加热炉出口温度与炉膛温度串级控制系统设计
管式加热炉温度-流量串级控制系统的设计

管式加热炉温度-流量串级控制系统的设计1方案选定管式加热炉是炼油、化工生产中的重要装置之一,它的任务是把原料油加热到一定温度,以保证下道工序的顺利进行。
因此,常选原料油出口温度1tθ()为被控参数、燃料流量为控制变量,构成如图1-1所示的温度控制系统,控制系统框图如图1-2所示。
影响原料油出口温度1tθ()的干扰有原料油流量1()f t、原料油入口温度2()f t、燃料压力3()f t、燃料压力4()f t等。
该系统根据原料油出口温度1tθ()变化来控制燃料阀门开度,通过改变燃料流量将原油出口温度控制在规定的数值上,是一个简单控制系统。
图1-1 管式加热炉出口单回路温度控制系统图1-2 管式加热炉出口温度单回路控制系统框图由图1-1可知,当燃料压力或燃料热值变化时,先影响炉膛温度,然后通过传热过程逐渐影响原料油的出口温度。
从燃料流量变化经过三个容量后,才引起原料油出口温度变化,这个通道时间常数很大,约有15min ,反应缓慢。
而温度调节器1T C 是根据原料油的出口温度1()t θ与设定值的偏差进行控制。
当燃料部分出现干扰后,图1-1所示的控制系统并不能及时产生控制作用,克服干扰对被控参数1()t θ的影响,控制质量差。
当生产工艺对原料油出口温度1()t θ要求严格时,上述简单控制系统很难满足要求。
燃料在炉膛燃烧后,首先引起炉膛温度2()t θ变化,再通过炉膛与原料油的温差将热量传给原料油,中间还要经过原料油管道管壁。
显然,燃料量变化或燃料热值变化,首先使炉膛温度发生改变。
如果以炉膛温度作为被控参数组成单回路控制系统,会使控制通道容量滞后减少,时间常数约为3min ,对来自燃料的干扰3()f t 、4()f t 的控制作用比较及时,对应的控制系统如图1-3所示。
系统框图如图1-4。
但问题是炉膛温度2()t θ毕竟不能真正代表原料油出口温度1()t θ,即使炉膛温度恒定,原料油本身的流量或入口温度变化仍会影响原料油出口温度,图1-3 管式加热炉炉膛温度控制系统这是因为来自原料油的干扰1()f t 、2()f t 并没有包含在图1-4所示的控制系统(反馈回路)之内,控制系统不能克服1()f t 、2()f t 对原料油出口温度的影响,控制效果仍达不到生产工艺要求。
加热炉出口温度与燃料油压力串级控制系统

项目三 串级控制系统
串级控制系统
内容提要
本项目讲述以提高系统控制质量为目的的串 级控制系统。主要介绍了串级控制系统的组成原 理与结构,系统特点,应用范围、串级控制方案 的设计原则,最后介绍了串级控制系统的投运步 骤和参数整定方法。
项目三 串级控制系统
在简单反馈回路中增加了计算环节、控制环 节或其他环节的控制系统统称为复杂控制系统。 复杂控制系统的种类较多,按其所满足的控制要 求可分为两大类:
从上述分析中可以看出,在串级控制系统中,由于引入了一 个副回路,因而能及早克服从副回路进入的二次扰动对主变量的 影响,又能保证主变量在其他扰动(一次扰动)作用下能及时加 以控制,因此能大大提高系统的控制质量,以满足生产的要求。
项目三 串级控制系统
3.2 串级控制系统的特点
从总体来看,串级控制系统仍然是一个定值控制系统。 但是和简单控制系统相比,串级控制系统在结构上增加了一 个与之相连的副回路,因此具有很多特点,如下所述。
图3.3 加热炉温度串级控制系统方框图
项目三 串级控制系统
3.1.2 串级控制系统的结构
1.方框图 串级控制系统是一种常用的复杂控制系统,它是根据系统
结构命名的。串级控制系统由两个控制器串联连接组成,其中一 个控制器的输出作为另一个控制器的设定值。 如图3.4所示,为串级控制系统的通用原理方框图。由该图 可以看出,串级控制系统在结构上具有以下特征: (1)将原被控对象分解为两个串联的被控对象; (2)中间变量为副被控变量,称为副控制系统; (3)以原对象的输出信号为主被控变量,构成一个主控制系 统,称为主控制系统、主回路或主环; (4)主控制系统中控制器的输出信号作为副控制系统控制器 的设定值; (5)主回路是定值控制系统,副回路是随动控制系统。
课程设计--加热炉温度串级控制系统(设计部分)

加热炉温度串级控制系统设计摘要:生产自动控制过程中 ,随着工艺要求 ,安全、经济生产不断提高的情况下 ,简单、常规的控制已不能适应现代化生产。
传统的单回路控制系统很难使系统完全抗干扰。
串级控制系统具备较好的抗干扰能力、快速性、适应性和控制质量,因此在复杂的过程控制工业中得到了广泛的应用.对串级控制系统的特点和主副回路设计进行了详述,设计了加热炉串级控制系统,并将基于MATLAB的增量式PID算法应用在控制系统中.结合基于计算机控制的PID参数整定方法实现串级控制,控制结果表明系统具有优良的控制精度和稳定性.关键词:串级控制干扰主回路副回路Abstract:Automatic control of production process, with the technical requirements, security, economic production rising cases, simple, conventional control can not meet the modern production. The traditional single-loop control system is difficult to make the system completely anti-interference. Cascade control system with good anti-jamming capability, rapidity, flexibility and quality control, and therefore a complex process control industry has been widely used. Cascade co ntrol system of the characteristics and the main and sub-loop design was elaborate, designed cascade control system, furnace, and MATLA B-based incremental PID algorithm is applied in the control system. Combination of computer-based control method to achieve PID parameter tuning cascade control, control results show that the system has excellent control accuracy and stabilityKeywords:Cascade control, interference, the main circuit, the Deputy loop目录1.前言 (2)2、整体方案设计 (3)2.1方案比较 (3)2.2方案论证 (5)2.3方案选择 (5)3、串级控制系统的特点 (6)4. 温度控制系统的分析与设计 (7)4.1控制对象的特性 (7)4.2主回路的设计 (8)4.3副回路的选择 (8)4.4主、副调节器规律的选择 (8)4.5主、副调节器正反作用方式的确定 (8)5、控制器参数的工程整定 (10)6 、MATLAB系统仿真 (10)6.1系统仿真图 (11)6.2副回路的整定 (12)6.3主回路的整定 (14)7.设计总结 (16)【参考文献】 (16)1.前言加热炉是炼油、化工生产中的重要装置之一。
串级控制

串级控制系统-----两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。
例:加热炉出口温度与炉膛温度串级控制系统1. 基本概念即组成结构串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。
前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。
整个系统包括两个控制回路,主回路和副回路。
副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。
一次扰动:作用在主被控过程上的,而不包括在副回路范围内的扰动。
二次扰动:作用在副被控过程上的,即包括在副回路范围内的扰动。
2. 串级控制系统的工作过程当扰动发生时,破坏了稳定状态,调节器进行工作。
根据扰动施加点的位置不同,分种情况进行分析:* 1)扰动作用于副回路* 2)扰动作用于主过程* 3)扰动同时作用于副回路和主过程分析可以看到:在串级控制系统中,由于引入了一个副回路,不仅能及早克服进入副回路的扰动,而且又能改善过程特性。
副调节器具有“粗调”的作用,主调节器具有“细调”的作用,从而使其控制品质得到进一步提高。
3. 系统特点及分析* 改善了过程的动态特性,提高了系统控制质量。
* 能迅速克服进入副回路的二次扰动。
* 提高了系统的工作频率。
* 对负荷变化的适应性较强4. 工程应用场合* 应用于容量滞后较大的过程* 应用于纯时延较大的过程* 应用于扰动变化激烈而且幅度大的过程* 应用于参数互相关联的过程* 应用于非线性过程5. 系统设计* 主参数的选择和主回路的设计* 副参数的选择和副回路的设计* 控制系统控制参数的选择* 串级控制系统主、副调节器控制规律的选择* 串级控制系统主、副调节器正、反作用方式的确定编辑本段串级控制系统的设计1. 主回路的设计串级控制系统的主回路是定值控制,其设计单回路控制系统的设计类似,设计过程可以按照简单控制系统设计原则进行。
宋彤《过程控制工程》3 串级控制系统

串级控制系统方框图
主回路:定值控制 给定值为常数 R1(s) =count 副回路:随动控制 给定值是主控制器输出 R2(s)=u1(s) 如图中压力控制器的给定值是温度控制器输出 值,副参数跟随给定值(主控制器输出)变动而变动。
3.1.2 精馏塔塔釜温度串级控制动作分析
1)系统设定 方块图
Z1(s)
管式加热炉出口温度-炉膛温度 串级控制系统方框图
②串级控制系统一般方框图
系统控制图
TC
T1C T1T 原料 出口
TT PT
PC
T2C
T2T
燃料 原料
温度-压力串级控制
方框图
D2(s) R1(s) GCT(s) Z1(s) R2(s) GCP(s) GV(s) GTP(s) GTT(s) GPP(s) Y2(s) D1(s) GPT(s) Y1(s)
GPP(s)
内环(副回路)方框图 GTP(s)
R1(s)
e1(s)
GTC(s) z1(s) TTOUT
u1(s) TCOUT
GTT(s) 副回路
Y2(s) P
GPT(s)
Y1(s) [T]
温度-压力串级控制 主要干扰:加热蒸气压力
串级控制系统方框图 GTT(s)
外环(主回路)方框图
回路: 副回路:由副控制器、执行器、副对象构成的闭环系统 如图中的蒸汽压力控制回路 主回路:由主控制器、副回路、主对象构成的闭环系统 如例中的温度控制回路
Z1(s)
Z2(s)
设:反向干扰, f1 → T↓; f2 → P↑
动作过程
GC 2 ( ) GV ( ) GTP ( ) 副:P e 2 u2 q P T GC ( ) GTT ( ) 主:T e1 u1 e 2 q
加热炉出口温度与炉膛温度串级控制系统设计

加热炉出口温度与炉膛温度串级控制系统设计一、引言加热炉是一种常用于工业生产中的设备,其作用是通过燃烧燃料加热空气或其他介质,使其达到所需温度。
加热炉的出口温度和炉膛温度是评估加热炉性能的关键指标。
为了提高加热炉的控制精度和稳定性,需要设计出一个合理的加热炉出口温度与炉膛温度串级控制系统。
二、串级控制系统的基本原理串级控制系统是一种将两个或以上的控制回路串接在一起,将一个控制器的输出作为另一个控制器的输入,通过不同层次的控制,实现对被控对象的精确控制。
在加热炉出口温度与炉膛温度串级控制系统中,可以将炉膛温度作为外环控制,将加热炉出口温度作为内环控制。
三、串级控制系统的设计步骤1.确定控制目标:在此串级控制系统中,控制目标是将加热炉出口温度控制在一定范围内,并同时保持炉膛温度稳定。
2.确定输入变量和输出变量:输入变量为控制器输出信号,输出变量为加热炉出口温度。
3.系统的数学模型:确定加热炉出口温度与炉膛温度之间的动态关系,建立数学模型。
可以采用传统的PID控制器或者现代控制理论中的模型预测控制等方法。
4.设计外环控制器:外环控制器根据炉膛温度的反馈信号调整燃料供给,以控制炉膛温度的稳定性。
5.设计内环控制器:内环控制器根据外环控制器的输出信号和加热炉出口温度的反馈信号调整燃料供给,以控制加热炉出口温度。
6.仿真与优化:使用仿真软件对设计的串级控制系统进行仿真,观察系统的响应特性,并根据实际需求进行调整和优化。
7.实际系统应用:将优化后的串级控制系统应用到实际加热炉中,并进行调试和验证。
四、串级控制系统的优势1.提高控制精度:串级控制系统将控制精度分为两个层次进行控制,可以快速响应外环控制器的调整,从而提高系统的控制精度。
2.提高稳定性:串级控制系统通过多层次的控制,减少了外界扰动对系统稳定性的影响。
3.提高动态响应速度:串级控制系统可以根据内环的控制效果对外环的控制进行调整,从而实现更快的动态响应。
加热炉出口温度与炉膛温度串级控制系统设计

第一章系统分析与控制方案的确立1。
系统分析图1。
1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。
加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的.图1.1加热炉出口温度系统由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。
2。
串级控制系统的设计加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的.由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,以加热炉出口温度为主变量,选择滞后较小的炉膛温度为副变量,构成炉出口温度与炉膛温度的串级控制系统有效地提高控制质量,以满足工业生产的要求,系统的串级控制结构图如图1。
2所示。
图1。
2加热炉出口温度串级控制系统结构图串级控制系统的工作过程,就是指在扰动作用下,引起主、副变量偏离设定值,由主、副调节器通过控制作用克服扰动,使系统恢复到新的稳定状态的过渡过程。
由加热炉出口温度串级控制系统结构图可绘制出其结构方框图,如图1.3所示。
图1。
3 加热炉出口温度串级控制系统结构方框图(1) 主被控参数的选择应选择被控过程中能直接反映生产过程中的产品产量和质量,又易于测量的参数。
在加热炉出口温度与炉膛温度的串级控制系统中加热炉出口温度为系统的主被控参数,因为加热炉出口温度是整个控制作用的关键,要求出口物料温度维持在某给定值上下。
串级控制系统

由于串级控制系统具有上述特点,使得它在实际生产 中解决了许多简单控制系统所不能解决的控制问题。 在工艺要求高、对象的滞后和时间常数大、干扰作 用强而频繁、负荷变化大的场合,简单控制系统满足 不了控制质量的要求时,可以采用串级控制系统,尤 其当主要干扰来自调节阀方面时,应用串级控制是很 适宜的。
加热炉出口温度与燃料流量串级控制系统
2.由于副回路的引入,改善了对象特性。串级控制系统 可以把副回路看作主回路的一个环节,或把副回路称 为等效对象。由于副回路的作用,等效对象的时间常 数减小了,因而改善了这部分对象的动态特性,使系 统的反应速度加快,控制更为及时。如果是单回路控 制系统,对象包括主对象和副对象两部分,因此整个 对象容量大 反应慢 使得控制不及时。
根据操作原理,当温度高时,应该把燃料气流量 控制器设定值减少一些,当温度偏低的时候,则 应将燃料气流量控制器的设定值增加一些。据此 将两个控制器串联起来,流量控制器的设定值由 温度控制器的输出值来决定,即流量控制器的设 定值不是固定的,这样既能迅速克服影响流量的 的扰动作用,又能使温度在其他扰动作用的情况 下保持在设定值,这种系统就是串级控制系统。
所谓“复杂”控制系统,是相对于“简单”控制 系统而言。通常指由两个或两个以上测量变送器 (或控制器、控制阀)组成的控制系统都可称为 复杂控制系统。目前常用的常规复杂控制控制常 使用的有串级、均匀、比值、前馈、分程、选择 性控制系统等。这些系统有的是已他们的结构命 名,有的以其工作原理命名,而且他们还可以相 互结合在一起使用。
串级控制系统中常用的的一下几个名词。 主变量:是工艺控制指标,在串级控制系统中起到主导作用 的被控变量,如上例中加热炉出口温度。 副变量:串级控制系统中为了稳定主变量或因某种需要而引 入的辅助变量,如上例中的燃料气流量。 主对象:为主变量表征器特性的生产设备,反映了主变量与 副变量之间的关系。如上例中从燃料气流量检测点到炉出口 温度测点间的工艺生产设备,只要指燃料气烧嘴和炉内物料 受热管道,图中标为温度对象。
串级控制系统

副控制器:“-” 主对象: “+”
主控制器:“-”
例题
例2.拟定下图所示加热炉出口温度与炉膛温度 串级控制系统主、副控制器旳正反作用。
控制阀: “+” 副对象: “+” 副测量变送: “+”
副控制器:“-” 主对象: “+”
主控制器:“-”
二次扰动最大偏差 0.27
0.013
串级控制系统旳特点及应用范围
1、两个串接工作旳控制器构成旳双闭环控制系统, 其中主回路是定值控制,副回路是随动控制
2、副回路旳引入,大大克服了二次扰动对系统被调量旳影响 3、迅速克服进入副回路扰动旳影响,提升系统旳抗扰动能力 4、对负荷变化有一定旳自适应能力(适应操作条件旳变化) 副回路具有先调、粗调、快调旳特点;主回路具有后调、细 调、慢调旳特点,并对于副回路没有完全克服掉旳干扰影响 能彻底加以克服。
主控-串级切换旳串级控制方案
注意: 串级与主控直接切换旳条件:构成旳控制系统必须是负反馈控制系统 结论:
只有当副控制器为反作用时才干由串级与主控之间直接切换。 假如副控制器为正作用,必须在向主控切换旳同步变化主控 制器旳正反作用。
串级系统旳投运
先副后主 确保无扰动切换
阅读教材
将主、副控制器旳切换开关都置于手动;
有什么样旳影响?
课堂提问
采用PI控制,Ti调小时为保持系统稳定性,百 分比度应该怎样变化?
工程整定措施有哪几种?主要环节是什么? 系统旳投运是使执行器从手动平稳过渡到自动
状态,该说法对不对?
主要内容
了解串级控制系统旳概念与特点; 掌握串级控制系统旳方框图表达法; 结合控制原理,掌握串级系统旳分析措施; 了解串级控制系统旳设计原则; 掌握串级控制系统旳参数整定措施;
过程控制课程设计-加热炉出口温度控制系统的设计

二○一三~二○一四学年第一学期信息科学与工程学院课程设计报告书课程名称:过程控制与集散系统课程设计班级:自动化2010级4班学号: 2姓名:肖翔指导教师:万恒二○一三年十一月一.设计题目和设计要求;设计题目:加热炉出口温度控制系统的设计图1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。
加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。
被加热物料图1 加热炉出口温度系统但是,由于炉子时间常数大,而且扰动的因素多,单回路反馈控制系统不能满足工艺对炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。
设计要求:1.绘制加热炉出口温度单回路反馈控制系统结构框图。
2.以加热炉出口温度为主变量,选择滞后较小的炉膛温度的副变量,构成炉出口温度对炉膛温度的串级控制系统,要求绘制该串级控制系统结构图。
3.假设主对象的传递函数为0140()(1)(2)G s s s =++,副对象的传递函数为02()(1)G s s =+40,主、副控制器的传递函数分别为sK s G c c 21)(11+=,22)(c c K s G =,1)()(21==s G s G m m ,请确定主、副控制器的参数(要求写出详细的参数估算过程)。
4.利用simulink 实现单回路系统仿真和串级系统仿真,分别给出系统输出 响应曲线。
二.设计任务分析(包括系统建模、控制方案);单回路反馈控制系统(温度):单回路反馈控制系统结构框图管式加热炉的控制目标是保证原料的出口温度达到设定值并维持在工艺要求范围内。
在加热炉工作的过程中,原料出口温度To受进入管式加热炉原料的初始温度和进入流量,燃料的流量和燃烧值的影响。
其中,原料的流量和燃料的流量是影响原料出口温度的主要因素。
过程控制课程设计加热炉出口温度控制系统的设计

通过合理的控制策略和算法设计,成功实现了对加热炉出口温度的精确控制,提高了生产过程的稳定性和产品质量。
实现了加热炉出口温度的稳定控制
通过参数整定和算法优化,提高了控制系统的响应速度和稳定性,减少了温度波动和误差,提高了生产效率。
优化了控制性能
尽管已经实现了对加热炉出口温度的稳定控制,但在某些极端情况下,控制精度仍可能受到一定影响,需要进一步优化控制算法以提高控制精度。
利用热电效应测量温度,具有测量范围广、精度高、稳定性好等特点。适用于高温环境,可将温度变化转换为电信号输出。
热电阻传感器
基于电阻随温度变化的原理,具有测量精度高、稳定性好、响应速度快等优点。适用于中低温测量,输出信号为电阻值变化。
红外温度传感器
通过测量目标物体辐射的红外能量来推算温度,具有非接触式测量、响应速度快、适用于远距离测量等特点。但受环境因素影响较大,测量精度相对较低。
控制器根据设定的控制算法对温度信号进行处理,计算出控制量,并输出相应的控制信号。
采用比例、积分、微分控制算法,对加热炉出口温度进行精确控制,具有响应快、精度高的特点。
PID控制
结合人工智能、神经网络等先进技术,对加热炉出口温度进行智能预测和控制,提高系统的自适应能力和智能化水平。
智能控制
利用模糊数学理论对加热炉出口温度进行模糊推理和控制,适用于难以建立精确数学模型的复杂系统。
仿真模型搭建
在仿真平台上,根据系统模型搭建仿真模型,包括各组成部分的模型、控制算法的实现等。
仿真参数设置
设置仿真参数,如仿真时间、步长、初始条件等,以确保仿真的准确性和有效性。
仿真平台选择
选择合适的仿真平台,如MATLAB/Simulink、LabVIEW等,用于实现系统仿真。
管式加热炉出口温度串级控制系统设计报告

管式加热炉出口温度串级控制系统设计报告本文将详细介绍管式加热炉出口温度串级控制系统的设计方案。
1.系统结构管式加热炉出口温度串级控制系统的结构由两个级联的控制回路组成。
第一个回路为内环控制回路,负责控制燃烧系统的燃气量和进气量,以达到对加热炉温度的快速调节。
第二个回路为外环控制回路,负责控制进料速度和加热炉的出口温度。
2.内环控制回路设计内环控制回路采用比例-积分(PI)控制器。
控制器的输入信号为加热炉温度偏差,输出信号为燃气量和进气量的调节量。
采用PI控制的主要原因是为了避免过度调节,保证系统的稳定性。
3.外环控制回路设计外环控制回路以内环控制回路的调节量作为输入信号,输出信号为进料速度的调节量。
为了达到出口温度的稳定性,可以采用模糊控制器。
模糊控制器的输入信号为加热炉温度偏差和燃气量的调节量,输出信号为进料速度的调节量。
4.控制算法设计内环控制回路采用PI控制算法。
PI控制器的参数调节可以根据系统的响应速度和稳定性进行优化。
外环控制回路采用模糊控制算法。
模糊控制器的参数调节可以通过模糊化和解模糊化的方式进行,以适应不同的工况。
5.控制器实现控制器可以采用嵌入式系统实现。
嵌入式控制器可以根据实时的温度和燃气量数据进行计算和控制,以实现对加热炉温度的稳定控制。
6.系统优化系统的优化可以通过参数调节和控制策略的优化来实现。
参数调节可以通过系统的建模和仿真分析来进行,以找到最优的控制参数。
控制策略的优化可以通过实时监测和调整来实现,以适应不同的工况和控制要求。
总结:通过设计一个管式加热炉出口温度串级控制系统,可以实现对加热炉温度的稳定控制。
内环控制回路负责快速调节温度,外环控制回路负责稳定控制温度。
通过控制算法的设计和优化,可以实现系统的稳定性和响应速度的改善。
通过嵌入式控制器的实现,可以实时计算和控制温度的调节量。
最后,通过参数调节和控制策略的优化,可以进一步提高系统的效果。
课程设计基于PLC的电加热炉温度控制系统设计

第一章绪论1.1选题背景及意义加热炉是利用电能来产生蒸汽或热水的装置。
因为其效率高、无污染、自动化程度高,稳定性好的优点,冶金、机械、化工等各类工业生产过程中广泛使用电加热炉对温度进行控制。
而传统的加热炉普遍采用继电器控制。
由于继电器控制系统中,线路庞杂,故障查找和排除都相对困难,而且花费大量时间,影响工业生产。
随着计算机技术的发展,传统继电器控制系统势必被PLC所取代。
二十世纪七十年代后期,伴随着微电子技术和计算机技术的快速发展,也使得PLC 具有了计算机的功能,成为了一种以电子计算机为核心的工业控制装置,在温度控制领域可以让控制系统变得更高效,稳定且维护方便。
在过去的几十年里至今,PID控制已在工业控制中得到了广泛的应用。
在工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)中位居第一。
由于其原理简单、使用方便、适应能力强,在工业过程控制中95%甚至以上的控制回路都采用了PID结构。
虽然后来也出现了很多不同新的算法,但PID仍旧是最普遍的规律。
1.2国内外研究现状及发展趋势一些先进国家在二十世纪七十年代后期到八十年代初期就开始研发电热锅炉,中国到八十年代中期才开始起步,对电加热炉的生产过程进行计算机控制的研究。
直到九十年代中期,不少企业才开始应用计算机控制的连续加热炉,可以说发展缓慢,而且对于国内的温度控制器,总体发展水平仍不高,不少企业还相当落后。
与欧美、日本,德国等先进国家相比,其差距较大。
目前我国的产品主要以“点位”控制和常规PID为主,只能处理一些简单的温度控制。
对于一些过程复杂的,时变温度系统的场合往往束手无策。
而相对于一些技术领先的国家,他们生产出了一批能够适应于大惯性、大滞后、过程复杂,参数时变的温度控制系统。
并且普遍采用自适应控制、模糊控制及计算机技术。
近年来,伴随着科学技术的不断快速发展,计算机技术的进步和检测设备及性能的不断提升,人工智能理论的实用化。
因此,高精度、智能化、人性化必然是国内外必然的发展趋势。
串级控制

(4) 如果 [GT2 (s)]2 的参数值与第(1)步得到的 [GT2 (s)]1 的参数
值基本相同,那么整定就告完成。
信息科学与工程学院
5 串级控制
二. 两步整定法
当副回路受到阶跃扰动时,在较短时间内副回
路控制过程就告结束;在此期间,主回路基本上不 参加动作。可断开主回路,按单回路系统的整定方法 整定副控制器 GT2 (s) 的参数。 2.再整定主控制器 1.先整定副控制器
5 串级控制
5 串级控制
本章学习内容
5.1 5.2 5.3 串级控制系统的基本原理和结构 串级控制系统的分析 串级控制系统的设计
5.4
串级控制系统应用举例
信息科学与工程学院
5 串级控制
5.1 串级控制系统的基本原理和结构
电厂锅炉过热汽温控制系统 被 控 量:主汽温θ 控制手段:喷水减温
导前信号
1
5 串级控制
主调 副调 导前区 惰性区
副回路(内回路):粗调 副参数(副变量): θ
2
主回路(外回路):细调 主参数(主变量): θ
1
副(导前区)对象
副控制(调节)器
主(惰性区)对象
主控制(调节)器
信息科学与工程学院
5 串级控制 5.2 串级控制系统的分析 5.2.1串级控制系统的特点
(1)串级控制系统对进入副回路的扰动有很强的克 F(s) 服能力。
使控制作用更加及时。
信息科学与工程学院
5 串级控制 (3)提高系统的工作频率,改善了系统控制 质量。
将整个副回路看成是一个等效对象 G02 (s) 等效对象的时间常数缩小了,而且随着副调节 器比例增益的增大而减小 , 从而加快了副回路的响 应速度,提高了系统的工作频率。(证明)
串级控制系统

系统工作频率提高分析
GC1(s)
GC2(s) GV (s) Gm1 (s)
Y2 (s) Y1(s)
G0 2 (s)
G01(s)
由上图求出闭环系统的 特征方程: 1 GC1(s)GC2 (s)Gm1(s)GV (s)G02(s)G01(s) 0
串级控制系统工作频率
假设G01(s)
K01 T01s
T02s
K02
1 K02KC2Km2KV K02 ,
1
T02
s T02s 1
1 K02KC2Km2KV
K 02
K 02 1 KC 2 KV T02 KC 2 KV K 02 K m2
可见:K02 K02 ,T02 T02
随着K
(1)被加热物料的流量和初温f 1(t); (2)燃料热值的变化、压力波动、 流量的变化f 2(t);
(3)烟窗挡板位置的改变、抽力的 变化f 3(t).
方案1的分析
系统的框图如下:
r(t)
f2 (t) f3(t) f1(t) y(t)
调节器 调节阀 炉膛 管壁 物料
测量变送器
方案1的分析
• 所有的扰动都包含在环内 ,理论上都 可以由温度控制器予以克服;
1
,
GC1
(s)
KC1
GV (s) KV ,Gm1(s) Km1,则
T01T02s2 (T01 T02)s 1 KC1KC2 Km1KV K02K01 0
串级控制系统工作频率
与二阶标准形式对比, 得:
2 0
T01 T02 T01T02
系统工作频率 与自然频率 0的关系为:
管式加热炉出口温度串级控制系统设计说明

课程设计任务书1.设计目的:(1)培养学生运用过程检测仪表与控制技术及其他相关课程的知识,结合毕业实习中学到的实践知识,独立地分析和解决实际过程控制的问题,初步具备设计一个过程控制系统的能力。
(2)运用工程的方法,通过一个简单课题的设计练习,可使学生初步体验过程控制系统的设计过程、设计要求、完成的工作容和具体的设计方法。
(3)培养学生独立工作能力和创造力;综合运用专业及基础知识,解决实际工程技术问题的能力;(4)培养查阅图书资料、产品手册和各种工具书的能力;(5)培养编写技术报告和编制技术资料的能力。
2.设计容和要求(包括原始数据、技术参数、条件、设计要求等):经过《过程检测仪表与控制》课程的学习和生产实习后,对现场的实际过程控制策略、实际环节的控制系统有了一定的认识和了解。
在此基础上,针对实践环节中的被控对象(控制装置),独立完成控制系统的设计,并通过调节系统控制参数,达到较好的控制效果。
1.确定系统整体控制方案以及系统的构成方式,给出控制流程图;2.现场仪表选型,编制有关仪表信息的设计文件;3.给出控制系统方框图;4.分析被控对象特性,选择控制算法;5.进行系统仿真,调节控制参数,分析系统性能;6.写出设计工作小结。
对在完成以上设计过程所进行的有关步骤:如设计思想、指标论证、方案确定、参数计算、元器件选择、原理分析等作出说明,并对所完成的设计作出评价,对自己整个设计工作中经验教训,总结收获。
3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文 )、图纸、实物样品等〕:1.确定系统整体控制方案、仪表选型、系统控制流程图、选择控制算法。
2.撰写课程设计说明书一份(A4 纸)。
4.主要参考文献:[1]《过程装备控制技术及其应用》王毅主编化学工业[2]《过程自动化及仪表》俞金寿主编化学工业[3]《工业过程控制工程》王树青主编化学工业[4]《控制仪表及装置》吴勤勤主编化学工业[5]《过程控制仪表》徐春山主编冶金工业[6]《过程装备成套技术设计指南工程》黄振仁主编化学工业[7]《过程控制装置》永德主编化学工业[8]《化工单元过程及设备课程设计》匡国柱主编化学工业[9]《化工设备设计设计手册》(上、下)朱有庭主编化学工业[10] 《工业过程检测与控制》孟华主编化学工业5.设计成果形式及要求:提供课程设计说明书一份,要求容与设计过程相符,且格式要符合规定要求;系统控制流程图一份;6.工作计划及进度:2013 年 1 月 7 日 -1 月 9 日确定系统整体控制方案以及系统的构成方式,画出控制流程图,完成仪表选型,接线图;1月 10 日 - 1 月 13 日控制系统方框图,分析被控对象特性,选择控制算法;1月 14日 - 1月 15日进行系统仿真,调节控制参数,分析系统性能;1月 16日 - 1月 17日编写课程设计说明书1月 18日答辩系主任审查意见:签字:年月日目录1管式加热炉概述 (1)1.1管式加热炉在石油工业中的重要性 (1)1.2管式加热炉的基本构成与组成 (1)1.3管式加热炉出口温度控制系统设计目的及意义...................................12管式加热炉温度控制系统工作原理及控制要求.....................................22.1管式加热炉出口温度控制系统工作原理 (2)2.2管式加热炉出口温度控制系统控制要求 (2)3管式加热炉出口温度控系统工艺流程设计 (2)3.1管式加热炉出口温度影响因素的扰动分析 (2)3.2管式加热炉出口温度控制系统的工艺流程设计 (2)4管式加热炉出口温度控系统现场仪表的选型与连线图 (3)4.1控制系统中温度检测元件的选型 (3)4.2控制系统中变送器的选型 (4)4.3控制系统中执行器(调节阀)的选型 (4)4.4控制系统中调节器的选型 (5)4.5控制系统中的连锁保护与接线图 (6)5管式加热炉出口温度串级控制系统分析 (7)5.1控制系统方框图与工作过程 (7)5.2主、副调节器规律选择 (7)5.3主、副调节器正反作用方式确定 (7)5.4控制器参数工程整定 (8)6管式加热炉出口温度串级控制系统的 MATLAB SIMULINK仿真与分析 (9)6.1传递函数的选择 (9)6.2系统的参数的选择 (9)6.3系统的仿真分析 (10)7感受与体会 (11)8参考文献 (11)1管式加热炉概述1.1 管式加热炉在石油工业中的重要性⑴加热温度高(火焰温度1000℃以上),传热速率快。
加热窑炉温度控制系统设计图

图
号
3 共6张
第3张
青海大学昆仑学院 自动化 2008 级 (1) 班
固态继电器输出电路
温度信号 AD 转换电路图 固态继电器输出电路 设 绘 审 计 图 核
温度信号 AD 转换电路图
时间:2011-12-9 乔顺龙 乔顺龙
图
号
4 共6张
第4张
青海大学昆仑学院 自动化 2008 级(1)班
固态继电器 SSR 内部结构电路 键盘电路、声光报警电路 设 绘 审 计 图 核
编制
自控设备表
校核 审核 数量 2 1 1 2 安装地点 出口、炉膛 控制室 单片机与热电阻间 温度检测显示
图号:001 第1张 操作条件
学号:0853505015 共1张 备注
驱动信号适当
加热窑炉出口温度控制系统
加热窑炉出口温度串级控制系统
加热炉出口温度、串级控制系统图 设 绘 审 计 图 核
时间:2011-12-9 乔顺龙 乔顺龙
图
号
1 共6张
第1张
青海大学昆仑学院 自动化 2008 级 (1) 班
系统供电电源电路原理图 设 绘 审 计 图 核
时间:2011-12-9 乔顺龙 乔顺龙
图
号
2 共6张
第2张
青海大学昆仑学院 自动化 2008 级 (1) 班
温度测量信号处理电路 设 绘 审 计 图 核
时间:2011-12-9 乔顺龙 乔顺龙
工程名称 设计单位 序 01 02 03 04 号 设计项目 设计阶段 仪表位号 01 02 03 04
加热窑炉温度控制系统 加热窑炉温度控制系统 施工设计 检测点名称 炉膛温度、出口温度 数据处理及控制 热电阻接出的信号 仪表名称及规格 热电阻 单片机最小系统 模数转换器 仪表 型号 PT100 AT89S51 ADC0809 DDZIII 型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章系统分析与控制方案的确立1.系统分析图1.1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。
加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。
被加热物料图1.1加热炉出口温度系统由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。
2.串级控制系统的设计加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。
由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,以加热炉出口温度为主变量,选择滞后较小的炉膛温度为副变量,构成炉出口温度与炉膛温度的串级控制系统有效地提高控制质量,以满足工业生产的要求,系统的串级控制结构图如图1.2所示。
图1.2加热炉出口温度串级控制系统结构图串级控制系统的工作过程,就是指在扰动作用下,引起主、副变量偏离设定值,由主、副调节器通过控制作用克服扰动,使系统恢复到新的稳定状态的过渡过程。
由加热炉出口温度串级控制系统结构图可绘制出其结构方框图,如图1.3所示。
主控制器副控制器调节阀炉膛出口温度副检测、变送仪表主检测、变送仪表图1.3 加热炉出口温度串级控制系统结构方框图(1) 主被控参数的选择应选择被控过程中能直接反映生产过程中的产品产量和质量,又易于测量的参数。
在加热炉出口温度与炉膛温度的串级控制系统中加热炉出口温度为系统的主被控参数,因为加热炉出口温度是整个控制作用的关键,要求出口物料温度维持在某给定值上下。
如果其调节欠妥当,会造成整个系统控制设计的失败。
(2) 副被控制参数的选择从整个系统来看,加热炉的炉膛温度虽然不是我们要控制的直接目标,但是炉膛温度会很大程度上影响出口物料的温度,因此我们选择炉膛温度为副被控参数。
(3) 控制器的选择主控制器的选择:主被控变量是工艺操作的主要指标(温度),允许波动的范围很小,一般要求无余差,主控制器应选PI控制规律。
副被控变量的设置是为了保证主被控变量的控制质量,提高系统的反应速度,提高控制质量,可以允许在一定范围内变化,允许有余差,但是副被控对象中含有延时环节,因此副控制器要选PI控制规律。
第二章控制系统仿真通过MATLAB 中的SIMULINK 工具箱可以动态的模拟所的构造系统的响应曲线,以控制框图代替了程序的编写,只需要选择合适仿真设备,添加传递函数,设置仿真参数。
下面根据前文的分析的模型对串级控制系统进行仿真,以模拟实际中的阶跃响应曲线,考察串级系统的设计方案是否合理。
取主被控制对象的传递函数为11()(121)G s S =+,副被控对象的传递函数为21()41s G s e S τ-=+,纯滞后时间τ=8s ,反馈环节增益为1。
主调节器选择比例积分控制规律(PI),副调节器选择比例积分控制率(PI)。
1. 阶跃响应性能在时间为0时刻对不加入副回路的系统加入大小为1的阶跃信号,设置主控制器的PI 参数为KP=O.55,KI=0.06,观察阶跃响应曲线。
系统的SIMULINK 仿真框图和MATLAB 仿真曲线图如图2.1和图2.2所示。
图2.1 不加副回路的SIMULINK 仿真框图图2.2 不加副回路MATLAB仿真曲线图在时间为0时刻对加入副回路的系统加入大小为1的阶跃信号,在主控制器的PI参数为KP=0.55,KI=0.06的基础上,设置副控制器的PI参数为KP=O.65,KI=0.15,观察阶跃响应曲线。
系统的SIMULINK仿真框图和MATLAB仿真曲线图如图2.3和图2.4所示。
图2.3 加入副回路的SIMULINK仿真框图图2.4 加入副回路的MATLAB仿真曲线图由2.2和2.4两图对比可见,引入副回路的串级控制系统的动态特性比不加入副回路的控制系统有了很大的改善,提高了系统的工作频率,对被控对象的调节能力变得更强。
2.抗干扰性能对不加入副回路的系统,250S时,在副被控制对象上加上单位阶跃的干扰信号。
系统的SIMULINK仿真框图和MATLAB仿真曲线图如图2.5和图2.6所示。
图2.5 不加副回路,250S时在副被控对象上加入单位阶跃干扰信号的SIMULINK仿真框图图2.6 不加副回路,250S时在副被控对象上加入单位阶跃干扰信号的MATLAB仿真曲线图对不加入副回路的系统,250S时,在主被控制对象上加上单位阶跃的干扰信号。
系统的SIMULINK仿真框图和MATLAB仿真曲线图如图2.7和图2.8所示。
图2.7 不加副回路,250S时在主被控对象上加入单位阶跃干扰信号的SIMULINK仿真框图图2.8 不加副回路,250S时在主被控对象上加入单位阶跃干扰信号的MATLAB仿真曲线图对加入副回路的系统,250S时,在副被控制对象上加上单位阶跃的干扰信号。
系统的SIMULINK仿真框图和MATLAB仿真曲线图如图2.9和图2.10所示。
图2.9 加入副回路,250S时在副被控对象上加入单位阶跃干扰信号的SIMULINK仿真框图图2.10 加入副回路,250S时在副被控对象上加入单位阶跃干扰信号的MATLAB仿真曲线图对加入副回路的系统,250S时,在主被控制对象上加上单位阶跃的干扰信号。
系统的SIMULINK仿真框图和MATLAB仿真曲线图如图2.11和图2.12所示。
图2.11 加入副回路,250S时在主被控对象上加入单位阶跃干扰信号的SIMULINK仿真框图图2.12 加入副回路,250S时在主被控对象上加入单位阶跃干扰信号的MATLAB仿真曲线图通过比较图2.6和图2.10可知,加入副回路的串级控制系统能够对加入到副被控对象的单位阶跃的干扰信号有很强的拟制能力,而不加副回路的系统对加入到副被控对象的单位阶跃信号的干扰却很难进行拟制,所以加入副回路的串级控制系统比不加副回路的系统拟制二次干扰的能力要强的多。
通过比较图 2.8和图2.12可知,加入副回路的串级控制系统能够对加入到主被控对象上的单位阶跃的干扰信号具有有相当好的拟制能力,而不加副回路的系统对加入到主被控对象上的单位阶跃干扰信号不能进行有效的拟制,所以加入副回路的串级控制系统比不加副回路的系统拟制一次干扰的能力也要强很多。
第三章 系统的不足与改进1.系统的不足通过以上的仿真可知,加热炉出口温度与炉膛温度串级控制系统的控制效果确实比不加副回路的单回路反馈系统的要好,而且抗干扰性能也比单回路系统要好的多。
但是,从上面的仿真结果中我们可以看到,即使加入了串级控制,系统的控制效果还不是那么理想,系统响应的超调量比较大,响应的时间比较长,因此应该考虑对系统进行改进。
2.系统的改进从以上的仿真中我们可知,根据原被控对象的特点,我们假设的副被控对象模型中含有一个较大的滞后环节,因此,可考虑在副回路中加入Smith 预估补偿控制。
Smith 预估控制是针对大时延过程的预估补偿,其原理是按照过程的特性预估出一种模型加入到反馈控制系统中,使被延时了τ时间的被控量超前反映到调节器的输入端,使调节器提前动作,从而明显地减小超调量和加速调节过程。
Smith 预估控制是得到广泛应用的对纯滞后对象的补偿控制方法,其原理如下。
对于图3.1所示的具有纯滞后环节的对象G(s),有s e s G s G τ-=)()( ' (3.1)式中)( 's G 为对象中除去滞后环节的部分,τ为 滞后时间。
引入纯滞后预估补偿器 ()D s τ,即Smith 预估器,与对象G (s )相并联,补偿后对象的等效传递函数模型中不包含纯滞后项s e τ- ,其中)1)(()( 's e s G s D ττ--= (3.2)针对不带滞后的对象)( 's G ,应用连续系统的设计方法,设计控制器D (s)。
实际上,Smith 预估器并不并联在被控对象上,而是并联在控制器D (s)上,等效为带Smith 预估器的控制器)( 's D 。
如图3.2所示。
图3.2中,控制器)( 's D 为:)1)(()(1)()( ''se s G s D s D s D τ--+=(3.3)对控制器)( 's D 进行离散化处理,得到离散化控制器传递函数模型)( 'z D 。
如果将对象用零阶保持器法进行离散化处理,则可以用上章介绍的离散化设计方法进行控制器的设计,其控制系统结构如图3.3所示。
图3.1 Smith 补偿结构图图3.2 Smith 预估控制器结构图图3.3 离散化设计的Smith 预估控制器结构图图3.3中,T d / τ=,控制器)( z D 为针对不带滞后的环节)( 'z G 设计的离散控制模型。
)( 'z D 表达式为:)1)(()(1)()( ''d z z G z D z D z D --+=(3.4)系统的副回路采样周期为1s ,则d=8,21()41sG s e S τ-=+ 则G’(s )=0.25z/(z-0.7788)。
系统的SIMULINK仿真框图和MATLAB仿真曲线图如图3.4和图3.5所示。
图3.4 加入smith预估控制器的SIMULINK仿真框图图3.5 加入smith预估控制器MATLAB仿真曲线图通过比较图2.4和图3.5可知在副回路中加入smith预估控制器后系统的超调量和调整时间都得到了很大程度的改善,所以该改进措施是有效的。
参考文献[1] 关守平.计算机控制理论与设计[M].沈阳:东北大学出版社,2011,85-89,95-96[2] 陈莉,张峰.串级-Smith预估控制在温度大滞后系统中的应用.仪表控制,2007,2(37-39)[3] 张国范,顾树生,王明顺等. 计算机控制系统. 北京:冶金工业出版社,2004[4] 郭姝梅,张颖超.串级与Smith预估补偿相结合的控制系统仿真研究.武汉理工大学学报,2002,26(5):72-74[5] 王春民,刘兴明,嵇艳鞠. 连续与离散控制系统. 北京:科学出版社,2008[6] 王建辉,顾树生. 自动控制原理. 北京:清华大学出版社,2007.4。