风机振动故障诊断及应用(新编版)
引风机的振动故障分析及处理
引风机的振动故障分析及处理引风机是工业生产中常见的设备,其主要作用是吸入空气并将其加速送入燃烧炉中,以维持燃烧的正常进行。
在使用过程中,引风机有可能会出现振动故障,这不仅会影响设备的正常运行,还会对生产造成不利影响。
对引风机的振动故障进行分析并及时处理,对于保障生产的顺利进行具有重要意义。
一、振动故障的原因分析(一)不平衡引风机叶轮不平衡是引起引风机振动的主要原因之一。
由于生产过程中的磨损和不平衡的装配,叶轮的不平衡会引起在高速旋转时的振动。
如果叶轮上积聚了灰尘或者其他杂物,也会造成不平衡,导致引风机产生振动。
(二)轴承故障在使用过程中,引风机轴承的润滑油可能会老化或者耗尽,导致轴承的摩擦增大,进而引起振动。
长时间的高速旋转会使轴承受到较大的压力,轴承零部件出现磨损也会引起振动。
(三)安装不当引风机的安装不当也是引起振动故障的原因之一。
比如机座安装不稳固、叶轮与外壳摩擦等都会引起不必要的振动。
(四)进风口设计不当引风机的进风口设计不当也可能引起振动故障。
如果进风口设计不当,可能会造成进风阻力过大,引风机的工作状态不稳定,从而引起振动。
二、振动故障的处理方法引风机叶轮不平衡是引起振动的主要原因之一,因此平衡校正是解决振动故障的主要手段。
在进行平衡校正时,首先需要对叶轮进行动平衡测试,确定不平衡的位置和程度,然后采用添加铅块或者切削方法进行校正。
对于因为轴承老化或者损坏导致的振动故障,需要及时更换轴承。
在更换轴承时,需要注意选用合适的轴承型号,并保证安装时周围环境干净、安静,以免对新轴承造成污染或损坏。
对于安装不当引起的振动故障,需要重新进行安装调整。
检查机座的稳固性,确保其与地面接触牢固,叶轮与外壳之间不发生摩擦。
三、振动故障的预防措施(一)定期检查为了及时发现引风机的振动故障,经常性的定期检查是很有必要的。
通过定期检查可以发现引风机的潜在问题,及时进行处理,避免振动故障对生产造成不利影响。
(二)保持清洁定期清洁引风机的叶轮和轴承是预防振动故障的有效手段。
风机振动故障诊断及处理
风机振动故障诊断及处理摘要:本文通过分析图谱来判断风机的工作状况及故障所在。
主要介绍风机等旋转机械的故障机理、风机状态监测与故障诊断技术的发展趋势。
关键词:风机;故障诊断;振动1 风机故障机理研究风机的故障常从振动状况方面体现出来,根据振动信号进行监测与诊断是目前风机设备维护管理的主要手段,经过多年的发展与完善,风机振动故障诊断已经形成了比较完备的理论与技术体系。
近年来,随着非线性理论的发展,尤其是信号处理、知识工程和计算智能等理论技术与故障诊断的融合渗透,使风机故障诊断的内容得到了进一步的丰富与充实。
发生故障的风机设备在运行中一般处于非线性振动状态,应用非线性动力学理论,针对电机组轴系存在的关键振动问题,建立了转子非线性动力学模型,从理论、试验和数值计算等方面,对各种故障因素影响下的动力学行为进行了综合分析,提出了对轴系振动故障进行综合治理的方案。
阐述了风机等旋转机械常见故障,如不平衡、不对中、弯曲、裂纹、松动、碰摩、喘振、油膜涡动、油膜振荡、旋转失速等故障的产生机理,以表格的形式总结出了各种故障与振动特征、敏感参数和故障原因之间的对应关系,给出了相应的治理措施。
总体来说,风机振动故障产生于4个方面:电机、风机本身、基础和风管。
其因果分析如图 1所示,其中由风机本身原因引起的故障占主导地位。
2 风机故障的诊断推理目前,故障诊断推理过程中采用的方法较多,按照它们隶属的学科体系,可以将其分为 3类:基于控制模型故障诊断、基于模式识别故障诊断和基于人工智能故障诊断。
(1)基于控制模型的故障诊断对于动态系统,若通过理论或实验方法能够建立模型,则系统参数或状态的变化可以直接反映设备物理系统或物理过程变化,为故障诊断提供依据。
此方法涉及模型建立、参数估计、状态估计和观测器应用等技术,其中,参数与状态估计技术是关键,需要系统的精确模型,在实际生产环境中,对于复杂的设备而言,该方法不是经济可行的。
(2)基于模式识别的故障诊断模式识别是对一系列过程或事件进行分类或描述,主要分为统计法和语言结构法两大类。
引风机振动故障的诊断与分析
引风机振动故障的诊断与分析摘要利用正向推理,在可能引起引风机振动故障的全部原因中,采取逐个排除的方法,找出引风机轴向振动故障所在,分析了振动的机理,并从相位出发,就如何对此类故障进行诊断与分析进行了讨论。
一、概述引风机是电厂三大风机之一,引风机运行中出现的各种问题,造成机组降低负荷,甚到被迫停机的现象时有发生,直接影响电厂的安全生产。
引风机运行中的故障特征有振动、温度、噪声、润滑油中的磨粒和形态、扭矩、扭振等,每个特征都从各自不同的角度反映运行的状态,但由于现场条件和测试手段所限,有些特征的提取和分析不易实现,有些特征反映的情况不敏感。
相对而言,引风机的振动信号中含有设备运行工况的丰富信息,这些信息在振动的相位和谱图中有所体现,从而可以推断出振动的原因。
Y4-2*60-IINO28.5F引风机为双吸、双支撑、齿式联轴器传动,其作用是将炉膛中产生的烟气排入在气中,其构成简图及测点布置如图1所示。
该引风机主要技术参数:转子质量4810kg,叶轮直径2850mm,转速740r/min,风量749186m3/h,介质温度145℃,介质密度:0.89㎏/m3;电机型号Y800-2-8,功率1400KW。
该引风机于2002年7月份按计划进行检修,由于自由端轴颈变细,在检修期间利用可赛新技术实施了修复,并更换了自由端轴承及轴承座,在7月19日试运时,振动严重超标,其振值和振动谱图分别如表1和图2所示。
二、振动分析1、振动特征(1)测点1、测点2在水平、垂直、轴向三个方向的振动均在30μm以下;(2)测点3、测点4在水平、垂直两个方向的振动均不足30μm,但轴向振动严重超标,最大振动为测点4,高达204μm;(3)振动数据再现性差,往往不同时间测到的同一工况的振动也有明显差别;(4)振动不断波动,瞬间的变化范围可达几时微米;(5)该引风机在检修以前,水平、垂直方向的振动很小,轴向振动偏大(134μm),但振值稳定,长时间变化不大。
引风机的振动故障分析及处理
引风机的振动故障分析及处理
引风机的振动故障通常是由于以下几个方面引起的:转子不平衡、机座不稳定、轴承
磨损、齿轮啮合不良等。
下面将对每个方面进行分析和处理。
首先是转子不平衡的问题。
转子不平衡会导致引风机产生明显的振动。
处理方法有两种。
一种是对转子进行动平衡处理,即在转子上添加一些平衡块以达到平衡状态;另一种
是对引风机进行静平衡处理,即通过调整机座位置或者增加支撑点来使整个引风机达到平
衡状态。
其次是机座不稳定的问题。
机座不稳定会导致引风机在运行过程中产生晃动和振动。
要解决这个问题,可以加强机座的支撑结构,增加支撑点或者加装减振器来提高机座的稳
定性。
第三是轴承磨损的问题。
轴承磨损会导致引风机产生不稳定的转动,产生振动和噪音。
处理方法是定期检查和维护轴承,及时更换磨损的轴承,保持引风机的正常运转。
最后是齿轮啮合不良的问题。
齿轮啮合不良会导致引风机在运行中产生振动和噪音。
要解决这个问题,首先应检查齿轮的安装是否正确,调整齿轮的啮合间隙,保证齿轮的正
常啮合;定期检查和维护齿轮,及时更换磨损的齿轮,以保证引风机的正常运转。
引风机的振动故障分析及处理
引风机的振动故障分析及处理引风机是工业生产中常用的设备之一,主要用于将空气引入设备或排出设备内的烟气。
在长期运行的过程中,引风机有可能发生振动故障,影响到正常运行效果。
本文将对引风机振动故障的分析及处理方法进行详细介绍。
引风机的振动故障多数是由以下原因引起的:1. 动平衡不良:引风机的风叶和轴承旋转不平衡会导致振动加剧,进而引起故障。
主要原因包括风叶安装不平衡和风叶磨损不对称等。
2. 轴承故障:轴承的损坏、轴承润滑不良、轴承过紧或过松都会导致引风机的振动故障。
3. 电机故障:如电机安装固定不牢、电机磁极对称性不好、电机绝缘老化等都可能导致引风机振动故障。
4. 设备松动:设备固定螺栓松动、连接件损坏等都可能引起引风机振动。
针对引风机的振动故障,可以通过以下方法进行处理:1. 动平衡校正:对于风叶不平衡或磨损不对称的情况,可以进行动平衡校正。
通过在风叶上加上配重块,使得风叶的质量分布均匀,减小振动。
2. 检查轴承:定期检查轴承的工作状态,如果发现轴承存在异常声响、温度过高等情况,及时更换轴承。
要保证轴承的润滑状态良好,定期添加润滑油。
3. 检查电机:定期检查电机的固定状态,确保电机安装稳固。
要注意电机的绝缘状况,如果发现绝缘老化,要及时更换绝缘件。
4. 检查设备松动:定期检查设备的固定螺栓和连接件,确保设备的连接紧固良好,避免因为设备松动引起的振动故障。
1. 定期检查维护:建立完善的定期检查维护制度,对引风机进行定期检查和保养,及时发现和处理潜在问题。
2. 合理使用:使用过程中要遵循使用规范,避免超负荷运行,减少对引风机的损伤。
3. 监测系统:安装振动监测系统,及时掌握引风机振动情况,发现异常振动并进行处理。
引风机的振动故障是影响引风机正常运行的一个重要问题,通过采取相应的分析和处理方法,可以有效地减少振动故障的发生,并提高引风机的正常运行效果。
建立完善的定期检查维护制度,合理使用设备,安装振动监测系统,也是减少振动故障的重要手段。
高压风机异常振动故障的分析诊断与处理
高压风机异常振动故障的分析诊断与处理摘要:安装高压风机,注意调试的关键点控制,可以有效预防风机异常震动,通过对风机的异常震动测试,可以积累高压风机异常振动故障的分析诊断与处理的经验。
关键词:高压风机;异常振动故障;诊断与处理1.前言在维护高压风机的时候,往往会遇到风机异常振动故障,通过安装过程中的经验,可以有效的诊断其异常震动的原因。
2.高压鼓风机安装关键点控制2.1建立安装基础高压鼓风机可以按照任意的角度进行安装,因此基础有很高要求,其尺寸、承受能力等都必须符合规定要求,通常情况下,安装基础的承受能力必须在高压鼓风机重量的3~5倍,确保基础底座的平整度,确保基础地面和地脚螺栓预留孔洞中的油污、碎石、泥土等都清理干净。
并且把防止垫铁部位的基础表面磨平2.2设定基准线当高压鼓风机到位以后,根据安装图纸和基础轴线以及标高线对设备基础进行放线,并找到设备的基础中心线和相应的安装标准,如果安装设备之间存在相互连接或者排列的设备,要划分到同一安装基准线上,确保安装的稳定性,避免在后期使用过程中,受到振动的影响而发生偏移等现象。
2.3卸车位移为便于高压鼓风机的运输和安装,促使鼓风机主机和发电机能临时固定在相同底座上,要采用20t左右的吊车,把高压鼓风机等设备从运输车辆上卸下,然后放置了相互平行的两根导轨上,并垫实导轨下部,避免受力不均匀导致风机底座发生变形,影响风机安装和使用,并在鼓风机房设置一个固定卸风机的位置,然后用10t葫芦倒链,把风机从导轨上拉入鼓风机房。
2.4高压鼓风机组装在鼓风机房设置10~15t的天车,方便设备高压鼓风机的安装、调试、后期维护保养。
但通常情况下,高压鼓风机的整体重量往往大于天车的起吊重量,所以必须进行分开吊装风。
风机的底座是由生产厂家提供的,在安装风机过程中,只要对底座找平就可以有效确保电机主轴和设备主轴在同一的水平线上。
风机基础要实现进行系统测验,确保各项指标都符合高压鼓风机安装要求才能进行安装。
引风机振动增大原因的诊断与处理
引风机振动增大原因的诊断与处理引风机振动增大的原因可以分为外部因素和内部因素两个方面。
外部因素包括风力、电机负载不平衡、基础不牢固等;内部因素包括轴偏心、轴承磨损、叶轮失衡等。
以下是一个关于引风机振动增大原因的诊断与处理的详细说明:一、外部因素的诊断与处理:1.风力:若引风机振动增大与风力有关,应通过监测风力变化与引风机振动变化的关系,确定是否风力引起振动增大。
如果是的话,可以采取增加防护罩、加固风道等方式来减小风力对引风机的影响。
2.电机负载不平衡:电机负载不平衡会导致振动增大,可以通过动平衡修正电机负载不平衡问题,或者更换电机。
3.基础不牢固:引风机的基础不牢固会导致振动增大,可以通过重新加固基础或者更换加固措施来解决。
二、内部因素的诊断与处理:1.轴偏心:引风机轴偏心会导致振动增大,可以通过测量轴偏心来诊断问题。
处理方法包括重新调整轴的位置或者更换轴。
2.轴承磨损:轴承磨损会导致引风机振动增大,可以通过检查轴承的磨损情况,如果磨损严重则需更换轴承。
3.叶轮失衡:叶轮失衡会导致引风机振动增大,可以通过动平衡来处理。
首先需要对叶轮进行动平衡测试,确定失衡情况,然后进行动平衡修正。
处理引风机振动增大问题的方法包括机械修复和预防措施两个方面。
机械修复主要是根据具体问题选择相应的处理方法,如重新安装轴、更换轴承、动平衡处理等。
预防措施主要是为了避免引风机振动增大问题的再次发生,包括定期检查设备状态、减少外部因素的影响、加强维护保养等。
总之,引风机振动增大的原因可以通过对外部因素和内部因素的诊断来确定,然后采取相应的处理方法来解决问题。
机械修复和预防措施是解决引风机振动增大问题的主要方法。
通过综合运用这些措施,可以有效降低引风机的振动,提高设备的稳定性和工作效率。
引风机的振动故障分析及处理
引风机的振动故障分析及处理1. 引言1.1 引言引风机作为电厂中非常重要的设备之一,其正常运行对于保障电厂的安全和稳定运行起着至关重要的作用。
引风机在运行过程中可能会出现振动故障,给电厂的正常运行带来不利影响。
对引风机的振动故障进行分析和处理具有重要意义。
本文将首先对引风机振动故障的原因进行深入分析,包括可能的机械问题、电气问题等方面。
我们将介绍不同的处理方法,帮助读者更好地理解如何应对振动故障。
接着,我们会列举引风机振动故障常见的表现,以便读者能够及时发现和识别这些问题。
我们还会提出一些振动故障的预防措施,帮助读者避免振动故障的发生。
我们会介绍一些引风机振动故障的修复技术,帮助读者在出现振动故障时能够及时修复。
通过本文的阐述,希望读者能够更全面地了解引风机振动故障的原因、处理方法以及预防与修复技术,从而为电厂的安全运行提供更加坚实的保障。
2. 正文2.1 振动故障的原因分析1. 设备不平衡: 引风机如果在运转过程中出现不平衡的情况,会导致振动增大,进而引起振动故障。
设备不平衡的原因可能是安装不当、零部件损坏或磨损等。
2. 轴承故障: 轴承是引风机重要的零部件,如果轴承损坏或磨损严重,会导致引风机的振动增大。
轴承故障可能是因为润滑不良、使用时间过长或维护不当等原因造成的。
3. 转子失衡: 引风机转子失衡会导致设备振动,转子失衡的原因可能是设备设计缺陷、制造质量不过关或使用条件恶劣等。
4. 风叶损坏: 引风机风叶损坏会导致不均匀的气流通过,在高速运转时可能会产生振动。
风叶损坏的原因可能是使用过程中的磨损、腐蚀或碰撞等。
5. 安装松动: 引风机在运行过程中,如果有安装的螺栓松动或固定件松动,会导致设备振动。
定期检查设备安装状态十分重要。
以上是引风机振动故障的原因分析,只有找准问题的根源,才能有针对性地制定解决方案。
在实际运行中,需要密切关注设备运行情况,及时发现问题并采取有效的措施进行处理,以避免产生严重的事故。
发电厂风机常见振动故障及处理
发电厂风机常见振动故障及处理摘要:人们对电能的需求越来越高,以电能推动生产力水平与社会经济发展,需要增强发电厂的发电标准,维持安全稳定的发电状态,风机作为发电厂运行的重要设施,影响着发电厂的运行水平,在实际风机作业中产生着运转问题,容易中断发电系统,造成企业经济损失,影响正常供电。
基于此,本文分析了发电厂风机的常见的振动故障,为快速处理风机振动问题,减小故障发生机率,提出几点建议。
关键词:发电厂风机、常见振动故障、处理一、发电机风机常见振动故障(一)质量不平衡发电厂的风机设备内部零件转子质量不均匀,导致发生运行振动,在长时间的振动情况下,使内部零件偏移加剧,风机难以正常运行,产生激振力作用,转子质量不平衡的原因有多重,风机叶片等磨损不均匀,存在局部腐蚀,在实际转动中主轴的高速旋转造成局部升温,长期负荷下,使主轴弯曲,叶片的强度不足,制作材料不符合规范,造成工作产生开裂或变形,各组成原件的连接不紧密。
根据质量不平衡的工作特征,研究问题发生的根源,一旦产生运行问题,及时增强风机的平衡性,改善振动敏感度,注意基频分量的主导地位,从整体角度考虑质量不平衡原因。
在多次的风机工作中,存在多次启动振动,与自身的风机特性有关,当振幅与相位保持在平均值之内,风机的质量平衡性相对稳定。
(二)轴承座的钢度与滚动轴承异常轴承多的钢度不达标,难以保证风机装置组合中的受力,造成工作零件的变形,进一步阻碍了滚动轴承的滚动,影响轴的受力,使轴与轴上的零件没有处于正确的位置。
风机运行的过程中经常出现基础灌浆不良、机械配合松动等异常情况,是刚度下降的基本表现,零件的组合产生松动,轴承间的间隙过大,叶片的工作运动会产生安全危险。
在频谱上伴有高斜波分量,垂直和轴向的振动过大,滚动轴承异常转动,轴心线与轴承内圈没有保持在同一水准线上,滚动轴承的表面产生凹凸不平或平面损坏,都会引起滚珠之间的相互撞击,带动风机的运行振动,在不同的损坏程度下,引起的振动幅度不一。
引风机的振动故障分析及处理
引风机的振动故障分析及处理引风机是供炉火热风的设备,通常用于工业炉窑和锅炉中。
引风机的振动故障可能导致设备损坏和生产中断,因此需要进行分析和处理。
引风机振动故障的分析方法可以分为以下几个步骤:1.观察振动情况:首先要观察引风机的振动情况。
可以使用振动测量仪器来测量引风机的振动幅度和频率。
观察振动的周期性、幅度大小和频率是否异常。
2.分析振动原因:根据振动情况,结合引风机的结构特点和工作环境,分析振动的原因。
可能的原因包括不平衡、不匀速、轴承故障、叶轮损坏等。
3.处理振动故障:根据分析的结果,采取相应的处理措施。
常见的处理方法包括:重新校正叶轮平衡;修复或更换叶轮;调整或更换轴承;检查电机和传动系统是否正常等。
在处理振动故障时,需要注意以下几点:1.安全措施:在处理振动故障之前,首先要确保设备停机,并进行相应的安全检查。
操作人员要穿戴好个人防护装备,避免受伤。
2.专业人员:处理振动故障需要一定的专业知识和技能,最好由专业人员来进行操作和维修,以确保处理的效果和质量。
3.预防措施:在处理完振动故障之后,还要加强设备的定期检查和维护工作,以预防类似的故障再次发生。
定期的润滑和保养工作,以及及时处理设备的异常情况,都有助于延长设备的寿命和提高工作效率。
4.记录和分析:在处理振动故障的过程中,要详细记录每一步的处理方法和结果。
对于重复发生的振动故障,可以通过分析记录的数据,找到故障的根本原因,以便后续的预防和改进工作。
引风机的振动故障分析和处理是一个复杂的过程,需要仔细观察和分析,并采取相应的处理措施。
在处理过程中,要注意安全和预防措施,以确保处理的效果和质量。
定期的维护和保养工作也是预防振动故障的重要手段。
风机振动故障的主要原因分析及一些有效的处理方法
风机由于运行条件恶劣,故障率较高,容易导致机组非计划停运或减负荷运行,影响正常生产。
所以加强对风机的维护和保养,特别是要迅速判断出风机运行中故障产生的原因,采取相应的必要措施就显得十分重要了。
文章结合生产实际对风机振动的故障原因做出了相应的分析。
风机振动是运行中常见的现象,只要在振动控制范围之内,不会造成太大的影响。
但是风机的振动超标后,会引起轴承座或电机轴承的损坏、电机地脚螺栓松动、风机机壳、叶片和风道损坏、电机烧损发热等故障,使风机工作性能降低,甚至导致根本无法工作。
严重的可能因振动造成事故,危害人身健康及工作环境。
公司曾发生过因风机振动大,叶轮与壳体发生摩擦,引起设备着火的事故案例,给公司带来了较大的经济损失。
所以查找风机振动超标的原因,并针对不同的现象分析原因采取恰当的处理办法,往往能起到事半功倍的效果。
公司长期用测振仪对风机振动进行测量,并记录数据,结合生产实际中出现的故障现象对风机的振动原因作出了如下总结,并提出了相应的处理措施。
一、风机轴承箱振动风机最常见的故障就是轴承箱振动,可以通过外部检测进行初步诊断。
轴承箱振动引起故障有迹可查,是一个振动由小变大,缓慢发生的过程。
公司采用测振仪定期对风机的轴承箱进行振动值检测,对比振动值,迅速做出正确分析和处理,提前对有可能发生故障的风机进行有计划的检修,保证了风机的安全平稳运行。
1. 转子质量不平衡引起的振动公司发生的风机轴承箱振动中,大多数是由于转子系统质量不平衡引起的。
造成转子质量不平衡的原因主要有:叶轮出现不均匀的磨损或腐蚀;叶轮表面存在不均匀的积灰或附着物;叶轮补焊后未做动平衡;叶轮上零件松动或连接件不紧固等。
转子不平衡引起的振动的特征,用测振仪测得数据显示:(1) 振动值径向较大,而轴向较小;(2) 振动值随转速上升而增大。
针对转子不平衡引起的振动我们制定了一系列的防范措施,由于公司使用的引风机主要是将焙烧炉室内产生的沥青烟气及时抽送出烟道,所以风机叶轮容易腐蚀,表面及其他部位空腔易粘灰,产生不均匀积灰或附着物,造成风机转子不平衡,引起风机振动。
风机振动故障原因分析及处理
风机振动故障原因分析及处理0 前言风机在水泥行业使用特别多,包括各种类型的风机,如高温风机、离心风机、鼓风机、罗茨风机、高压风机等,而这些风机在使用过程中,由于各方面的原因,致使风机振动加剧,致最后损坏,严重的还会造成重大的设备事故,给企业的安全管理、生产组织以及效益等带来较大影响。
下面就引起风机振动的故障原因、故障因素、处理办法,谈一点自己的看法。
1 引起风机振动的故障原因分析风机故障现象及原因,有其规律可循,一般来讲有以下几种:1)设计原因:风机的设计一般是根据风机的使用环境、温度、风量、风压、介质等来设计的,而有的企业并没有完全根据这些因素来选型,致使造成存在如下因素:风机设计不当,动态特性不良,运行时发生振动;结构不合理,应力集中;设计工作转速接近或落入临界转速区;热膨胀量计算不准,导致热态对中不良等。
2)制造原因:风机制造厂家对风机的质量要求也影响风机的运转,如:零部件加工制造不良,精度不够;零件材质不良,强度不够,制造缺陷;转子动平衡不符合技术要求等。
3)安装、维修原因:风机的安装精度要求对风机运转起着至关重要的作用,如安装精度未达到安装要求,对风机运行将起着破坏作用。
在风机安装过程中,就有如下影响因素,如:机械安装不当,零部件错位,预负荷大;轴系对中不良;机器几何参数(如配合间隙、过盈量及相对位置)调整不当;转子长期放置不当,改变了动平衡精度;未按规程检修,破坏了机器原有的配合性质和精度等。
4)操作运行原因:在风机使用过程中,对风机维护、保养的好坏,对风机的运行质量起着决定性作用。
如:工艺参数(如介质的温度、压力、流量、负荷等)偏离设计值,机器运行工况不正常;机器在超转速、超负荷下运行,改变了机器的工作特性;润滑或者冷却不良;转子局部损坏或结垢;启停机或升降速过程操作不当,热膨胀不均匀或在临界区停留时间过久等。
5)机器劣化原因:一般设备在使用时都有一定的年限,达到一定年限设备性能将恶化。
引风机的振动故障分析及处理
引风机的振动故障分析及处理引风机是工业生产中常用的通风设备,它通过产生气流来调节温度和湿度,以确保生产环境的舒适度和安全性。
在使用过程中,引风机可能会出现振动故障,这种故障不仅影响设备的工作效率,还可能导致设备损坏甚至安全事故。
对引风机的振动故障进行及时准确的分析和处理,对保障生产安全和设备正常运行至关重要。
一、引风机振动故障的原因1. 设备使用不当引风机在使用过程中,如果频繁启停或者在高速运行状态下突然停止,会导致叶轮和轴承等部件受到剧烈的冲击,从而产生振动故障。
2. 设备安装不当引风机在安装过程中,如果叶轮和轴承的安装位置不正确,或者叶轮与轴承之间的间隙过大或过小,都会导致设备的振动增大。
3. 设备零部件磨损引风机长时间运行后,叶轮、轴承、轴和壳体等零部件会因摩擦和磨损而导致振动故障。
4. 环境因素工作环境中的震动、振动和温度变化等因素,都会对引风机的振动产生影响,进而引起振动故障。
二、振动故障的表现1. 噪音增大引风机在正常工作时,一般会有一定的噪音,但如果振动故障严重,噪音将明显增大,甚至会出现异响。
2. 振动增大振动故障会导致引风机整体的振动增大,有时候可以通过触摸设备外壳来感受到明显的振动。
3. 能源消耗增加振动会导致引风机的能源消耗增加,这是因为振动会导致设备的工作效率降低,进而增加能源的消耗量。
4. 设备温升振动会使引风机部件之间的摩擦增大,导致设备温升加剧,甚至因为摩擦引起零部件损坏。
三、振动故障的处理方法1. 设备运行监测对引风机的振动和噪音进行定期监测,一旦发现异常情况,及时对设备进行检修。
2. 设备使用规范避免频繁启停操作,以及突然停止引风机在高速运行状态下,保证设备的正常工作状态。
3. 定期维护定期对引风机进行清洗、润滑、零部件更换等维护工作,延长设备的使用寿命。
5. 调整安装位置对于因设备安装不当导致的振动故障,及时调整叶轮和轴承的安装位置,减少振动的影响。
6. 更换零部件定期检查叶轮、轴承、轴和壳体等部件的磨损情况,及时更换磨损过大的零部件,避免振动故障的发生。
除尘风机振动故障诊断与处理
—166—故障维修摘..要:近年来国家陆续关停了部分环保不达标企业,生产对环保的要求越来越高。
对于工业企业来说,一个重要的环境污染源是粉尘,这在钢铁企业表现尤为突出。
本文针对某炼钢一次除尘风机振动原因以及动平衡失衡机理进行了分析,通过针对性改造,提高风机运行寿命一倍。
关键词:除尘风机;振动;原因分析;控制措施除尘风机振动故障诊断与处理魏慎亭 张中华 高怀录(石横特钢集团有限公司,山东 泰安 271612)1、除尘风机常见振动故障的类型及诊断1.1、不对中故障不对中故障是指转子轴线之间存在偏移或倾斜,不能光滑过度。
根据轴线之间的偏差状态,轴系不对中又具体分为平行不对中、角度不对中、平行角度组合不对中三种情况。
热态不对中,指的是轴系在运行状态下的不对中,并非是检修、安装时的不对中;冷态不对中,绝大多数是轴系不对中。
如果主要异常振动分量是二倍频,表明故障类型基本就是轴系热态不对中,同时也存在部件松动以及极少发生的转子出现横向裂纹等其它故障的可能性。
造成不对中的原因主要是轴承座的标高和左右位置不一致以及联轴器安装偏心。
根据理论分析和实践经验,诊断不对中故障的主要依据是振动频谱中2倍频分量的大小,振动与负荷的关系,轴向振动的大小及轴承座两侧振动的大小等。
1.2、不平衡故障转子不平衡的振动频率是工频,工频成分在所有情况下都存在,工频幅值几乎总是最大,应该在其发生异常增大的情况下才视为故障特征频率。
工频所对应的故障类型相对较多。
多数为不平衡故障,即突发性不平衡、渐发性不平衡、初始不平衡,以及轴弯曲等;不平衡是风机最常见的故障,引起不平衡的主要原因有制造和安装误差,转子和叶片的腐蚀、磨损、结垢和零部件的松动等。
1.3、转子碰摩故障转子碰摩故障是指旋转着的转子与静止件发生碰撞和摩擦的现象。
根据不同的分类方法,转子碰摩可分为径向碰摩和轴向碰摩,不同转速下的碰摩,不同部位的碰摩,不同严重程度的碰摩等。
转子碰摩是一个复杂的过程,摩擦对转子的直接影响就是对转子的转动附加了一个力矩,有可能使转速发生波动。
风机叶片振动信号处理方法在故障诊断中的应用
风机叶片振动信号处理方法在故障诊断中的应用随着工业技术的不断发展,风机作为重要的工业设备,在工业生产中扮演着关键的角色。
然而,由于长期运行和负荷变化等原因,风机叶片的振动问题经常出现,对风机的正常运行和安全性产生了一定的影响。
因此,研究叶片振动信号处理方法并将其应用于风机故障诊断变得尤为重要。
本文将系统介绍风机叶片振动信号处理方法在故障诊断中的应用,以提供一种可行的解决方案。
以下是本文的主要内容:一、风机叶片振动原因的分析风机叶片振动的原因可以归结为以下几个方面:风机失衡、叶片损坏、轴承故障等。
我们将分别分析这些原因,并加以解决。
1. 风机失衡风机在运行过程中,如果叶片的质量分布不均匀或安装不当,就会导致风机失衡问题。
失衡会引起叶片振动,并随着时间的推移越来越严重。
通过在风机旋转速度等参数的基础上进行振动信号的分析和处理,可以准确判断风机失衡的程度和原因,并及时采取修复措施。
2. 叶片损坏风机叶片由于长期受到气流的冲击和负荷的变化,可能会出现裂纹、断裂或损坏等问题。
这些叶片的损坏会导致振动信号的异常,通过对振动信号进行采样和处理,可以检测到叶片损坏的位置和程度,为维修提供重要的参考依据。
3. 轴承故障风机的轴承是风机正常运行的关键组件,如果轴承损坏或磨损严重,就会产生明显的振动信号。
通过对振动信号进行频谱分析和滤波处理,可以判断轴承的故障类型,并根据判断结果进行相应的维修或更换工作。
二、风机叶片振动信号处理方法针对风机叶片振动信号的处理,我们可以采用以下方法:1. 信号采集与传输首先,需要在风机叶片上安装加速度传感器等设备,用于采集振动信号。
然后,通过无线传输或有线传输等技术将采集到的振动信号传输到监测终端或计算机上,以供后续处理和分析。
2. 信号预处理对传输过来的振动信号进行预处理,包括滤波、滚动平均、去噪等。
这些预处理方法可以有效地去除信号中的噪声和杂乱信息,提取出有用的振动特征。
3. 信号特征提取与分析通过对预处理后的信号进行特征提取和分析,可以得到叶片振动的频率谱、幅值谱等特征参数。
发电厂一次风机异常振动故障诊断及处理
发电厂一次风机异常振动故障诊断及处理山西省朔州市 036011摘要:随着科技的发展与进步,电力企业制度改革的不断深化和发展,电力企业逐步由生产型向经营型转变,由高耗能企业向节约型企业发展。
为增加经济效益,节能减排,火电厂发展趋势更是趋向于大火电,即电厂机组数量多、容量大,各电厂由于风机振动故障导致降负荷现象时有发生,而引风机与一次风机是火电厂的主要辅助设备,其运行情况的好坏直接关系到锅炉能否安全稳定运行,而振动是影响风机正常运行的重要因素,克服和解决风机振动问题将有助于锅炉长期安全稳定运行。
关键词:风机;振动;故障诊断火力发电厂中拥有数量庞大的旋转设备,几乎每一台旋转设备都由各种类型电机驱动。
据某发电厂运行数据在满负荷运行的情况下,这些设备每年由于振动故障产生的经济损失占运行成本的 5%,其中汽轮发电机及其他核心设备的驱动电机等由于振动故障而引起的停机事故,不仅造成了巨大的经济损失,还对员工的人身安全产生了极大的威胁。
一、故障原因(1) 常规检查。
在进行故障分析之前需要针对该电机进行常规检查,以排除部分可能的故障原因。
①结构松动原因:在现场检测时首先对底脚螺栓、电机各零部件的连接螺栓进行了检查,确认其连接良好,排除结构松动原因;②风机原因:根据重新开机时的运行数据,风机没有喘振等情况出现,运行情况良好,自叶轮侧至联轴器侧的三个轴承的振动值分别为0.92 mm/s、1.37 mm/s、2.23 mm/s;较故障发生前的振动数据有一定上升,但幅度未超过运行标准,以上情况可以排除风机故障因素,同时判断风机振动升高是由于电机振动引起。
③轴承系统原因:根据该电机轴瓦拆检和研磨的测量记录,转子与轴瓦之间的间隙约为0.24 mm,重新开机运行时使用位移传感器测得轴承位置的相对轴位移约为0.105 mm,占间隙比例约为 43.75%;轴承温度约为66 ℃,且运行过程中轴承无异响,油路及其冷却管路均正常运行;以上情况表明轴承运行情况良好,温升可控,对轴承及润滑冷却原因予以排除。
引风机常见振动故障诊断分析及处理办法
引风机常见振动故障诊断分析及处理办法摘要:引风机的正常运行在发电厂的生产中是极为重要的,它关系到工厂的顺利生产,如果引风机发生故障,轻至损害公共财产安全,严重的甚至会引发人身伤害事故。
从实际设备管理经验来看,风机振动数值往往是风机稳定运行的关键指标,通过定期测量振动数值并记录,并对数值进行汇总分析,能够判断设备劣化趋势,从而择机检修消除隐患能够保证风机长期顺稳运行。
因此,分析引风机产生振动超差的常见原因,并找出相应的解决办法,对保证引风机的正常运行具有重要意义。
关键词:引风机;振动故障;分析;处理1、引风机振动故障分析1.1 轴承磨损老化轴承老化磨损是引风机振动超差的一个常见原因。
风机连续运行一段时间后,引风机轴承的间隙会逐渐变大。
风机振动包括轴承的水平、垂直及轴向振动。
从现场经验来看,轴承间隙变大会使轴承的轴向振动增加,建议风机装机后测量一下轴承安装游隙,待设备振动值超差时再次拆检风机轴承游隙,两次数值进行比对,若游隙明显增大,判定风机轴承老化的原因较大,需要更换轴承处理。
风机振动检测可以通过轴承在线振动测量装置,检测轴承振动数值的大小。
检测方法:根据待测机器的各种参数在软件中建立数据库,将数据库导入便携式振动数据采集仪,采集现场数据后再导入软件进行分析。
测点位置和方向:测点选在与轴承座联接刚度较高的地方或箱体上,尽可能多的采集轴承外圈本身的振动信号为原则,如需定期巡检,每次测点位置要一致,采集的数据才具有可比性;传感器尽可能布置在载荷密度大的地方,以保证获取尽可能大的轴承本身振动信号。
利用振动分析软件同时结合振动频率的分布特点推断找到故障具体点位,比如轴承保持架或者滚动体缺陷。
1.2 主轴和叶轮之间配合间隙增大引风机主轴与叶轮之间配合间隙过大也会造成风机振动超差,主要原因是叶轮在制作加工过程中加工精度会有误差,轴头出现椭圆状,导致配合接触面不够,原有的面接触变成了点接触或线接触。
另外,设备检修时检修班组人员对设备检修期间为便于现场装配会用细砂纸打磨主轴叶轮安装位,打磨后导致主轴与叶轮之间过度配合间隙过大。
关于电厂引风机振动故障诊断及处理
关于电厂引风机振动故障诊断及处理摘要:现阶段我国电力的主要来源仍是发电厂,而发电厂中重要的组成部分之一就是引风机。
倘若引风机出现故障,会影响电厂相应发电机组的发电效率,故障严重的会导致发电机组停止运行,对电厂的经济效应造成影响,严重还将影响区域内的电量供应,而常见的引风机故障就是振动故障,本文就引风机振动故障,对分析工具的选择、故障产生原因、故障问题的处理以及振动故障处理后常用的动平衡方法以及国内外研究趋势水平,四个方面进行分析,希望能够对相关人员有所帮助。
关键词:引风机;振动故障;故障分析引言:引风机是电厂发电机组锅炉上的重要部件,振动故障是其常见的问题之一,因其所处的环境较为恶劣,造成它的故障率较高,据统计,引风机的故障率为2次/年,而且引风机振动故障诊断过程较为复杂,维修时间较长,对正常的生产易造成较大影响,若振动故障酿成事故,会造成一些严重的后果,相信通过本文的了解,发电厂的相关从业人员能够获得一定的收获。
一、引风机振动分析工具的选择目前常用的引风机振动的分析工具为DPI500数据采集仪,这是一种能够对引风机进行振动监测的分析工具,根据其采集到的振动信号,再通过系统软件进行相关数据分析,从而得到相关的图谱,然后对这些图谱进行专业的分析,以确定振动源。
但是这些图谱数据还不能确定振动源是出自引风机还是电机,因此还需进行单体试车,以确定振动源,从而进一步确定故障位置,以便下一步维修工作的进行。
(引风机振动检测)二、引风机振动故障产生的原因(一)引风机叶轮磨损问题产生的振动故障任何机器在使用过程中,都要面临磨损的问题,这是无法改变的事情,不过近几年随着材料的不断发展,磨损问题也逐渐得到改善,但是引风机叶轮作为常用的零部件,其材料仍以金属为主,而且很多厂商为控制成本,所采购的引风机质量较低,叶轮磨损的问题也就更加严重。
当引风机中的叶轮因磨损而产生不平衡时,就会引发振动故障,初时,叶轮磨损较轻微,振动也相对轻微,随着磨损加重,不平衡的状况也会加重,振动状况呈现上升状态。
分析风机振动判断及处理方法
分析风机振动判断及处理方法风机是电站的重要辅机,风机出现故障或事故时,将引起发电机组降低出力或停运,造成发电量损失。
而电站风机运行中出现最多、影响最大的就是振动,因此,当振动故障出现时,尤其是在故障预兆期内,迅速作出正确的诊断,具有重要的意义。
简易诊断是根据设备的振动或其他状态信息,不用昂贵的仪器,通常运用普通的测振仪,自制的听针,通过听、看、摸、闻等方式,判断一般风机振动故障的原因。
文中所述振动基于电厂离心式送风机、引风机和排粉机。
1 轴承座振动1.1 转子质量不平衡引起的振动在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。
造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈);机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。
转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50%工作转速。
1.2 动静部分之间碰摩引起的振动如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装置之间碰摩。
其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动;1.3 滚动轴承异常引起的振动1.3.1 轴承装配不良的振动如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。
其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。
1.3.2 滚动轴承表面损坏的振动滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 安全技术 )
单位:_________________________
姓名:_________________________
日期:_________________________
精品文档 / Word文档 / 文字可改
风机振动故障诊断及应用(新编
版)
Technical safety means that the pursuit of technology should also include ensuring that people
make mistakes
风机振动故障诊断及应用(新编版)
针对承钢二高线风冷风机因剧烈振动导致的故障停机情况,采用现场检测风机波形及频谱的方法,对风机进行了状态检测和故障诊断,在排除了轴承、联轴器同轴度问题等因素后,认为故障原因为风机主要由于失衡及机械松动导致振动幅值高。
风机振动引起原因
风机的振动与很多因素有关,主要有机械、气流和润滑油等三方面。
1.1机械方面的振动
1.1.1转子不平衡引起的振动
由原始制造误差或安装不均匀导致的质量不平衡;转子的弯曲变形、转子部件粘连污垢或转子部件的不均匀磨损等。
1.1.2系统安装误差引起的振动
安装时原动机与工作机的连接不对中;轴瓦偏斜或不同心;在运行中由于原动机和工作机的温升不同造成的热不对中等。
1.1.3动、静部件间的相碰或摩擦引起的振动
转子与静止发生摩擦有两种情况:一种是转子在涡动过程中轴径或转子外缘与静止件接触而引起的径向摩擦;另一种是轴向与静止件接触而引起的轴向摩擦。
1.1.4轴承间隙或轴向不当引起的机组振动。
1.1.5设备存在严重松动,轴破裂、轴承损坏引起的振动。
1.1.6共振引起的机组振动
1.2工作介质引起的振动
1.2.1气流激振力造成的机组振动
进入机组的气流压力、流量的变化引起的工作状态的改变。
1.2.2气流对叶片的冲击和腐蚀造成的机组振动
气流中粉尘浓度不均,使转子受力不稳定;气流对叶片的腐蚀使转子不平衡。
这些振动,有些是由随机因素造成的,有些与机组故障有直接关系。
1.3润滑系统造成的机组振动
供油系统的动态特性引起轴承各种形式的振动,油膜涡动和油膜震荡也可以引起机组振动。
风机技术参数
2.1机组技术参数及测点
风冷为双吸式叶轮,叶轮直径1.25米,叶轮单重1.25t,驱动电机450kW。
风机正常运行转速1200rpm。
风机正常振动范围在2.0mm/s。
现场测量与实例分析
频率诊断间隔(频率贴近度、容忍度)设置:1×Δf=0.25Hz;
风机主轴转速实际测量为600r/min,转动工频为600r/min/60=10HZ
风机轴承型式:滚动轴承
3.1设备名称:二高线风机设备功率:450测点名称:水平测点编号:006
采集时间:2014\04\18\15:02:09采样点数:n=1024分析频率:
fh=200Hz;频率分辨率:Δf=0.5fh/(n/2.56)=0.25Hz;探头灵敏度:v=0.009200mm/s2
;峰值:Xp=69.51925mm/s;平均值:Xav=35.00643mm/s;有效值:Xrms=39.61809mm/s脉冲指标:If=24.67223;峭度指标:Kv=1.63804;
前6个幅值最大的频率分量及其幅值见下表:
序号
频率(Hz)
幅值(mm/s)
1
10
69.51925
2
20
7.42185
3
40
2.77522
4
80
2.66355
5
60
2.27345
6
70
2.15489
频率诊断间隔(频率贴近度、容忍度)设置:1×Δf=0.25Hz;
风机主轴转速实际测量为600r/min,转动工频为600r/min/60=10HZ
风机轴承型式:滚动轴承
3.2频谱分析及处理
首先针对风机类型,先对轴承进行现场振动诊断,利用测量加速度,分析频率为20000HZ,没有发现异常频率出现,排除了轴承问题引起的振动。
其次是利用测量速度,分析频率从1000HZ—200HZ 逐步分析。
根据图1时域波形图及频谱图可以看出,存在2—9倍的倍频分量,时域波形杂乱,有不稳定的大冲击冲击信号,有明显的不稳定的非周期信号。
诊断结论为机械松动。
根据图1域波形图及频谱图可以看出,频谱图中基频有稳定的高峰,谐波能量集中在基频,其他的倍频振幅较小,振动的时域波形图中为正弦波,水平方向振动大,诊断结论为不平衡。
故障处理建议:
①清洗叶轮,降低10HZ基频。
②怀疑地脚松动情况,检查风机地脚螺栓、轴承座地脚螺栓松动情况。
③检查地脚后,重新对联轴器进行找正,紧固地脚及轴承螺栓。
现场对轴承、联轴器同轴度进行逐步排除检查后,发现叶轮由
于粘污泥过多造成风机振动,由于没有及时清理叶轮,振动量不断增加,导致地脚螺栓松动,最终导致振动量过大停车,经过对叶轮的清洗,地脚螺栓紧固处理后,试车1200r/min,振幅由原来的35.00643mm/s降至1.8mm/s,达到了使用标准。
云博创意设计
MzYunBo Creative Design Co., Ltd.。