变频器散热设计
变频柜通风散热的设计方法
变频柜通风散热的设计方法一、散热问题变频器的发热是由内部的损耗产生的。
在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。
为了保证变频器正常可靠运行,必须对变频器进行散热我们通常采用风扇散热;变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行;大功率的变频器还需要在控制柜上加风扇,控制柜的风道要设计合理,所有进风口要设置防尘网,排风通畅,避免在柜中形成涡流,在固定的位置形成灰尘堆积;根据变频器说明书的通风量来选择匹配的风扇,风扇安装要注意防震问题。
二、电磁干扰问题I. 变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰,而且会产生高次谐波,这种高次谐波会通过供电回路进入整个供电网络,从而影响其他仪表。
如果变频器的功率很大占整个系统25%以上,需要考虑控制电源的抗干扰措施。
II.当系统中有高频冲击负载如电焊机、电镀电源时,变频器本身会因为干扰而出现保护,则考虑整个系统的电源质量问题。
三、防护问题需要注意以下几点I.防水防结露:如果变频器放在现场,需要注意变频器柜上方不的有管道法兰或其他漏点,在变频器附近不能有喷溅水流,总之现场柜体防护等级要在IP43以上。
II. 防尘:所有进风口要设置防尘网阻隔絮状杂物进入,防尘网应该设计为可拆卸式,以方便清理,维护。
防尘网的网格根据现场的具体情况确定,防尘网四周与控制柜的结合处要处理严密。
III.防腐蚀性气体:在化工行业这种情况比较多见,此时可以将变频柜放在控制室中。
四、变频器接线规范信号线与动力线必须分开走线:使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。
距离应在30cm 以上。
即使在控制柜内,同样要保持这样的接线规范。
该信号与变频器之间的控制回路线最长不得超过50m。
变频器散热与散热
变频器散热与散热变频器是一种能够调节电机运行速度的电气装置,广泛应用于工业生产和机械设备中。
然而,由于变频器工作时会产生大量热量,散热成为了一个重要的问题。
本文将探讨变频器散热的原理和方法,以及如何提高散热效果,保障变频器的正常运行。
一、散热的重要性在变频器工作过程中,电子元件会产生热量,如果散热不及时,温度将逐渐升高,可能会导致变频器内部元件的失效甚至损坏。
因此,合理的散热设计和措施是确保变频器正常运行的关键。
二、散热原理1. 热传导:通过直接接触,将热量从高温区域传递到低温区域。
变频器通常采用导热材料,如铝制散热片或散热器,来帮助热量传导。
2. 对流散热:通过液体或气体的流动,将热量带走。
变频器通常采用风扇或风道进行对流散热,将热量快速地带走。
3. 辐射散热:通过辐射热量的方式进行散热。
变频器通常采用散热片来增加散热面积,提高辐射散热效果。
三、散热设计与方法1. 外壳设计:变频器外壳应采用导热性能良好的材料,如铝合金。
外壳的表面积应适当增加,以增加辐射散热的效果。
2. 风扇散热:在变频器外壳上设置风扇,通过强制对流的方式加速热量的散发。
风扇的选型要符合散热需求,确保风扇的风量和噪音都能满足要求。
3. 风道设计:风扇散热时,风道的设计也非常重要。
合理的风道设计可以提高风流的速度和方向,增加散热效果。
4. 导热材料:变频器内部的散热片和散热器应采用导热性能好的材料,如铝、铜等,以提高热传导效果。
5. 空间布局:在变频器的安装中,应合理安排变频器与其他设备的间距,避免热量的相互干扰。
6. 温度监控与保护:在变频器的设计中,应考虑温度监控和保护机制,如果温度超过安全范围,及时停机或降低负载,避免设备损坏。
四、提高散热效果的措施1. 减少负载:合理调整变频器的输出功率和频率,降低负载,减少能量转化为热量的程度。
2. 防尘处理:变频器内部元件的散热效果容易受到尘埃和杂质的影响,应定期清洁和防尘处理。
3. 避免过度密封:如果变频器处于封闭的环境,应注意避免过度密封,以保证散热的通畅。
制作防爆变频器掌控箱时散热问题如何处理
制作防爆变频器掌控箱时散热问题如何处理背景在制造防爆变频器掌控箱时,散热问题是必需考虑的。
由于掌控箱中有电子元器件发热,假如不适时排出掉这些热量会导致盒体温度过高,从而影响电子元器件工作正常,严重时可能导致电子元器件损坏。
解决方案为了排出热量,从而达到散热的目的,我们可以实行以下几个方案:方案一:使用风扇适当降低温度风扇是目前特别主流的解决散热问题的方法,其原理是通过风扇速度的变化来更改空气流动的方向和速度,从而将散热过程加快。
这种方法的优点是简单易行,价格较为便宜,缺点是需要人工维护,同时声音可能会有些嘈杂。
方案二:改善散热材料散热材料是指能够帮忙电子元器件加快排出热量的物品,比如散热片、散热鳍片,这种材料可以提高金属表面的散热本领,帮忙达成散热目的。
将散热材料与主板、硬盘等电子元器件紧密结合,可以加添散热装置的散热本领,从而削减掌控箱内温度的上升。
方案三:充分利用箱体结构掌控箱表面结构的特征,如大小、材料和空气流通状态等都会影响散热。
对于散热要求较高的掌控箱,可以选择一些功能齐全的壳体方案,进一步降低盒体内部的温度。
掌控箱内的风道和布局设计也会影响散热效果,进行合理设计可以有效地加添散热面积,从而加强散热本领。
方案四:限制内部空气流动盒体内部的空气流动状态会影响热量的分布。
接受卡扣、密封环等密封措施,可以削减空气流动,从而除去温度不均匀的问题。
对于掌控箱内电子元器件产生的热量比较大的情况,可以设置一些障板来使空气流动区域更加合理。
结尾以上四种方案并不是全部的解决散热的方法,它们仅仅是一些常见的方法。
在掌控箱设计的过程中,对于散热性能的要求需要在设计之初就有所考虑,这样才能更好地解决散热问题。
变频系统空水冷散热方案
变频系统空水冷散热方案变频器的最大散热功率按照变频额定功率×4%(加余量20%)核算。
根据现场的实际情况,综合冷却系统的投资和运营成本,提出下面的空-水冷却方案:1.空-水冷却系统的工作原理:空-水冷却系统是一种高效、节能、环保的冷却系统,其应用技术在国内处于领先地位。
在高压大功率变频应用中得到了广泛应用。
该系统由于其采用完全机械结构设计,较空调等电力、电子设备而言具有明显的安全、可靠性。
其主要原理是:将变频器的热风通过风道作用于空-冷装置进行热交换,由冷却水直接将变频器产生的热量带走;经过降温的冷风进行循环回至室内。
空冷装置内进口冷水温度要求低于33℃,可以充分保证热风经过散热片后,将变频器室内的环境温度控制在40℃以下满足变频器运行对环境的要求。
空-水冷却系统冷却水与循环风完全分离,水管线在变频室外与高压设备明确分离,并且系统本身设有通风开放转换方式,确保空-水冷却系统出现问题不会对整个变频系统运行造成安全威胁和事故。
同时,由于房间密闭,变频器利用室内的循环风进行设备冷却,具有粉尘度低,维护量小的特点;减少了环境对变频器运行稳定性的不利影响。
2.系统安全性能评价:设备整体安装于高压变频器室墙外,采用风道与变频器的柜顶排气口直接连接,提高了冷却器的设备运行效率,能够对变频器排出的热气直接降温处理,另外冷却器的设计能力可满足最高冷却水温33℃,水侧清洁系数为0.85以及管子堵塞率为5%等情况下的最大热负荷的要求。
同时,避免冷却水管线在高压室内布局出现破裂后漏水危机高压设备运行安全的严重事故发生。
在空-冷系统的设计当中,为了防止空冷器出口侧凝露使冷风带水排入室内,对空-水冷系统的风压、风速等指标进行设计计算,保证良好的排压情况下,运行安全稳定。
另外,为防止空冷器漏水后进入室内,在空冷器的出口侧设置了淋水板,当漏水或有积水时,可以直接排向室外。
同时,变频器提供风机、空冷器的故障报警检测点,并通过综合报警信号远传至DCS.完整的冷却系统解决方案,有效降低了辅助系统的故障率以及对主要设备的运行安全影响程度。
高压变频器的通风与散热设计
高压变频器的通风与散热设计摘要:在石油、化工、电力、煤矿等工业生产领域对变频器的可靠性要求极高。
影响变频器可靠性的因素很多,通风散热是重要因素之一。
因此,解决好变频器设计过程中的散热与通风是一个至关重要的环节。
散热能力决定变频器的输出电流能力,从而影响输出转距能力,为此就要优化散热与通风方案,进行合理设计,实现设备的高效散热,这对提高设备的可靠性是很重要的。
高压变频器工作时的热量主要来源于隔离变压器、电抗器、功率单元和控制系统等,其中功率器件、功率单元及功率柜的散热与通风设计最为重要。
关键词:高压变频器;散热与通风;设计一、功率单元散热功率单元中的元器件主要包括整流二极管、IBGT模块、电容、快速熔断器、母线开关器件驱动电路以及其它一些保护电路等。
除二极管整流模块与IGBT模块外,其余元器件由于在功率单元中通过支架等方式安装,在保证足够的空间距离与必要轻微空气的对流的条件下,已能满足其散热要求。
因此功率单元的散热设计主要考虑二极管整流模块与IGBT模块的散热要求即可。
功率器件的损耗功率所产生的温升需由散热器来降低,通过散热器增加功率器件的导热和辐射面积、扩张热流以及缓冲导热过渡过程,直接传导或借助于导热介质将热量传递到冷却介质中,如空气、水或水的混合液等。
目前在高压变频器中主要用到的冷却方式为强制空气冷却、循环水冷却和热管散热器冷却。
由于空气冷却比较简单,不存在热管散热的复杂性及水冷的凝露问题,所以在通常情况下大多都会首先选择空气冷却。
空气冷却用的散热器通常是一块带有很多叶片的良导热体,散热器热阻估算公式如下:式中:k为散热器热导率;d和A分别为散热器的厚度和面积,分别以cm和cm2表示;C为一个与散热器表面和安装角度有关的修正因子。
此式在空气温度不超过45℃时成立,通常利用式(1)估算散热器的散热能力。
二、散热器的选择及注意事项功率器件是大多数电子设备中的关键器件,其工作状态直接影响到整机的可靠性及稳定性。
基于Icepak软件的变频器的散热优化设计
了优化方案 。从 而有效降低 了变频 器机 器 内温度 , 保证 了机 器稳 定可靠工作。
关键词 : 变频 器 I c e p a k 热仿 真 热设 计优 化 文章 编 号 : 1 0 0 2— 6 8 8 6 ( 2 0 1 4 ) 0 4—0 0 5 9— 0 3 中图分类号 : T P 3 1 文 献标 识 码 : A
I c e p a k t o a n a l y z e t h e t h e r ma l p e r f o ma r n c e o f t h e d r i v e .Ac c o r d i n g t o t h e r e s u l t o f s i mu l a t i o n a n d i t s o p t i mu m f u n c t i o n,i t p r o p o s e s o p t i mu m s o l u t i o n t o t h e r ma l s t r u c t u r e d e s i g n .S o t h a t i t c a n e f f e c t i v e l y r e d u c e t h e t e mp e r a t u r e o f t h e f r e q u e n c y i n —
Ab s t r a c t :W h e n f r e q u e n c y i n v e r t e r r u n s i n h o t c i r c u ms t a n c e ,i t s i n t e na r l t e mp e r a t u r e i s t o o h i g h ,i t wo u l d a f f e c t n o r ma l
高压变频起动器散热计算
高压变频器现场散热方案介绍高压变频器属于大型电子设备,对环境要求比较严格。
统计多台设备的运行情况,由于现场环境温度过高而引起的设备故障比例较大,因此我们总结了两种现场经常采用的散热方案,供用户参考。
高压变频器的损耗计算及对环境的温度要求:山东新风光电子科技发展有限公司生产的高压变频调速系统主要由以下三部分组成:控制柜、功率柜、变压器柜。
此系统使用多台离心风机进行散热,以630kW/6kV变频器为例,功率柜顶为2台,变压器柜顶一般为1台,风机选用上海施依洛生产的离心风机,此风机可靠性高,性能优异。
风机根据变频器功率等级不同,选三相风机。
三相风机额定风量为4000 m3/h。
变频器总的排风量为单个风机排风量乘以风机数量。
当变频器满负荷工作时,其总损耗(转变为热量)约为系统额定功率的3%,比如1000kW变频器满负荷工作时,损耗约为30kW。
如此大的热量如果全部排放到安装变频器的室内,将会使室内温度迅速升高,严重影响变频器的正常运行。
为了使变频器能长期稳定和可靠地运行,对变频器的安装环境作如下要求:最低环境温度-5℃,最高环境温度40℃,工作环境的温度变化应不大于5℃/h。
如果环境温度超过允许值,应考虑配备相应的散热设备。
1.现场散热方案针对现场的不同环境,我们有两种散热方案:加装空调或加装风道。
1.加装空调1.1变频器安装空调时,要求变频器控制室空间尽可能小,并且做好密封。
1.2空调容量的确定原则:按照变频器的发热量和控制室环境实用面积来选择空调的容量1.2.1制冷量的计算变频器发热根据运行工况选择,考虑一定的裕量,最大发热量为变频器额定功率的4%,如果长期运行频率低于40Hz,则发热量可按照变频器额定功率的2%进行估算。
按照房间实用面积计算空间单独空间制冷所需的空调容量,一般每平方米可以按照150瓦特计算。
空调总体的制冷量应为变频器的发热量加上空间制冷所需的制冷量。
1.2.2 空调的选择所谓的空调“匹”数,原指输入功率的大小,包括压缩机、风扇电机及电控部分所消耗的能量,制冷量以输出功率的多少计算。
变频器中的IGBT模块损耗计算及散热系统设计
变频器中的IGBT模块损耗计算及散热系统设计一、本文概述随着电力电子技术的快速发展,变频器作为电能转换与控制的核心设备,在工业自动化、新能源发电、电动汽车等领域得到了广泛应用。
绝缘栅双极晶体管(IGBT)作为变频器的关键功率器件,其性能直接影响到变频器的效率和可靠性。
IGBT模块的损耗计算和散热系统设计是变频器设计中的重要环节,对于提高变频器性能、降低运行成本、延长设备寿命具有重要意义。
本文旨在探讨变频器中IGBT模块的损耗计算方法和散热系统设计原则。
我们将分析IGBT模块的工作原理和损耗产生机制,包括通态损耗、开关损耗等。
在此基础上,我们将介绍损耗计算的数学模型和计算方法,以及如何通过实验手段验证计算结果的准确性。
我们将重点讨论散热系统的设计原则和优化方法,包括散热器结构设计、散热风扇的选择与控制、散热系统的热仿真分析等。
本文将总结一些实际应用中的经验教训,提出针对IGBT模块损耗计算和散热系统设计的优化建议,为变频器设计工程师提供有益的参考。
通过本文的研究,我们期望能够为变频器设计中的IGBT模块损耗计算和散热系统设计提供理论支持和实践指导,推动变频器技术的持续发展和应用创新。
二、IGBT模块损耗计算绝缘栅双极晶体管(IGBT)是变频器中的关键元件,其性能直接影响变频器的效率和可靠性。
IGBT模块的损耗计算是散热系统设计的基础,对于确保变频器的稳定运行具有重要意义。
IGBT模块的损耗主要包括通态损耗和开关损耗两部分。
通态损耗是指IGBT在导通状态下,由于电流通过而产生的热量损耗。
开关损耗则发生在IGBT的开通和关断过程中,由于电压和电流的乘积在时间上的积分不为零,导致能量损失。
通态损耗的计算公式为:Pcond = Icoll * Vce(sat),其中Icoll 为集电极电流,Vce(sat)为饱和压降。
饱和压降是IGBT导通时电压降的一个重要参数,它与集电极电流、结温和门极电流等因素有关。
变频器通风散热几种方式
常见的变频器散热方式
①风道方式(注意进风口及出风口,材质:白铁皮0.5~0.8mm)
安装要求:
●风道出口面积不小于变频器风机出口面积的总和;
●风道出口处距地面高度要略低于变频器风机出口距地面(水平面)的高度;
●风道出口平面与墙体外表面应保持距离约20~50cm;
●风道出口处要有防护网,防尘孔直径应不大于10mm,可采用“上边缘长出
下边缘10cm”方式(此方式适用于用户墙外有足够的顶沿);或做风道弯头以防雨/雪水倒灌,或飞禽/飞絮进入(此方式适用于外裸墙、无顶沿或顶沿较高且短的情况);
●变频器风机在与风道连接时风机上的防尘网不允许摘除;
●风道穿过墙体处,风道边缘与墙体间不能有间隙;
●风道出口禁止朝向上方,具体朝向视现场情况而定(原则上不能有风阻)。
●变频器后侧与墙体距离大于3m时,风道下侧应有支架支撑。
●结构选用角钢支架外包铁皮较为牢固,外观着色要与柜体一至,美观大方。
●若选择安装风道,必须考虑现场进风条件。
若无进风条件,可视对流情况在
墙上开进风孔,开孔尺寸要求不少于风机总出风口的1.2~1.5倍,进风口加装过滤网
②空调制冷方式(注意空调功率选择,价格基本上为1000元/匹)
注意事项:
●空调尽量选落地式空调。
●根据房屋面积选择空调的大小,具体如下:
空调匹数=(变频器额定功率X4%/2.5)X0.75
③空调与风道组合方案(由于停机时易产生凝露,一般不推荐此方式)
注意事项:
●空调大小可为上面②方案中的1/3—1/4,但必须注意:变频器停机后必须停
空调或不停风机,以防止产生柜内凝露现象。
通用变频器的散热优化设计
通用变频器的散热优化设计摘要:变频器是改变输出频率和输出电压控制交流电动机转速的调速控制装置,广泛应用在石油化工、电力等行业。
变频器散热分为风冷、水冷和油冷等,笔者工作中遇到的变频器功率达到数百上千千瓦,变频器多采用强制风冷散热方式,风冷变频器和其他冷却方式相比复杂性不高也较可靠。
随着现代工业的快速发展,冶金、陶瓷等行业对通用变频器的结构尺寸要求越来越紧凑,系统的热流体积密度越来越大,这给系统的散热设计也带来了一定的难度,变频器的热设计显得越来越重要。
在变频器的整机设计中,机箱的散热通风结构和散热器的选择对系统的散热是至关重要的环节。
基于此,本文主要对通用变频器的散热优化设计进行论述,详情如下。
关键词:通用变频器;散热;优化设计引言目前,在实际变频器开发的项目中,大多数主要是根据工程设计经验和结构尺寸选择合适的散热器,并根据测试结果来调整散热器的结构。
缩短散热器的设计周期和成本,对项目的开发具有实际的意义。
散热器的种类主要分为铝型材散热器和插片式散热器,与插片式散热器相对比,铝型材散热器肋片和基板之间没有接触热阻,尺寸和种类繁多能满足不同产品应用场合的要求,在变频器中采用较多。
1变频器故障分级变频器在实际使用过程中发生的二类故障,对变频器造成的危害相对较大。
工作人员必须掌握正确的变频器二类故障的诊断和维修方法,才能保证变频器的正常稳定运行。
常见的变频器二类故障主要有速度故障、逆变器开关器件开路故障等几种。
变频器在运行过程中如果SSF发生了故障,就会导致变压器闭环系统开环而损坏变频器或其他相关设施,严重的还会造成人员伤亡等安全事故。
所以,工业企业在日常生产过程中,必须充分重视变频器二类故障诊断和分析工作。
工作人员在诊断变频器速度传感器故障时,应该根据变频器使用的实际情况,采取硬件检测法与软件诊断法相结合的方式,诊断和分析变频器发生的故障。
虽然使用硬件检测法可有效提升变频器二类故障的诊断速度,但是使用该方法不但大幅增加变频器的运行成本,而且只适用于电压输出类型速度传感器故障的检测,而无法进行气体类型传感器故障的检测。
高压变频器 散热方案
高压变频器散热方案
高压变频器是目前工业中应用广泛的电气设备之一。
然而,随着
功率的增加,高压变频器的散热问题越发重要。
散热不良会影响设备
性能、寿命等问题,因此,如何采用合理的散热方案,成为研制高压
变频器的一项重要课题。
首先,我们需要了解高压变频器散热的原因。
在高压变频器使用
过程中,由于能量转换的原因,会产生大量的热量,如果不能及时有
效地散热,就会造成设备内部温度过高,增加电子元件的损坏风险,
从而影响设备的稳定性和可靠性。
其次,针对高压变频器的散热问题,我们可以采取以下几种方案:第一,增加散热面积。
可以通过增大散热器的面积、添加散热片等方
式来增加散热器的散热面积,从而提高散热效率。
第二,增加风量。
可以增加风扇的转速、增加风口的数量等方式来增加风量,提高散热
效率。
第三,改善散热材料。
可以改用热导率高、传热系数大的散热
材料来改善散热效果。
例如,可以使用铝合金、铜等材料制作散热器,增加其散热效果。
最后,我们还可以采用一些技术手段来进一步提高高压变频器的
散热效率。
例如,可以采用风道导流技术、风扇重选技术等,通过技
术手段来提高散热效率,避免设备故障的发生。
综上所述,对于高压变频器的散热问题,我们可以通过增加散热
面积、增加风量、改善散热材料以及采用技术手段等方式来解决。
同
时,我们也需要在实际应用中进行详细的技术调试和优化,以达到最佳的散热效果。
相信,借助科技的力量,我们一定能够研制出更加稳定可靠的高压变频器。
变频器的热设计计算
变频器的散热计算与解决1. 如果要正确的使用变频器, 必须认真地考虑散热的问题. 变频器的故障率随温度升高而成指数的上升,使用寿命随温度升高而成指数的下降。
环境温度升高10 度,变频器平均使用寿命减半。
在变频器工作时,流过变频器的电流是很大的, 变频器产生的热量也是非常大的,不能忽视其发热所产生的影响。
通常,变频器安装在控制柜中。
我们要了解一台变频器的发热量大概是多少 . 可以用以下公式估算: 发热量的近似值=变频器容量(KW )×55 [W] 在这里, 如果变频器容量是以恒转矩负载为准的( 过流能力150% * 60s) ,如果变频器带有直流电抗器或交流电抗器, 并且也在柜子里面, 这时发热量会更大一些。
电抗器安装在变频器侧面或测上方比较好。
这时可以用估算: 变频器容量(KW )×60 [W] 。
因为各变频器厂家的硬件都差不多, 所以上式可以针对各品牌的产品 . 注意:如果有制动电阻的话,因为制动电阻的散热量很大,因此最好安装位置最好和变频器隔离开,如装在柜子上面或旁边等。
2. 怎样降低控制柜内的发热量? 当变频器安装在控制机柜中时,要考虑变频器发热值的问题。
根据机柜内产生热量值的增加,要适当地增加机柜的尺寸。
因此,要使控制机柜的尺寸尽量减小,就必须要使机柜中产生的热量值尽可能地减少。
如果在变频器安装时,把变频器的散热器部分放到控制机柜的外面,将会使变频器有70 %的发热量释放到控制机柜的外面。
由于大容量变频器有很大的发热量,所以对大容量变频器更加有效。
还可以用隔离板把本体和散热器隔开, 使散热器的散热不影响到变频器本体。
这样效果也很好。
注意:变频器散热设计中都是以垂直安装为基础的,横着放散热会变差的!3. 关于冷却风扇一般功率稍微大一点的变频器,都带有冷却风扇。
同时,也建议在控制柜上出风口安装冷却风扇。
进风口要加滤网以防止灰尘进入控制柜。
注意控制柜和变频器上的风扇都是要的,不能谁替代谁。
变频柜通风散热的设计方法
变频柜通风散热的设计方法1.确定通风方式:通风方式分为自然通风和强制通风两种。
自然通风是利用自然气流来实现散热,适用于小功率变频柜。
强制通风是通过风扇或其他通风设备来加强空气流动,适用于大功率变频柜。
2.布置变频柜:变频柜的布置要考虑通风道路的合理设置,以保证空气流动的畅通。
变频柜之间的间距要保持一定的安全距离,避免热量传导和干扰。
3.选择合适的通风设备:根据变频柜的功率、热量产生量和空间大小选择适当的通风设备。
常用的通风设备有风扇、散热器、散热片等。
风扇常用于强制通风,散热器和散热片则常用于自然通风。
4.确定通风口的位置和尺寸:通风口的位置应选择在变频柜上、下部或侧面,以便排出热空气。
通风口的尺寸要根据通风设备的风量和变频柜内部温度来确定,确保足够的通风流量。
5.设置风道和散热构件:在变频柜内部设置风道,引导冷空气流入变频器,同时将热空气排出。
可以安装散热板或导流板来增加热量传递效果,提高散热效率。
6.控制变频柜内部温度:在变频柜内部设置温度传感器和控制系统,监测和控制变频柜内部温度。
当温度超过设定值时,启动通风设备或采取其他措施进行散热。
7.定期维护和清洁:定期清洁变频柜的通风设备和散热器,去除灰尘和杂物,保持通风通道畅通,以确保散热效果和工作稳定性。
总之,变频柜通风散热的设计方法主要包括确定通风方式、布置变频柜、选择合适的通风设备、确定通风口的位置和尺寸、设置风道和散热构件、控制内部温度以及定期维护和清洁。
这些方法可以有效地降低变频柜的温度、提高散热效率,保证变频器的正常运行。
高压变频器散热与通风的设计.
高压变频器散热与通风的设计硬件2009-06-02 10:56 阅读52 评论1字号:大中小1、引言在电力、化工、煤矿、冶金等工业生产领域要求高压变频器有极高的可靠性。
影响高压变频器的可靠性指标有多项,其中在设计过程中其散热与通风是一个至关重要的环节。
目前高压变频器有高-低-高式、元件直接串联式、中点箝位多电平式、单元级联式等多种方式,一般来讲,上述各种方式的高压变频器,其效率一般可达95~97%;但由于设备功率大,一般为mw级,在正常工作时,仍要产生大量的热量。
为保证设备的正常工作,把大量的热量散发出去,优化散热与通风方案,进行合理的设计与计算,实现设备的高效散热,对于提高设备的可靠性是十分必要的。
高压变频器在正常工作时,热量来源主要是隔离变压器、电抗器、功率单元、控制系统等,其中作为主电路电子开关的功率器件的散热、功率单元的散热设计、及功率柜的散热与通风设计最为重要。
2、功率器件的散热设计通常对igbt或igct模块来说,其pn结不得超过125℃,封装外壳为85℃。
有研究表明,元器件温度波动超过±20℃,其失效率会增大8倍。
功率器件散热设计关乎整个设备的运行安全。
2.1 在进行功率器件散热设计时应注意的事项(1)选用耐热性和热稳定性好的元器件和材料,以提高其允许的工作温度;(2)减小设备(器件)内部的发热量。
为此,应多选用微功耗器件,如低耗损型igbt,并在电路设计中尽量减少发热元器件的数量,同时要优化器件的开关频率以减少发热量;(3)采用适当的散热方式与用适当的冷却方法,降低环境温度,加快散热速度。
以目前最常见的单元级联式高压变频器为例,对其中一个功率单元为例进行热设计。
功率器件采用igbt,其电路如图1所示。
2.2 损耗功率的估算在设备稳态运行时,功率单元内整流二极管、igbt、续流二极管总的功率损耗即为散热器的耗散功率。
因此热设计的第一步就是对上述器件的总功耗进行估算。
图1 功率单元电路图(1) igbt的功率损耗一般包括通态损耗、断态损耗、开通损耗、关断损耗和驱动损耗,在估算时主要考虑通态损耗、开通损耗与关断损耗;每一个igbt的通态损耗:每一个igbt的开关损耗:(2)对续流二极管来讲,主要估算它的通态损耗与关断损耗;通态损耗:关断损耗:(3)整流二极管在低频情况下的损耗功率主要为通态损耗,确定其通态功耗的简便方法是从制造厂给出的通态损耗功率与通态平均电流关系曲线直接查出。
高压变频调速系统散热方案介绍
22
风道+空气水冷器散热安装事例
23
五、风道+空调散热
此方式主要针对大功率系统,室外灰尘少且空气粉尘不含导电颗 粒。 此方式将变压器柜与功率模块柜用隔热板隔开,综合了风道与空 调两种散热的优点,并且可以充分利用移相隔离变压器H级绝缘 ( 180℃)的性能。我司移相隔离变压器允许温升110K,因此可 以运用在环境温度比较高的现场。 空调的制冷量可以按照系统发热量的一半来匹配。 此方式安装比较灵活,可以优选风道与空调类安装形式
26
密闭自循环散热装臵视图
27
后感
变频器散热是一件非常重要的事情,可能还有很多更合理的方法 需要我们大家去想、去实验、共同探讨。 关心变频器的散热就想关心我们自己身体体温一样,需要我们大 家向用户不断的询问、了解,让我们的用户知道它的重要性。
谢谢!
28
12
1)室内空调冷却方式
此方式主要运用在中小型系统散热上,如图所示:
13
2)空调集中冷却方式
此方式主要运用在中型系统散热上或者房子空间比较紧凑的现场, 如图所示:
14
三、空气水冷器散热
对于电厂、化工等行业有大量循环水或冷冻水的现场,宜采用空 气水冷器散热方式。空气水冷却系统(简称空冷器)是一种利用高 效、环保、节能的冷却系统,其应用技术在国内处于领先地位。 从变频器出来的热风,经过风道连接到内有固定水冷管的散热器 中,散热器中通过温度低于33℃的冷水,热风经过散热片后,将 热量传递给冷水,变成冷风从散热片吹出,热量被循环冷却水带 走,保证了变频器控制室内的温度恒定。其外形及原理如下图所 示:
2
一、加装风道散热
主要针对于现场环境清洁、空气中灰尘少、并且环境温度能够满 足设备运行温度要求的可采用风道散热设计 。 如果变频器柜顶风机距出风口较近(小于2.5米,中间无转折), 出风口可不加装辅助排风机;如果出风口的现场施工存在不便, 风道需有转折,则可以考虑加装风机强迫排风,排风机的排风量 必须不小于变频器柜顶风机的排风量。 注意事项:进风口面积必须足够大,防止室内形成负压,产生高 海拔效应,人为的降低设备系统容量。进风口必须加装方便拆卸 的防尘滤网,防尘滤网必须定期更换、冲洗。 风道材料:采用喷漆的冷轧钢板、白铁皮或者不锈钢。 进风口的下边沿一般在墙壁距地面0.5m~1.0m处。 风道散热的优缺点 :成本低,可靠性高,散热效果良好 ,可靠性 高;不能使用于现场比较脏,灰尘比较大的环境。
大功率变频器散热分析-民熔
大功率变频器散热-民熔变频柜变频器为商业和工业电机提供动力和控制,必须根据其设计和应用环境进行热保护。
变频器的主要优点是灵活的控制、平稳的启动和停机性能,以及在可变负载下运行的离心风机和泵所带来的显著节能。
大多数大功率变频器及其附属电子配件都被集成到电气机柜中。
变频器不但提高了系统效率,变频器本身的效率也非常高,损失只有2% 至4%。
然而,由于大功率变频器中电能转换很大,即使效率损失较低,也会导致数千瓦到数十千瓦废热的产生,必须设法将这些热量耗散掉。
在开放式风冷机柜中,要想排出这些热量很简单。
然而,在恶劣环境中,无法使用过滤风扇冷却或通过直接的空气流来冷却,外壳的热量管理就成为设计流程的重要组成部分。
研究策略,对于在恶劣环境中高效、被动且经济地冷却中、大功率密封外壳的变频器至关重要。
1、流通或密封开放式气流柜可让环境空气流通机柜,直接有效地冷却大功率模块。
不过,这种高效的冷却,可能会导致外部污染物进入外壳,通常使用风扇过滤系统,来过滤流入机柜的空气,从而最大限度地减少这些污染物。
过滤器有助于减少灰尘和碎片,但它们需要定期维护来清洁或更换过滤器。
密封外壳不允许外部空气进入机柜,而是用机柜内的空气来冷却电子产品,并通过热交换器将热量导出到环境空气中。
密封外壳可防止污垢、灰尘、湿度、盐雾和其它空气中的腐蚀性物质进入机柜,并影响电子元件的使用寿命。
这两种系统都适用于低功耗机柜。
然而,对于许多大功率变频器机柜来说,功耗水平高于空气冷却所能达到的水平。
低功率部件一般直接通过气流进行冷却,而较高功率的部件则通过设施冷却水、蒸汽压缩系统或泵送液体系统直接或间接冷却。
在这些系统中,大功率元件( 绝缘栅极双极晶体管、集成栅极换向晶闸管、硅控制整流器),通常连接到流体冷却冷板上。
然后,流体使用蒸汽压缩系统或通过液气热交换器,将热量排放到环境空气中。
无论哪种情况,所需的环境空气热交换器都可以布置在设施内外。
这些系统的主要缺点是将流体引入机柜和冷却液管线进出机柜所带来的挑战。
散热设计
以下资料主要是在网上搜集来的,加了点个人的理解,目的是将其作为自己在散热知识掌握程度的一个小结,希望对同行设计人员有个参考作用以18.5KW变频器举例"通常散热器的设计分为三步1:根据相关约束条件设计处轮廓图。
2:根据散热器的相关设计准则对散热器齿厚、齿的形状、齿间距、基板厚度进行优化。
3:进行校核计算"变频器发热主要是来自功率模块IGBT和整流桥,必须通过散热器导热,采用自然风冷或强迫风冷将热量散发出去。
“散热器冷却方式的判断对通风条件较好的场合:散热器表面的热流密度小于0.039W/cm2,可采用自然风冷。
对通风条件较恶劣的场合:散热器表面的热流密度小于0.024W/cm2,可采用自然风冷。
对通风条件较好的场合,散热器表面的热流密度大于0.039W/cm2而小于0.078W/cm2,必须采用强迫风冷。
对通风条件较恶劣的场合:散热器表面的热流密度大于0.024W/cm2而小于0.078W/cm2,必须采用强迫风冷”注:“”中的文字是转摘来的,不知道依据,也不太理解。
以下同,不再说明!“自然冷却散热器的设计方法考虑到自然冷却时温度边界层较厚,如果齿间距太小,两个齿的热边界层易交叉,影响齿表面的对流,所以一般情况下,建议自然冷却的散热器齿间距大于12mm,如果散热器齿高低于10mm,可按齿间距≥1.2倍齿高来确定散热器的齿间距,一般齿间距=<1/4的散热器高度”变频器首先按照模块放置要求,预先确定外形尺寸为宽*长*厚260*220*50先看看自然风冷,按照上述原则,选择镇江长虹散热器有限公司的DY-V系列散热器,见下图变频器发热量为额定功率P的5%-6%18.5kw变频器发热量计算Q热=6%P=6%*18.5=1.11(kw)=1110(W)P为变频器额定功率型材散热器表面积计算A=UL式中:U 散热器翅片横截面的周长,cmL 散热器的长度,cmA=2422.5209*220*10-2=5329.545(cm2)散热器表面的热流密度Q热/ A =1110/5329.545 =0.208 (W/ cm2)>= 0.039W/cm2计算出来的散热器表面的热流密度,远大于限制的0.039W/cm2,就算加长加厚散热器,增大表面积,也远远不够,所以不能采用自然风冷,要采用强迫风冷散热器的布置见下图也有将散热器热阻RTf来作为选择散热器的主要依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讨论] 变频器散热设计以下资料主要是在网上搜集来的,加了点个人的理解,目的是将其作为自己在散热知识掌握程度的一个小结,希望对同行设计人员有个参考作用,由于本人学识肤浅,更希望得到同行老师指点一二,我将受益不菲!!!下面开始了以变频器举例"通常散热器的设计分为三步1:根据相关约束条件设计处轮廓图。
2:根据散热器的相关设计准则对散热器齿厚、齿的形状、齿间距、基板厚度进行优化。
3:进行校核计算"变频器发热主要是来自功率模块IGBT和整流桥,必须通过散热器导热,采用自然风冷或强迫风冷将热量散发出去。
“散热器冷却方式的判断对通风条件较好的场合:散热器表面的热流密度小于cm2,可采用自然风冷。
对通风条件较恶劣的场合:散热器表面的热流密度小于cm2,可采用自然风冷。
对通风条件较好的场合,散热器表面的热流密度大于cm2而小于cm2,必须采用强迫风冷。
对通风条件较恶劣的场合:散热器表面的热流密度大于cm2而小于cm2,必须采用强迫风冷”注:“ ”中的文字是转摘来的,不知道依据,也不太理解。
以下同,不再说明!“自然冷却散热器的设计方法考虑到自然冷却时温度边界层较厚,如果齿间距太小,两个齿的热边界层易交叉,影响齿表面的对流,所以一般情况下,建议自然冷却的散热器齿间距大于12mm,如果散热器齿高低于10mm,可按齿间距≥倍齿高来确定散热器的齿间距,一般齿间距=<1/4的散热器高度”变频器首先按照模块放置要求,预先确定外形尺寸为宽*长*厚260*220*50先看看自然风冷,按照上述原则,选择镇江长虹散热器有限公司的DY-V系列散热器,见下图「该帖子被令狐不冲在2008-8-22 18:32:18 编辑过」变频器发热量为额定功率P的5%-6%变频器发热量计算Q热=6%P=6%*=(kw)=1110(W)P为变频器额定功率型材散热器表面积计算A=UL式中:U 散热器翅片横截面的周长,cmL 散热器的长度,cmA=*220*10-2=(cm2)散热器表面的热流密度Q热/ A =1110/ = (W/ cm2)>= cm2计算出来的散热器表面的热流密度,远大于限制的cm2,就算加长加厚散热器,增大表面积,也远远不够,所以不能采用自然风冷,要采用强迫风冷散热器的布置见下图“也有将散热器热阻RTf来作为选择散热器的主要依据。
Tj、RTj是半导体器件提供的参,P是耗散功率,RTc可以从热设计专业书籍中查到。
下面介绍一下散热器的选择。
(1)自然冷却散热器的选择首先按以下式子计算总热阻RT和散热器的热阻RTf,即:RT=(Tjmax-Ta)/PcRTf=RT-RTj-RT。
算出RT和RTf之后,可根据RTf和P来选择散热器。
选择时,根据所选散热RTf和P曲线,在横坐标上查出已知P,再查出与P对应的散热器的热阻R'Tf。
按照R'Tf≤RTf的原则选择合理的散热器即可。
(2)强迫风冷散热器的选择强迫风冷散热器在选择时应根据散热器的热阻RTf和风速来选择合适的散热器。
”又有见“1. 概念(1) 元件工作结温Tj:即元件允许的最高工作温度极限。
本参数由制造厂提供,或产品标准强制给出要求。
(2) 元件的损耗功率P:元件在工作时自身产生的平均稳态功率消耗,定义为平均有效值输出电流与平均有效值电压降的乘积。
(3) 耗散功率Q:特定散热结构的散热能力。
(4) 热阻R:热量在媒质之间传递时,单位功耗所产生的温升。
R = ΔT / Q2. 散热器的选配设环境温度为Ta。
散热器的配置目的,是必须保证它能将元件的热损耗有效地传导至周围环境,并使其热源_即结点的温度不超过Tj。
用公式表示为P < Q = ( Tj - Ta ) / R ①(当然,热量的消散除对流传导外,还可辐射。
在后面讨论)而热阻又主要由三部分组成:R = Rjc + Rcs + Rsa ②Rjc:结点至管壳的热阻;Rcs:管壳至散热器的热阻;Rsa:散热器至空气的热阻。
其中,Rjc与元件的工艺水平和结构有很大关系,由制造商给出。
Rcs与管壳和散热器之间的填隙介质(通常为空气)、接触面的粗糙度、平面度以及安装的压力等密切相关。
介质的导热性能越好,或者接触越紧密,则Rcs越小。
(参考值:我厂凸台元件的风冷安装,一般可考虑Rcs≈Rsa是散热器选择的重要参数。
它与材质、材料的形状和表面积、体积、以及空气流速等参量有关。
综合①和②,可得Rsa <〔( Tj - Ta ) / P〕- Rjc - Rcs ③上式③即散热器选配的基本原则。
一般散热器厂商应提供特定散热器材料的形状参数和热阻特性曲线,据此设计人员可计算出所需散热器的表面积、长度、重量,并进一步求得散热器的热阻值Rsa。
”此种方法没试过,因为具体到某种型号的散热器的性能曲线,不容量获得。
既已采用强迫风冷,就要选择风机“设定肋基温度为+80℃,用整机的高温环境温度+50℃作为进口空气温度,设定出口空气温度为+60℃,定性温度为tf =(60+50)/2=55℃强制风冷所带走的热量大约是总损耗功率的90%,其余10%主要靠电源外壳向外的热辐射以及自然对流散掉”通风量的计算Q热'=Cp*ρ*Q风*ΔtQ风=Q热*60/(Cp*ρ*Δt)式中:CP 空气的比热(J∕kg•℃)1005J/(kg•K);ρ 空气的密度(kg/m3)m3;Q风通风量(m3∕min);Q热' 风机带走的热量(W),Q热*90%;△t 空气出口与进口温差(℃)一般是10℃-15℃;不知道此依据是什么Q风=Q热'*60/(Cp*ρ*Δt)=90%*Q热*60/(1005**△t)=*Q热/△t=*1110/10= (m3/min)上式Q风=*Q热/△t变化一下Q风=*P机*60/△t=*P机/△t 式中P机为变频器额定功率,kw是我常用的公式,作为计算所需风量的依据,个人以为△t取10偏低,理论风量太大,实际上也没有测量过正好手头有一本科畅公司的风机说明书,上有风量计算公式,Q风=(t2-t1) (CFM)英尺3/min =(t2-t1) (m 3/min)举有一例:Air Flow=*1000/(59-20)=45(CFM) (发热量1000W,出口温度59℃,进口温度20℃)温差达39℃,到底应该是多少比较合适,晕!理论计算出来的风量值,考虑到风量损失及安全性等因素,要乘以倍,Q风‘>=风选用台湾建准KD2412PMBX_6A 风量120CFM= min根据冷却方案,确定了强迫风冷,重新选定散热器,选择无锡鸿祥散热器有限公司的插片式散热器,见图,轮廓尺寸是根据元器件的放置大致初定的,下面就要校核。
散热器的校核计算换热方程式Q热=·△t·ηf式中: Q热电子设备的耗热,Wh 总换热系数,W/m2·℃A 有效换热面积,m2△t 对流平均温差,℃ηf 换热效率这个公式是电子设备热设计标准手册上查到的,不会有错,就看怎么理解参数了。
但中国电子科技集团公司第14研究所夏爱清的那篇文章上的公式与之相比有点区别,摘录如下:以下简称夏文“Q0=hPLC·(t0-tf)设定ηf为肋片散热效率,则实际散热量为:Q= Q0·ηf=hPLC·△t·ηf式中,h为对流换热系数,W/m2·℃;P为肋片横截面周长,m;Lc为修正长度,m;△t为流体与壁面的温差,℃。
设定肋基温度为+80℃,用整机的高温环境温度+50℃作为进口空气温度,设定出口空气温度为+60℃,则:△t=80-50=30℃定性温度为tf =(60+50)/2=55℃”这里将△t=30℃,我理解为散热器铝片与环境温度差但不理解,肋片横截面周长*修正长度,得到的结果是什么面积呢?回到换热公式,先来求h,总换热系数h=λ.Nu/d式中:h 换热系数W/m2.℃λ 空气的换热系数W/m.℃(m·K)Nu 努谢尔特数d 当量直径,m当量直径d=4A/U式中:A 散热片中每两个肋片围成的面积,m2U 散热片中每两个肋片围成的周长,m从图3可以看出每两个肋片围成的尺寸是*79d=4A/U=4**2+=下面求努谢尔特数Nu要求出努谢尔特数Nu ,先要求出雷诺数ReRe=vd/ ν式中:Re 雷诺数v 空气流速m/sd 当量直径mν 运动粘度×10^-6m2/s空气流速v和风机相关,v=Q风*90%/AQ风风机的标称通风量考虑到侧隙和底缝及同风量不均匀等因素,所以按90%计算A 通风孔的面积这个我也有疑虑,是机箱出风口面积还是进风口的面积,又或是散热器的肋板风道面积呢?夏》文中,风机是贴着板壁放置,向里吹风,所以此面积是机箱板壁进风口的面积,我的这个没有板壁阻挡,只有安全罩,向外排风的,面积应该采用哪个呢,我这里采用机箱上部出风口的孔洞面积,120* 120 mm2v=Q风*90%/A=*90%/*=(m/min)=(m/s)Re=vd/ ν =*×10^-6=2259由2200<Re<10^4可知,空气在散热器内为强制紊流,则由下面的公式计算出努谢尔特数,即Nu=(Re^2/3-125)Pr^1/3[1+(d/L)^2/3(μ′/μ)^]式中:Re 雷诺数Pr 普郎特数查得Pr=d 当量直径mL 散热器长度m 初步定为220mmμ 动力粘度×10^-6kg/μ′ 为空气定性温度为+50°C时的动力粘度,×10^-6 kg/上式是《夏》文引用的。
在《电子设备手册》中,也提到到了努谢尔特数Nu计算,Re<2200 层流状态Nu=Re>10^4 紊流状态Nu=^偏没有2200<Re<10^4时的公式,郁闷!所以这里采用《夏》文中的公式。
Nu=(Re^2/3-125)Pr^1/3[1+(d/L)^2/3(μ′/μ)^]=(2259^2/3-125)*^1/3[1+^2/3**10^-6/*10^-6)^=现在可以计算对流换热系数了h=λ.Nu/d=*= (w/再来计算总的换热量Q热=·△t·ηfηf 按取值,也没什么依据,有按取的A = *79*220*40*10^-6=Q热=**30*=1594 (W)总散热量1594W,加上散热器其它表面的辐射散热和自然对流散热,完全能满足变频器的工作需要了。
校核完毕,有点乱,还需时间整理。