加热炉出口温度与炉膛温度串级控制系统设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章系统分析与控制方案的确立

1.系统分析

图1.1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。

被加热物料

图1.1加热炉出口温度系统

由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。

2.串级控制系统的设计

加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,以加热炉出口温度为主变量,选择滞后较小的炉膛温度为副变量,构成炉出口温度与炉膛温度的串级控制系统有效地提高控制质量,以满足工业生产的要求,系统的串级控制结构图如图1.2所示。

图1.2加热炉出口温度串级控制系统结构图

串级控制系统的工作过程,就是指在扰动作用下,引起主、副变量偏离设定值,由主、副调节器通过控制作用克服扰动,使系统恢复到新的稳定状态的过渡过程。由加热炉出口温度串级控制系统结构图可绘制出其结构方框图,如图1.3所示。

主控制器副控制器调节阀炉膛出口温度

副检测、变送仪表

主检测、变送仪表

图1.3 加热炉出口温度串级控制系统结构方框图

(1) 主被控参数的选择

应选择被控过程中能直接反映生产过程中的产品产量和质量,又易于测量的参数。在加热炉出口温度与炉膛温度的串级控制系统中加热炉出口温度为系统的主被控参数,因为加热炉出口温度是整个控制作用的关键,要求出口物料温度维持在某给定值上下。如果其调节欠妥当,会造成整个系统控制设计的失败。(2) 副被控制参数的选择

从整个系统来看,加热炉的炉膛温度虽然不是我们要控制的直接目标,但是炉膛温度会很大程度上影响出口物料的温度,因此我们选择炉膛温度为副被控参数。

(3) 控制器的选择

主控制器的选择:主被控变量是工艺操作的主要指标(温度),允许波动的范围很小,一般要求无余差,主控制器应选PI控制规律。

副被控变量的设置是为了保证主被控变量的控制质量,提高系统的反应速

度,提高控制质量,可以允许在一定范围内变化,允许有余差,但是副被控对象中含有延时环节,因此副控制器要选PI控制规律。

第二章控制系统仿真

通过MATLAB 中的SIMULINK 工具箱可以动态的模拟所的构造系统的响应曲线,以控制框图代替了程序的编写,只需要选择合适仿真设备,添加传递函数,设置仿真参数。

下面根据前文的分析的模型对串级控制系统进行仿真,以模拟实际中的阶跃响应曲线,考察串级系统的设计方案是否合理。 取主被控制对象的传递函数为11()(121)

G s S =+,副被控对象的传递函数为21()41

s G s e S τ-=+,纯滞后时间τ=8s ,反馈环节增益为1。主调节器选择比例积分控制规律(PI),副调节器选择比例积分控制率(PI)。

1. 阶跃响应性能

在时间为0时刻对不加入副回路的系统加入大小为1的阶跃信号,设置主控制器的PI 参数为KP=O.55,KI=0.06,观察阶跃响应曲线。系统的SIMULINK 仿真框图和MATLAB 仿真曲线图如图2.1和图2.2所示。

图2.1 不加副回路的SIMULINK 仿真框图

图2.2 不加副回路MATLAB仿真曲线图

在时间为0时刻对加入副回路的系统加入大小为1的阶跃信号,在主控制器的PI参数为KP=0.55,KI=0.06的基础上,设置副控制器的PI参数为KP=O.65,KI=0.15,观察阶跃响应曲线。系统的SIMULINK仿真框图和MATLAB仿真曲线图如图2.3和图2.4所示。

图2.3 加入副回路的SIMULINK仿真框图

图2.4 加入副回路的MATLAB仿真曲线图

由2.2和2.4两图对比可见,引入副回路的串级控制系统的动态特性比不加入副回路的控制系统有了很大的改善,提高了系统的工作频率,对被控对象的调节能力变得更强。

2.抗干扰性能

对不加入副回路的系统,250S时,在副被控制对象上加上单位阶跃的干扰信号。系统的SIMULINK仿真框图和MATLAB仿真曲线图如图2.5和图2.6所示。

图2.5 不加副回路,250S时在副被控对象上加入单位阶跃干扰信号的SIMULINK

仿真框图

图2.6 不加副回路,250S时在副被控对象上加入单位阶跃干扰信号的MATLAB

仿真曲线图

对不加入副回路的系统,250S时,在主被控制对象上加上单位阶跃的干扰信号。系统的SIMULINK仿真框图和MATLAB仿真曲线图如图2.7和图2.8所示。

图2.7 不加副回路,250S时在主被控对象上加入单位阶跃干扰信号的SIMULINK

仿真框图

图2.8 不加副回路,250S时在主被控对象上加入单位阶跃干扰信号的MATLAB

仿真曲线图

对加入副回路的系统,250S时,在副被控制对象上加上单位阶跃的干扰信号。系统的SIMULINK仿真框图和MATLAB仿真曲线图如图2.9和图2.10所示。

图2.9 加入副回路,250S时在副被控对象上加入单位阶跃干扰信号的SIMULINK

仿真框图

相关文档
最新文档