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,其厚 度为0.335nm,碳原子规整的排列于蜂窝状点阵结构单元之中。电子显微 镜下观测的石墨烯片,其碳原子间距仅0.142nm。
1、发现之路
Mather of all graphitic forms
Carbon Graphite C60 nanotube 石墨烯可看作是其他维数碳质材料的基本构建模块,它可以被包成 零维的富勒烯,卷成一维的碳纳米管或堆叠成三维的石墨。
(2)单层石墨烯的导热率与片层宽度、缺陷密度和边缘粗糙度密切相 关;
(3) 石墨稀片层沿平面方向导热具有各向异性的特点; (4) 在室温以上,导热率随着温度的增加而逐渐减小。 (5)随着层数增多,热导率逐渐降低,当层数达到 5-8层以上,减小到 石墨的热导率值(理论2200W/mK,正常1000W/mK左右)
完美的二维晶体结构 无法在 非绝对零度稳定存在
1966年,大卫· 莫明(David Mermin)和 赫伯特· 瓦格纳(Herbert Wagner)提出 Mermin-Wagner理论,指出表面起伏会 破坏二维晶体的长程有序。
1、发现之路
实验物理学家及材料学家与理论物理学家不同, 他们不喜欢被理论所束缚。
石墨烯三维能带结构图
双极性场效应
2、特性
电学特性
以单层石墨烯为例,其电子等载流子的有效质量*为零,而且可在室温下 显示出量子霍尔效应*。还会发生电阻值固定不会随距离变化的“无散射 传输”*现象。
*有效质量:指连接运动量与能量的方程式2阶微分时的系数。有效质量为零时, 载流子就会像“光”一样快速运动。同时有利于提高施加电压时的响应速度。而 相对于磁场的“回旋(Cyclotron)重量”则不会为零。 *量子霍尔效应:对电子二维分布的层(二维电子系统)施加强磁场时,电子轨道 及能量水平所取的值不相关(量子化)的现象。一般只能在极低温度环境下观测 到这种现象。常被用作半导体品质较高的证据。 *无散射传输:又称弹道传输(ballistic transport)。会在材料中的载流子平均自 由行程长度大于材料的尺寸,而且载流子处于相干状态时发生。会失去材料本身 的电阻,只会因用来施加电压的电极能带构造而产生电阻(量子化电阻)。与超 电导极为不同的是,不会发生阻断外部磁场的现象(迈斯纳效应)。

纳米材料国内外研究进展纳米材料的结构、特异效应与性能

纳米材料国内外研究进展纳米材料的结构、特异效应与性能

纳米材料国内外研究进展纳米材料的结构、特异效应与性能一、本文概述纳米材料,一种尺寸在纳米级(1-100纳米)的微小粒子组成的材料,由于其独特的物理、化学和生物学性质,在科学研究和技术应用上展现出了巨大的潜力和价值。

随着科学技术的快速发展,纳米材料已成为国内外研究的热点和前沿领域。

本文旨在全面综述纳米材料的研究进展,重点探讨其结构、特异效应与性能,以期对纳米材料的未来发展提供理论支持和实践指导。

在文章结构上,本文首先简要介绍了纳米材料的定义、分类和基本特性,为后续深入研究奠定基础。

随后,详细分析了国内外纳米材料研究的最新成果和发展趋势,对比了国内外研究的异同,总结了纳米材料研究的主要挑战和前景。

在内容安排上,本文将从纳米材料的结构出发,探讨其原子排列、表面结构、界面结构等对其性能的影响;进而分析纳米材料的特异效应,如小尺寸效应、表面效应、量子尺寸效应等,揭示这些效应如何赋予纳米材料独特的物理和化学性质;对纳米材料的性能进行深入探讨,包括力学性能、电磁性能、光学性能、热学性能等,以期全面展现纳米材料的优越性和潜在应用价值。

通过对纳米材料的系统研究和综述,本文旨在为推动纳米材料的进一步发展提供有益参考,同时激发广大科研工作者和工程技术人员在纳米材料领域开展创新研究的热情和信心。

二、纳米材料的结构与制备纳米材料,其尺寸通常在1到100纳米之间,由于其独特的尺寸效应,展现出了许多与众不同的物理、化学和生物特性。

这些特性使得纳米材料在能源、医疗、电子、环保等诸多领域具有广泛的应用前景。

因此,对纳米材料的结构与制备进行深入的研究,对于推动纳米科技的进步具有重要意义。

纳米材料的结构决定了其性能和应用。

根据其维度的不同,纳米材料可以分为零维纳米材料(如纳米颗粒)、一维纳米材料(如纳米线、纳米管)、二维纳米材料(如纳米薄膜、纳米片)以及三维纳米材料(如纳米多孔材料、纳米复合材料)。

这些不同维度的纳米材料,其内部原子排列、电子状态、表面性质等都会发生显著变化,从而展现出独特的物理、化学和机械性能。

纳米材料综述

纳米材料综述

纳米银研究现状摘要:近年来,人们对于纳米银独特的性质给予了广泛的关注,本文综述了纳米银的研究现状与前景。

简单介绍了自20世纪90年代以来,纳米银的制备方法,着重阐述了纳米银在医疗,食品方面的应用。

关键词:纳米银用途;纳米材料的制备;纳米银抗菌;应用前景。

引言:纳米银指的是纳米级的金属银单质。

是纳米材料的一个典型代表,它是一种新兴的功能材料,有着较高的比表面积,表面活性较好,导电率高,广泛用作催化剂材料、防静电材料和生物传感器材料等[1]。

另外,纳米银还具有抗菌、除臭、吸收部分紫外线的功能,可应用于医药行业,其应用前景广阔。

因此,研究纳米银有着重要的意义。

本文就纳米银的制备方法[2]以及应用,回收等方面进行综述。

图1纳米--长度单位一、制备方法(一)物理法物理法原理简单,所得产品杂质少、质量高,但其缺点是对仪器设备要求较高,生产费用昂贵。

主要有激光烧蚀法、蒸发冷凝法、机械球磨法。

1.1激光烧蚀法激光烧蚀法是制备纳米银粒子一种新兴起的技术。

具有以下特点:①周期短;②制备过程是一种物理过程,无外来杂质的干扰;③烧蚀后的金属表面粗糙程度具有纳米量级并可以重复利用。

李亚文等[3]用脉冲激光对处于去离子水中的银片进行激光烧蚀,得到了银纳米颗粒和银纳米胶体体系,有着很好的纯净性和表面增强拉曼散射活性。

1.2蒸发冷凝法蒸发冷凝法又称为物理气相沉积法,用激光、真空蒸发、电弧高频感应、电子束照射等使原料气化或形成等离子体,然后在介质中骤然冷却使之凝结。

其特点是纯度高,结晶性好,粒度可控,但技术复杂,设备要求高。

BakerC等人[4]在惰性气体氛围中,通过冷凝的方法制备出了纳米银粒子,但存在着纳米银粒子聚结的缺点。

1.3机械球磨法机械球磨法是利用高能球磨方法,在适当的球磨条件下获得纳米级的晶粒的纯元素、合金或复合材料。

该法工艺简单,制备效率高,但易引入杂质,纯度不高,颗粒分布也不均匀。

Xu等[5]在-196℃的低温下对银粉进行高能机械球磨,得到了平均粒径约为20nm的银颗粒粉末。

纳米材料研究综述

纳米材料研究综述

纳米材料研究综述纳米材料是一种具有尺寸在纳米尺度范围内的材料,具有独特的物理、化学以及材料性质。

纳米材料研究是当代材料科学研究中的热点领域之一、本文将从纳米材料的定义、制备方法以及应用领域等方面进行综述。

纳米材料的定义是材料的至少一个尺寸小于100纳米。

纳米尺度效应的出现使得纳米材料具有与传统材料不同的特殊性质。

例如,纳米材料的比表面积大幅度增加,使得其具有更强的化学活性。

此外,量子尺寸效应的出现使得纳米颗粒具有特殊的电子以及光学性质。

纳米材料的制备方法多种多样,包括物理、化学和生物制备方法。

物理制备方法主要通过物理手段调控材料尺寸,如烧结、溅射、气相沉积等。

化学制备方法则是利用化学反应控制纳米材料的合成,如溶胶凝胶法、水热合成法和化学气相沉积法等。

生物制备方法则是利用生物体内的生物功能来制备纳米材料,例如利用微生物、草莓等生物体合成金属纳米颗粒。

纳米材料在许多领域具有广泛应用。

在材料领域,纳米材料的使用可以显著改善材料的性能,如提高材料的强度、硬度、导电性和光学性能。

在能源领域,纳米材料的应用可以提高能源传递效率,如利用纳米材料制备高效的太阳能电池和储能材料。

在医学领域,纳米材料可以用于药物的传递和缓释,实现精准治疗。

此外,纳米材料还广泛应用于传感器、催化剂以及环境保护等领域。

然而,纳米材料的应用也存在一定的挑战和问题。

首先,纳米材料的制备方法需要更高的技术要求和设备,成本较高。

其次,纳米材料的毒性和环境影响等问题也需要引起重视。

此外,纳米材料的稳定性和长期储存等问题也需要进一步研究。

总的来说,纳米材料研究是一个具有广泛前景和挑战的领域。

对纳米材料的研究不仅可以深入了解物质的基本属性,还可以为新材料的设计与合成提供理论指导。

随着纳米材料研究的不断深入,其在各个领域的应用也将进一步扩展和发展。

多孔纳米材料综述

多孔纳米材料综述
纳米科技
Outline
1. 纳米材料的概念及特点 2. 对纳米材料的要求 3. 纳米结构单元 4. 纳米晶界结构理论 5. 纳米材料的制备方法 6. 纳米材料的分类 7. 纳米材料的应用 8. 纳米材料的另一面 9. 结束语
1.纳米材料的概念及特点
纳米材料: 在纳米量级(1~100nm)内调控物质 结构制成的具有特异性能的新材料 四大特点: 尺寸小、比表面积大、表面能高、 表面原子比例大 四大效应: 小尺寸效应、量子尺寸效应、宏观 量子隧道效应、表面效应
2.对纳米材料的要求
尺寸可控(小于 100 nm) 成分可控 形貌可控 晶型可控 表面物理和化学特性可控
(表面改性和表面包覆)
3.纳米结构单元
• 团簇(cluster):几个乃至上千个原子、分子或 离子通过物理和化学结合力组成相对稳定的聚 集体(粒径小于或等于1 nm) eg: C60 buckyball, Fen, CnHm
9.结束语
• 纳米材料是国际材料界当前研究的热点,它使人
类在改造自然方面进人了一个新层次,即从微米 级层次深入到纳米级层次。 • 鉴于纳米科技是节能、低耗和技术密集型的新科 技,发展纳米科技的投人产出比可能高于其它高 科技项目。因此应在政策、财力、物力和人力上 给于大力支持,让纳米技术尽快实现产业化
• Seagel〔2〕的有序说。有序说认为晶粒间界处 含有短程有序的结构单元,晶粒间界处原子保持 一定的有序度,通过阶梯式移动实现局部能量的 最低状态.
• 叶恒强、吴希俊[3]的有序无序说。该理论认为纳 米材料晶界结构受晶粒取向和外场作用等一些因 素的限制,在有序和无序之间变化
5.物理方法制备纳米材料
7.纳米材料的应用
1. 在陶瓷领域的应用 2. 在微电子学上的应用 3. 在生物工程上的应用 4. 在光电领域的应用 5. 在化工领域的应用 6. 在医学上的应用 7. 在分子组装方面的应用

纳米材料综述

纳米材料综述

纳米材料综述
纳米材料是指至少有一个尺寸在1-100纳米之间的材料,具有独特的物理、化
学和生物学特性。

纳米材料的发展已经引起了广泛的关注,因为它们在许多领域都具有巨大的潜力,包括材料科学、生物医学、能源和环境等。

首先,纳米材料在材料科学领域具有重要意义。

由于其尺寸在纳米级别,纳米
材料具有更大的比表面积和更多的表面活性位点,这使得它们在传统材料所无法实现的性能上具有巨大优势。

例如,纳米材料可以具有更高的强度、硬度和韧性,同时还可以表现出独特的光学、电子和磁性能。

因此,纳米材料已经被广泛应用于传感器、催化剂、电子器件等领域,并且在材料设计和合成方面取得了重要的突破。

其次,纳米材料在生物医学领域也展现出了巨大的潜力。

由于其尺寸与生物分
子和细胞相近,纳米材料可以被设计成具有特定的生物相容性和靶向性,从而可以用于药物传递、医学影像和组织工程等应用。

此外,纳米材料还可以被用于治疗癌症、感染和炎症等疾病,为生物医学领域带来了新的治疗手段和诊断方法。

另外,纳米材料在能源和环境领域也具有重要意义。

由于其特殊的结构和性能,纳米材料可以被用于太阳能电池、储能设备、污染物处理等领域,为可持续能源和环境保护提供了新的解决方案。

例如,纳米材料可以提高光电转换效率、增加电池储能密度,同时还可以被用于吸附和催化分解有害气体和水污染物。

总的来说,纳米材料具有广泛的应用前景和重要的科学意义。

随着纳米技术的
不断发展和进步,相信纳米材料将会在更多领域展现出其独特的价值,为人类社会的发展和进步做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010-1滚2-3动球磨
搅拌球磨
振动球磨 9
二.非晶晶化法
非晶晶化法: 液态金属在急剧降温获得非 晶条带,再将非晶条带经热处理使其晶化 获得纳米晶条带的方法。制备的纳米结构 材料的塑性对晶粒的粒径敏感,只有晶粒 直径很小时,塑性较好.否则材料变得很 脆。特点﹕工艺较简单, 化学成分准确。
液态金属 非晶条带
2010-12-3
12
2、防电磁辐射
电子产品的普及使得电磁 辐射对人体健康造成了巨大 威胁,一些纳米微粒如纳米 氧化铁,纳米氧化镍等能强 烈吸收电磁辐射从而对人体 起到防护作用。
2010-12-3
防辐射孕妇装
13
4.2 纳米在陶瓷方面的应用
纳米陶瓷
(1) 陶瓷增韧
陶瓷材料在通常呈脆性 ,由纳米粒子压制成的纳 米陶瓷材料有很好的韧性 。因为纳米材料具有较大 的界面,界面的原子排列 是相当混乱的,原子在外 力变形的条件下很容易迁 移,因此表现出甚佳的韧 性与延展性。
2010-12-3
纳米陶瓷
14
(2) 降低烧结温度
纳米颗粒表面能高,表面原子数多。这些 表面原子近邻配位不全,活性大,因此纳米颗 粒熔化时所需的内能较小,使其熔点急剧下降 ,一般为块体材料熔点的30-50%。
纳米微粒粒径小,比表面积大,并有高的 扩散速率,因而用纳米粉体进行烧结,致密化 速度快,还可以降低烧结温度。将纳米粉末作 为陶瓷的原料,只需不高的温度即可将其熔化 并烧结成耐高温的元件。
• 基于这种20 nm硅晶体管,可以制 造含10亿个晶体管的硅晶体管芯 片和计算机微处理器,其运行速 度可高达20GHz,比2000年研制 成功30 nm硅晶体管芯片,性能又 提高很多。
2010-12-3
放大一万三千倍的集成电路芯片,连 接导线的宽度已经达到纳米尺度
18
4.4 在环境保护方面的作用
纳米材料讲综述
Outline
1. 纳米技术的发展 2. 纳米材料的类型 3. 纳米材料制备 4. 纳米材料的应用
5. 结束语
2010-12-3
2
3.3 固相法制备纳米材料
一. 机械粉碎(高能球磨)法 高能球磨法是将粗粉体和硬球(钢球、陶瓷球、或玛瑙球)按
比例放进球磨机的密封容器内, 利用球磨机的转动或振动,使硬 球对原料进行强烈的撞击、研磨和搅拌,把金属或合金粉末粉 碎为纳米级微粒的方法。
b. 纳米微粒粉体对各种波长光的吸收带有宽化现象。 纳米微粒的紫外吸收材料就是利用这两个特性。
通常的纳米微粒紫外吸收材料是将纳米微粒分散到 树脂中制成膜,这种膜对紫外有吸收能力,主要由 纳米粒子的尺寸和树脂中纳米粒子的掺加量和组分 来决定。
2010-12-3
22
4.6 在生物工程上的应用
1 纳米镊子
2010-12-3
15
(3) 下一代电脑芯片
纳米陶可以使微处理器集成化程度更高,运算速度更快。
在未来的人类可能会拥有被嵌入到钢笔、衣服、眼睛甚至身体中的芯 片,与网络相连接的计算机。
(4)磁性应用
磁铁的强弱可以用矫顽磁力和饱和磁化强度衡量,这些参数随晶粒 的减小和表面积的增大而提高。由纳米陶瓷材料可制成超敏感分析仪器 和医学分析磁共振等装置上。
4.1 在日常生活中的应用
1、防紫外线
太阳能对人体有伤害的 紫 外 线 主 要 在 300— 400nm波段,纳米TiO2、 ZnO 、 Fe 2 O 3 和 纳 米 云 母 等都有在这个波段吸收紫 外线的特征,将少量纳米 微粒添加到化学纤维中, 就会产生紫外线吸收现象 ,从而可以有效保护人体 免受紫外线的损伤。
单电子晶体管示意图
2010-12-3
纳米单电子晶体管示意图
17
2 纳米芯片
• Intel公司2000年12月公布,他们 用最新纳米技术研制成功30nm硅 晶体管芯片。新芯片运算速度达 10GHz , 是 目 前 运 算 速 度 最 快 的 Pentium4芯片运算速度2.4GHz的 4倍。
• Intel公司2001年又宣布又研制成 功20 nm硅晶体管芯片,其中门的 绝缘体只有0.8nm厚(约三个原子 的厚度),每秒开关变换次数极高 。
2010-12-3
热处理
10
三.直接淬火法 原理:控制液体合金的淬火速度,
获得纳米晶材料。这种方法适用于制备 纳米合金大块材料。最近英国、法国、 印度和我国利川这种方法已成功地原子 Ni—Ti合金加Si的体系中获得了Ti2Ni纳 米晶材料。
2010-12-3
直接淬火法
11
✓ 4. 纳米材料的应用
(2)另一方面,纳米微粒材料的比表面积比常 规粗粉大3-4个数量级,对红外光和电磁 波的吸收率也比常规材料大得多,这就 使得红外探测器及雷达得到的反射信号 强度大大降低,因此很难发现被探测目 标,起到了隐身作用。
2010-12-3
美国F117隐形轰炸机机
21
2 优异的光吸收材料
a. 纳米微粒的量子尺寸效应等使它对某种波长的光吸 收带有蓝移现象。
• 如果有一种超微型镊子,能 够钳起分子或原子并对它们 随意组合,制造纳米机械就 容易多了。
• 英国《自然》杂志上报告说
,他们用DNA(脱氧核糖核
酸)制造出了一种纳米级的
(5)高灵敏传感器
传感器本身的灵敏度依赖于制造传感器材料的化学、物理和机械性 能。由纳米陶瓷材料制成的传感器具有较高的敏感性,其典型应用有烟 雾检测器、飞机机翼上的冰层检测器和汽车发动机性能传感器等。
2010-12-3
16
4.3 在纳米电子器件方面的应用
1. 纳米单电子晶体管
在纳米尺度上单个电子运动会受到限制,并且可以控制其 流动,即所谓库仑阻塞效应,利用它可制成单电子晶体管。
1 纳米TiO2与环境保护
由于纳米TiO2除了具 有纳米材料的特点外, 还具有光催化性使得它 在环境污染治理方面将 扮演极其重要的角色。
纳米二氧化钛的SEM图像
2010-12-3
19
2 自洁作用
2010-12-3
20
4.5 在光学方面的应用
1. 隐身材料
(1)由于纳米微粒尺寸远小于红外及雷达波 波长,因此纳米微粒材料对这种波的透 过率比常规材料要强得多,这就大大减 少波的反射率,使得红外探测器和雷达 接收到的反射信号变得很微弱,从而达 到隐身的作用;
相关文档
最新文档