初中数学应用题知识点归纳
初中数学常见应用题归纳
初中数学常见应用题归纳【文章】初中数学常见应用题归纳数学是一门应用广泛、内容丰富的学科,而在初中阶段,我们学习的数学知识也逐渐增多,其中包括了很多常见的应用题。
在这篇文章中,我将对初中数学常见应用题进行一个归纳,以帮助我们更好地理解和应对这些题型。
一、图形的面积和周长1. 矩形的面积和周长矩形是最常见的图形之一,其面积计算公式为:面积=长×宽,周长计算公式为:周长=2×长+2×宽。
我们需要注意将题目中给出的长度、宽度代入公式进行计算。
2. 三角形的面积三角形的面积计算公式为:面积=底×高÷2。
其中,底和高指的是三角形的底边和垂直于底边的高。
在计算时,需注意正确地选取底和高,并将其代入公式进行计算。
3. 圆的面积和周长圆的面积计算公式为:面积=πr²,其中π≈3.14,r为圆的半径。
圆的周长计算公式为:周长=2πr。
当题目中给出了半径或直径时,我们可直接代入公式计算;若未给出,则需根据已知信息推算出半径或直径,再进行计算。
二、比例和百分数1. 比例的计算比例是一种表示两个或多个物体或量之间关系的方式。
计算比例时,需将题目中给出的各个物体或量代入比例式中,再进行计算。
例如,确定两个长度的比例,可用公式:比例=较大的长度÷较小的长度。
2. 百分数的计算百分数是一种表示数值相对大小的方式,以百分号“%”表示,相当于除以100。
计算百分数时,需将题目中给出的部分或整体数量代入百分比公式中,再进行计算。
如计算某数占总数的百分比,可用公式:百分数=某数÷总数×100%。
三、速度、时间和距离1. 速度的计算速度是表示物体在单位时间内移动的距离,计量单位通常为米/秒(m/s)。
计算速度时,需将题目中给出的距离和时间代入速度公式中,再进行计算。
公式为:速度=距离÷时间。
2. 时间和距离的计算时间和距离之间有着紧密的关系。
第3章 列方程解应用题(二)知识点精讲精练 初中数学人教版七上课件
【巩Байду номын сангаас】
方案1:尽可能多的制成奶片,其余直接销售鲜奶;
方案2:将一部分制成奶片,其余制成酸奶销售;
请问选择哪种方案获利更多?
解:选择方案2获利更多,理由如下: 方案1可获利润为 1×4×2000+(9-1×4)×500=10500(元) 方案2:设制作奶片x天,则制作酸奶(4-x)天. 依题意,得x+3(4-x)=9 解得x=1.5 所以制作酸奶4-x=2.5(天) 故方案2可获利润为 1×1.5×2000+3×2.5×1200=12000(元) 因为10500<12000, 所以选择方案2获利更多.
第三章 列方程解应用题(二)
知识点一:计费问题
【例1】 某市电力部门对居民用电按月收费,标准如下: ①用电不超过100度,每度收费0.5元; ②用电超过100度,超过部分每度收费0.8元 . (1)小明家1月份用电130度,应缴电费__7_4____元; (2)小明家2月份缴电费90元,则他家2月份用电多少度? 根据分段计费规则,应缴电费 100×0.5+0.8×(130-100)=74(元)
【例3】某地上网有如下两种收费方式,用户可以任选其一. A计时制:1元/时,B包月制:80元/月. 此外每一种上网方式 都加收通讯费0.1元/时. (1)某用户每月上网40 h,选择哪种上网方式比较合算? (2)某用户每月有100元用于上网,选择哪种上网方式比较 合算? (3)请你为用户设计一个方案,使用户能合理地选择上网 方式.
方案一:将蔬菜全部粗加工; 方案二:尽可能进行精加工,没来得及进行加工的在市场上 直接销售; 方案三:将部分蔬菜进行精加工,其余进行粗加工,恰好15 天完成. 你认为选择哪种方案获利最多?为什么?
先分别计算出三种方案的获利,再比较
初中数学应用题知识点总结及练习
如,“小时”“分钟”的换算“分钟”的换算;s ;s ;s、、v 、t 单位的一致等。
单位的一致等。
内容内容类型类型题中涉及的数量及公式题中涉及的数量及公式 等量关系等量关系 注意事项注意事项和、差问题和、差问题由题可知由题可知弄清“倍数”及“多、少”等数量关系少”等数量关系 行程问题问题相遇问题相遇问题 路程路程==速度×时间速度×时间 时间时间==路程÷速度路程÷速度 速度速度==路程÷时间路程÷时间 快者快者++慢者慢者==原来的距离原来的距离 注意始发时间和地点追及问题追及问题快者快者--慢者慢者==原来的距离原来的距离 调配问题调配问题 调配后的数量关系调配后的数量关系流动的方向和数量流动的方向和数量 比例分配问题比例分配问题全部数量全部数量==各种成分的数量之和把一份设为X 工程问题工程问题工作量工作量==工作效率×工作时间工作效率×工作时间 工作时间工作时间==工作量÷工作效率工作量÷工作效率 工作效率工作效率==工作量÷工作时间工作量÷工作时间 每个工作量的和每个工作量的和==工作总量工作总量工作总量没有的情况下,可设为1利润问题利润问题 利润率利润率==利润÷进价×利润÷进价×100% 100% 利润利润==(售价(售价--进价)×量进价)×量 利用公式或利润率与利润的关系关系 打几折就是百分之几十出售几十出售 行船问题行船问题顺水速度顺水速度==静水速度静水速度++水速水速 逆水速度逆水速度==静水速度静水速度--水速水速A C A B C 甲→甲→ 乙→乙→ (相遇处)乙→乙→A B 甲)→ (相遇处)1、某酒店客房部有三人间,双人间客房,收费数据如下表:、某酒店客房部有三人间,双人间客房,收费数据如下表:普通(元普通(元//间/天)天) 豪华(元(元//间/天) 三人间三人间 150 300 双人间双人间140400为吸引游客,团体入住五折优惠措施,团体入住五折优惠措施,一个一个50人的旅游团优惠期间到该酒店入住,人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间住了一些三人普通间和双人普通间客房.若每间客房正好住满,客房.若每间客房正好住满,••且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?元,则旅游团住了三人普通间和双人普通间客房各多少间? 2、(20042004、湟中,、湟中,、湟中,33分)正在修建的西塔(西宁~塔尔寺)高速公路上,有一段工程,若甲、乙两个工程队单独完成,甲工程队比乙工程队少用10天;若甲、乙两队合作,天;若甲、乙两队合作,1212天可以完成.若设甲单独完成这项工程需要x 天.则根据题意,可列方程为意,可列方程为_____________________________________________。
七年级数学应用题的知识点
七年级数学应用题的知识点数学是一门非常重要的学科,在学习数学的过程中,应用题是不可或缺的一部分。
那么,在初中阶段,七年级的数学应用题有哪些知识点呢?本文将从以下几个方面探讨。
一、比例的应用比例是数学中一个非常重要的知识点,也是七年级数学应用题的常见内容。
在实际生活中,比例的应用是非常广泛的,比如购物时的打折情况、制作食品时各种材料的比例以及制作图画时的缩放比例等等。
掌握比例的应用,可以让我们更好地面对这些实际问题。
二、图形的面积和周长图形的面积和周长也是七年级数学应用题的常见内容之一。
在实际生活中,我们经常需要计算各种图形的面积和周长,比如房子的面积和周长、花坛的面积和周长等等。
因此,学习和掌握图形的面积和周长的知识是非常必要的。
三、数字的运算数字的运算在数学中是必不可少的,而在七年级的数学应用题中,数字的运算也是非常常见的内容。
比如,经济学家需要计算商品的价格和利润,数学老师需要计算学生作业的得分等等。
因此,掌握数字的基本运算法则是非常重要的。
四、代数与方程代数与方程是数学中比较难的一个知识点,但在七年级的数学应用题中,也是非常重要的内容之一。
比如,某家电公司需要在销售一定数量的电视机后进行打折销售,这就需要我们运用代数和方程来计算价格。
因此,学习代数和方程是非常必要的。
五、概率和统计概率和统计,在我们日常生活中也是非常应用的知识点。
比如,我们需要计算一件商品的优惠券使用率、一位学生的平均成绩等等。
因此,学习概率和统计的基础知识,对于这些实际问题的解决非常有帮助。
六、几何几何是数学中的一个非常重要的知识点,而在七年级的数学应用题中,几何也是非常重要的内容之一。
比如,我们需要计算一根木材的长度、一件物品的体积等等。
因此,学习几何的基本知识对于实际问题的解决非常有帮助。
七年级数学应用题的知识点包括比例的应用、图形的面积和周长、数字的运算、代数与方程、概率和统计以及几何。
掌握这些知识点,可以帮助我们更好地面对实际生活中的数学应用问题。
初二数学中常见的应用题解析
初二数学中常见的应用题解析应用题是数学学科中一种常见的题型,它将数学知识应用于实际问题中,帮助学生理解数学的实际应用价值。
在初二数学中,应用题也是一个重要的考察内容。
本文将对初二数学中常见的应用题进行解析,帮助学生更好地掌握解题方法和思路。
一、比例应用题解析比例是初中数学中的基础知识点,常常用于解决各类应用题。
比例应用题主要涉及到实际问题中的数量关系,通过建立比例关系求解未知量。
例如,某班级男生人数比女生人数的比例是2:3,如果该班级共有80名学生,求男生和女生各有多少人?解析:根据题意,男生人数与女生人数的比例是2:3,设男生人数为2x,女生人数为3x。
根据比例关系可得:2x + 3x = 80,合并同类项得到5x = 80,解方程可得x = 16。
代入原式可得男生人数为2x = 2 ×16 = 32人,女生人数为3x = 3 × 16 = 48人。
二、百分数应用题解析百分数是初中数学中常见的概念,它表示一个数相对于100的比例关系。
百分数应用题主要涉及到对某一数量的百分比计算和应用。
例如,某商品原价120元,打8折出售,求打折后的价格是多少?解析:打8折即价格打九折,即原价乘以0.9,所以打折后的价格为120 × 0.9 = 108元。
三、利润和成本应用题解析利润和成本是经济学中的概念,在初中数学中也有相关的应用题。
此类题主要涉及到商品的进价、售价和利润之间的关系。
例如,某商品的进价是80元,利润率是30%,求该商品的售价和利润是多少?解析:利润率是指利润与进价的比例关系,设商品的售价为x元。
根据题意,利润率为30%,即利润为进价的30%,即利润为80 × 0.3 = 24元。
商品的售价即进价加上利润,即x = 80 + 24 = 104元。
四、空间几何应用题解析空间几何应用题是初二数学中的一个重要考点,主要涉及到对几何图形的面积、体积和各种特殊属性的计算。
初中数学方案选择类应用题复习专题
初中数学应用题复习专题一、方程型例1、(长沙市)“5·12”汶川大地震后.灾区急需大量帐篷.某服装厂原有4条成衣生产线和5条童装生产线.工厂决定转产.计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线.一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线.一天可生产帐篷178顶.(1)每条成衣生产线和童装生产线每天生产帐篷各多少顶?(2)工厂满负荷全面转产.是否可以如期完成任务?练习:中考关键分P15 第20题例2、某市剧院举办大型文艺演出.其门票价格为:一等席300元/人,二等席200元/人.三等席150元/人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案。
练习:某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机.出厂价分别为A种每台1500元.B种每台2100元.C种每台2500元。
(1)若家电商场同时购进两种不同型号的电视机共50台.用去9万元.请你研究一下商场的进货方案。
(2)若商场销售一台A种电视机可获利150元.销售一台B种电视机可获利200元.销售一台C种电视机可获利250元.在同时购进两种不同型号的电视机方案中.为了使销售时获利最多.你选择哪种方案?二、不等式型例3、(青岛市)2008年8月.北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张.B种船票120元/张.某旅行社要为一个旅行团代购部分船票.在购票费不超过5000元的情况下.购买A、B两种船票共15张.要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张.请你解答下列问题: (1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?练习:中考关键分P17 第10题三、一次函数型例4、(乌鲁木齐市)某公司在A、B两地分别库存挖掘机16台和12台.现在运往甲、乙两地支援建设.其中甲地需要15台.乙地需要13台.从A地运一台到甲、乙两地的费用分别是500元和400元;从B地运一台到甲、乙两地的费用分别是300元和600元.设从A地运往甲地x台挖掘机.运这批挖掘机的总费用为y元.运往甲地的费用运往乙地的费用从A地500元/台400元/台从B地300元/台600元/台(1)写出y与x之间的函数关系式;(2)公司应设计怎样的方案.能使运这批挖掘机的总费用最省?练习:(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机.其中甲型20台.乙型30台.现将这50台联合收割机派往A、B两地收割小麦.其中30•台派往A地.20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地1800元/台1600元/台B地1600元/台1200元/台(1)设派往A地x台乙型联合收割机.租赁公司这50台联合收割机一天获得的租金为y(元).请用x表示y.并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元.说明有多少种分派方案.并将各种方案写出.四、二次函数型例4、(2013•咸宁)为鼓励大学毕业生自主创业.某市政府出台了相关政策:由政府协调.本市企业按成本价提供产品给大学毕业生自主销售.成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元.出厂价为每件12元.每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元.那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元).当销售单价定为多少元时.每月可获得最大利润?(3)物价部门规定.这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于300元.那么政府为他承担的总差价最少为多少元?练习:(13年山东青岛、22)某商场要经营一种新上市的文具.进价为20元.试营销阶段发现:当销售单价是25元时.每天的销售量为250件.销售单价每上涨1元.每天的销售量就减少10件(1)写出商场销售这种文具.每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时.该文具每天的销售利润最大;(3)商场的营销部结合上述情况.提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件.且每件文具的利润至少为25元请比较哪种方案的最大利润更高.并说明理由。
初中数学应用题解法的关键知识点汇总
初中数学应用题解法的关键知识点汇总数学是一门应用广泛的学科,它运用数学理论和方法解决实际问题。
初中数学应用题是数学学习的重要组成部分,通过解答这些题目,学生能够培养逻辑思维、推理能力和问题解决能力。
下面是初中数学应用题解法的关键知识点汇总。
一、代数应用题代数应用题是指通过代数符号与运算解决实际问题的题目。
解决代数应用题的关键知识点包括:1. 代数式的建立:根据题目中的条件,用代数符号表示未知数,并建立代数式。
2. 方程的解法:通过解方程来求解未知数的值。
常见的解方程方法包括等式法、因式分解法、配方法、代入法等。
需要注意的是,在解方程的过程中,要注意化简、整理方程,将方程化为最简形式,得出准确的解。
3. 消元法:通过加减乘除等运算,根据已知条件将方程中的未知数相互消去,得到与未知数有关的简单等式,从而求解未知数。
4. 比例与相似:代数应用题中经常涉及比例和相似的概念,需要掌握比例关系、比例的性质和比例运算方法,以及相似三角形的判定条件和性质。
5. 不等式:在一些问题中,需用不等式表示条件,解不等式方程组或不等式,并判断解的范围。
二、几何应用题几何应用题是指通过几何图形和几何性质解决实际问题的题目。
解决几何应用题的关键知识点包括:1. 图形的性质:了解各种几何图形的性质,包括平行线的性质、垂直线的性质、同位角与内错角的关系等。
2. 直角三角形应用:根据直角三角形的性质,应用勾股定理、正弦定理和余弦定理解决问题。
3. 相似三角形应用:根据相似三角形的性质,应用相似比例、相似三角形的面积关系等解决问题。
4. 圆的性质与应用:掌握圆的周长、面积的计算方法,应用圆的性质解决问题,如相切、相交问题等。
5. 空间几何体应用:了解各种空间几何体的性质,包括立体图形的表面积和体积的计算方法,应用这些知识解决空间几何体的问题。
三、统计与概率应用题统计与概率应用题是指通过统计数据和概率理论解决实际问题的题目。
解决统计与概率应用题的关键知识点包括:1. 数据的收集和整理:学会通过调查、观察等方式收集数据,并进行整理、分类和汇总。
初中数学应用题技巧知识点整理
初中数学应用题技巧知识点整理初中数学中的应用题是对学生数学知识应用能力的考察,也是培养学生解决实际问题能力的一种重要方式。
解决应用题需要掌握一定的解题方法和技巧。
在本文中,将整理初中数学应用题的常见技巧知识点,帮助同学们更好地应对数学应用题。
1. 阅读题目,分析问题在解决应用题之前,首先要仔细阅读题目和问题描述,对问题有清晰的理解。
了解题目要求,明确题目中给定的条件,确定所求的未知量。
将问题拆解成多个小问题,便于分步解决。
2. 制定解题计划根据题目的要求和给定条件,制定解题计划。
可以采用列式、图表、等价关系等方式整理信息。
将问题分解为几个简单的步骤或阶段,逐步推进解题过程。
3. 使用合适的数学工具在解决应用题时,可以使用各种数学工具来辅助计算。
常用的数学工具包括尺子、量角器、直角尺、计算器等。
根据题目的要求选择合适的工具,进行测量、绘图、计算等操作。
4. 抽象问题,建立数学模型应用题中的实际问题可以通过抽象化成数学模型来解决。
根据题目中给定的条件,将实际问题转化为数学表达式或方程式,建立数学模型。
通过数学运算求解模型,最终得到问题的解。
5. 理解问题的实质解决应用题不仅要关注具体的计算过程,还需要理解问题的实质。
能够通过对问题的分析和处理,找出问题的主要特点和关键因素,从而更好地解决应用题。
6. 运用逻辑思维在解题过程中,需要进行逻辑推理和思维运算。
可以运用逻辑关系、推理规律、反证法等方法,验证答案的正确性。
同时要善于运用归纳法和演绎法,从已知条件和定理出发,逐步推导出答案。
7. 灵活应用数学知识在解决应用题时,需要运用多种数学知识和技巧。
如代数方程、平面几何、立体几何、统计与概率等。
熟练掌握数学知识,并能在实际问题中灵活应用,是解题的关键。
8. 注意问题的特殊情况在解决应用题时,注意特殊情况的存在。
特殊情况可能出现在题目的条件中,或者是与常规思维不同的问题描述。
要细心观察题目,防止忽略问题的特殊性,从而导致解题错误。
初中数学复习之应用题模板
初中数学复习专题——应用题列出方程(组)解应用题的一般步骤是:● 弄清题意和题目中的已知数、未知数,用字母表示题目中的一个(或几个)未知数; ● 找出能够表示应用题全部含义的一个(或几个)相等关系; ● 解这个方程(或方程组),求出未知数的值; ● 写出答案(包括单位名称) ● 检验答案是否符合题意应用题的类型和每个类型所用到的基本数量关系:(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。
(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。
(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。
(4)商品利润率问题:商品的利润率=商品利润商品进价,商品利润=商品售价-商品进价。
(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。
(6)行程类应用题基本关系:路程=速度×时间。
相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。
追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。
飞行问题、基本等量关系: ①顺风速度=无风速度+风速 ②逆风速度=无风速度-风速 ∴顺风速度-逆风速度=2×风速 航行问题,基本等量关系: ①顺水速度=静水速度+水速 ②逆水速度=静水速度-水速 ∴顺水速度-逆水速度=2×水速(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x ,乙为3x 。
(8)数字类应用题基本关系:若一个三位数,百位数字为a ,十位数字为b ,个位数字为c ,则这三位数为:10010a b c ++。
(9)浓度类问题:溶质=溶液×浓度(浓度溶质溶液,溶液溶质浓度==),溶液=溶质+溶剂。
初中数学常见应用题分类总结
初中数学常见应用题分类总结数学作为一门重要的学科,是我们日常生活中必不可少的一部分。
在初中阶段,学生们学习了许多数学知识,包括各种应用题。
应用题是将数学知识应用到实际问题中的题目,它们在学生的日常生活中起着重要的作用。
在本文中,我们将对初中数学常见应用题进行分类总结,并提供相应的解题思路和方法。
一、比例与比较1. 比例问题比例问题是初中数学中最常见的应用题之一。
它们涉及到两个或多个变量之间的比例关系。
在解决比例问题时,我们需要确定已知条件,建立比例关系并解方程,再根据所求条件求解。
常见的比例问题包括物品的价格比例,速度的比例等。
2. 比较问题比较问题要求我们根据已知条件对不同情况进行比较。
例如,如果给出两个商品的价格、重量等信息,我们需要确定哪一个商品更具性价比。
解决比较问题时,我们需要将已知条件转化为可比较的形式,并利用数学方法进行分析和比较。
这种类型的应用题在生活中非常常见。
二、百分比与利率1. 百分比问题百分比问题要求我们求解某个数值相对于另一个数值的百分比。
例如,求解一个商品的打折率,或者计算考试成绩的百分比。
当解决这类问题时,我们需要将百分数转化为小数,并根据已知条件进行计算。
2. 利率问题利率问题涉及到利息的计算和相关问题。
例如,计算存款利息、贷款利率等。
在解决利率问题时,我们需要了解利率的概念和计算方法,并应用相关的公式进行计算。
三、平均数与中位数1. 平均数问题平均数问题要求我们计算一组数据的平均值。
例如,求解一组考试成绩的平均分。
在解决这类问题时,我们需要将数据相加,并除以数据的个数,得到平均值。
平均数在生活中应用广泛,有助于我们对数据进行整体把握。
2. 中位数问题中位数问题要求我们找到一组数据的中间值。
例如,找到一组数中位于中间位置的值。
在解决中位数问题时,我们需要将数据按照大小进行排列,并找到中间位置的数。
中位数在统计和排序等领域有重要的应用。
四、图表与统计1. 图表问题图表问题要求我们根据给定的图表信息进行分析和计算。
初中数学应用题公式大全
初中数学应用题公式大全初中数学应用题公式大全1.路程=速度×时间,时间=路程÷速度,速度=路程÷时间对于追击问题,追击者所走的路程等于前者所走的路程加上两者之间的距离。
对于环形跑道问题,甲乙两人在环形跑道上同时同地同向出发,快的必须多跑一圈才能追上慢的;在同时同地反向出发时,两人相遇的总路程为环形跑道一圈长度。
2.工作总量=工作效率×工作时间,合作时效率相加,即每天的工作量相加。
3.溶质质量(酒精)=溶液质量(酒精加水)×浓度,溶液质量=溶质质量÷浓度,浓度=溶质质量÷溶液质量。
4.对于航行问题,顺水速度=静水速度+水速,逆水速度=静水速度-水速,静水速度=(顺水速度+逆水速度)/2,水流速度=(顺水速度-逆水速度)/2.5.利润=售价-进价,利润率=(商品利润÷商品成本)×100%。
6.打几折:即十分之几或百分之几十,例如打八折即80%。
7.利率=(利息÷本金)×100%,利息=本金×利率×期数时间,本息和=本金+利息,税后利息=本金×利率×时间×(1-20%)。
8.应缴电费=1度电的费用×灯的功率(千瓦)×照明时间,总费用=灯价+电费。
9.N次(N年)连续上升a%=底数×(1+ a%)n,N次(N年)连续下降a%=底数×(1- a%)n。
10.对于出租车问题,乘车费用=起步价+超出钱数×(总路程-起步路程)。
11.用水(用气、用电)费用=标准价+超出钱数×(总水量-标准水量)。
12.在等体积变形中,“形变,体不变”,变形前后体积相等。
13.对于一个三位数,个位是c,十位上b,百位上a,这个三位数的表示为100a+10b+c。
如果数字之间对调位置,要找出新数与原数之间关系,分式方程应用题的常见类型有工程问题、行程问题和销售问题。
初中数学应用题解题思路归纳
初中数学应用题解题思路归纳初中数学应用题是数学课程中的一大重点。
解题思路的归纳总结对于初中生有效地应对各种应用题至关重要。
在解决应用题时,学生们应该掌握一些基本的解题方法和策略。
本文将对初中数学应用题解题思路进行归纳总结,以帮助学生们更好地解决这类问题。
第一步,理解题目在解决应用题之前,学生们首先需要充分理解题目。
他们应该仔细阅读题目,并注意了解问题所涉及的场景和背景。
同时,学生们还需要明确题目中要求解答的具体问题是什么。
理解题目是解决应用题的第一步,只有完全理解了题目,才能正确地解决问题。
第二步,分析题目在理解题目的基础上,学生们应该对题目进行进一步的分析。
他们需要找出问题的关键信息,确定与问题相关的已知条件和所需求的未知量。
对于使用公式解决的问题,学生们应该找出适用的公式,并理解公式中各个参数的含义。
在分析题目时,学生们还可以绘制图表或者画图来帮助他们更好地理解问题。
第三步,选择解题方法根据题目的要求和分析结果,学生们可以选择合适的解题方法。
常见的解题方法包括代入法、变量法、逆向推理法等等。
其中,代入法是最常用的一种方法,它就是将已知条件代入到问题中,解得未知量。
变量法则是引入一个或多个变量来表示问题中的未知量,并建立相应的方程。
逆向推理法则是通过分析问题的解答过程,逆向思考出问题的解决方法。
第四步,解题步骤在选择了解题方法后,学生们应按照解题方法的要求,进行具体的解题步骤。
例如,如果是通过代入法解题,他们需要根据已知条件将数值代入到问题中,并解得未知量。
如果是通过变量法解题,他们需要建立方程,并通过解方程的过程求解问题。
在解题步骤中,学生们应注意细节,避免出现计算错误。
第五步,检查答案在解题过程中,学生们应该时刻注意问题的合理性,并在解答完问题之后进行检查。
他们可以通过代入法重新验证答案,或者通过思考问题的实际意义来判断答案的准确性。
如果发现答案不合理或有错误,学生们应该重新检查解题步骤,并找出错误的原因。
七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)
七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)七年级上册应用题专题讲解列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。
因此我们要努力学好这部分知识。
一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解—解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套??”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率??”来体现。
2.多少关系:通过关键词语“多、少、和、差、不足、剩余??”来体现。
增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?解:设去年该单位为灾区捐款x元,则2x+1000=250002x=24000x=12000答:去年该单位为灾区捐款12000元.例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?解:设油箱里原有汽油x公斤,则x-[25%x+40%×(1-25%)x]+1=25%x+40%×(1-25%)x10%x=1 x=10答:油箱里原有汽油10公斤.(二)等积变形问题等积变形是以形状改变而体积不变为前提。
初二应用题的解法
初二应用题的解法【知识点归纳】应用题的解法(含初中所有问题的解法):1,一般的应用题可从问题入手,问题问什么就设什么为未知数。
2,对于复杂的题目可多设几个未知数,然后写出其对应关系式,通常有几个未知数就列几条式,然后通过联立方程组即可求解。
3,有时候设出来的未知数只起到中介的作用,不必求解,熟悉运用初中代数的处理技巧即可求得最终结果。
(哪一个量未知就设哪个量为未知数,不必顾虑太多,因为只要方程是合理的,必定能求得最终结果!) 4,若所列的方程计算过程复杂,且不易看出等量关系的,极有可能是选取的参考对象不正确所致,此时应主动放弃,然后进行重新思考。
【典型例题讲解】类型一:设而不求例1、王华、毛平两学生从实验学校去书城,走这段路王华用30分钟,毛平用20分钟,如果王华比毛平早5分钟出发,问毛平多少分钟可追上王华?解析:本题如只设一个直接未知数,毛平x 分钟可追上王华,则不易找到问题中的数量关系。
然而增设一个辅助未知数,学校到书城的距离为y 米,那么可便于两人速度的表示:v y v y 王华毛平,==3020,从而根据追及问题可列方程如下:y x y x 30520()+=· 去分母,得253y x xy ()+=去括号,得2103xy y xy += 移项、合并同类项,得xy yy x =≠∴=101010答:毛平经过10分钟可追上王华。
练习:仿上述例题的做法解出以下的题目:1, 在环保知识竞赛中,某校代表队的队员平均分是88分,其中女生的平均成绩比男生平均成绩高10%,而男生人数比女生人数多10%,则男、女生的平均成绩各是多少?2, 甲、乙两人分别从A 、B 两地同时相向匀速前进,第一次相遇在距A 点700米处,然后继续前进,甲到B 地、乙到A 地后都立即返回,第二次相遇在距B 点400米处。
求A 、B 两地间的路程是多少米?3, 某初一(1)班同学星期日去公园春游,去时乘公共汽车,回来时步行。
初中数学重点梳理:应用题
应用题知识定位二列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等,所以对于应用题,列方程的方法往往比算术解法易于思考,易于求解。
知识梳理1.列方程组解应用题中常用的基本等量关系1)行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。
这类问题比较直观,画线段,用图便于理解与分析。
其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题也比较直观,因而也画线段图帮助理解与分析。
这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。
注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。
2)工程问题:工作效率×工作时间=工作量.3)商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:商品利润=售价-成本,中的右边为正时,是盈利;为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
(例如八折就是按标价的十分之八即五分之四或者百分之八十)4)储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。
②利息:银行付给顾客的酬金叫做利息。
③本息和:本金与利息的和叫做本息和④期数:存入银行的时间叫做期数。
⑤利率:每个期数内的利息与本金的比叫做利率⑥利息税:利息的税款叫做利息税。
初中数学:一元一次方程13种应用题型附知识点
初中数学:一元一次方程13种应用题型附知识点(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如语文资料、数学资料、英语资料、物理资料、化学资料、地理资料、政治资料、历史资料、艺术资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of educational materials for everyone, such as language materials, mathematics materials, English materials, physical materials, chemical materials, geographic materials, political materials, historical materials, art materials, other materials, etc. Please pay attention to the data format and writing method!初中数学:一元一次方程13种应用题型附知识点一、知识框架二、方程的有关概念1.方程:含有未知数的等式就叫做方程。
初中数学应用题归纳整理
初中数学应用题归纳整理相信同学们在学习初中数学的时候最担心的就是解应用题了吧,不用担心,以下是店铺分享给大家的初中数学应用题归纳以及解题技巧,希望可以帮到你!初中数学应用题归纳1 方程应用题方程应用题是通过列代数方程来解决实际问题的一类题型,它几乎贯穿于初中代数的全部。
初中代数的方程应用题包括列一元一次方程、一次方程组、一元二次方程、分式方程来解的应用题。
方程应用题的解题步骤可用六个字概括,即审(审题)、设(设未知数)、列(列方程)、解(解方程)、检(检验)、答。
考试内容多结合当前一些热点话题,如储蓄问题、人均收入问题、环保问题、商品打折问题等。
例1、为了鼓励节约用水,某地按以下规定收取每月水费:如果每月每户用水不超过25 吨,那么每吨水费按1.25 元收费;如果每月每户用水超过25 吨,那么超过部分每吨水费按1.65 元收费。
若某用户五月份的水费平均每吨1.40 元,问该用户五月份应交水费多少元?例2、国家规定个人发表文章或出书获得稿费的纳税计算方法是:①稿费不高于800 元的不纳税;②稿费高于800 元又不高于4000 元的应交超过800 元那一部分稿费的14%的税;③稿费高于4000 元的应交全部稿费的11%的税。
一人曾获得一笔稿费,并交个人所得税280元,算一算此人获得这笔稿费是多少元?2 不等式应用题列不等式或不等式组解决实际问题,是近年来中考命题的新热点,我们把这类试题称为不等式应用题。
这个问题中通常带有“不少于”、“不多于”、“不超过”、“最多”、“至少”等关键词,还常常用到求不等式整数解问题。
例:某市为了改善投资环境和居民生活环境,对旧城区进行改造。
现需要A、B 两种花砖共50 万块,全部由某砖瓦厂完成。
该厂现有甲种原料180 万千克,乙种原料145 万千克,已知生产1 万块A 砖,用甲种原料4.5 万千克,乙种原料1.5 万千克,造价1.2 万元;生产1 万块B砖,用甲种原料2 万千克,乙种原料5 万千克,造价1.8 万元。
初中应用题大全
初中应用题大全应用题是指将数学知识与实际问题相,通过建模、求解和验证等步骤,解决实际问题的数学题。
它是初中数学的重要内容之一,也是中考的重要考点之一。
本文将介绍初中数学应用题的类型和解题方法,并提供一些例子以供参考。
一、应用题的分类初中数学应用题按照其特点可以分为以下几类:1、代数应用题:涉及到代数方程、函数、不等式等知识,如行程问题、追及问题、工程问题等。
2、几何应用题:涉及到几何图形、面积、体积等知识,如勾股定理、相似三角形、圆等。
3、概率与统计应用题:涉及到概率、统计等知识,如排列组合、概率分布、回归分析等。
二、解题方法1、读题:认真阅读题目,了解题目背景和已知条件,明确要解决的问题。
2、建模:根据题目要求,建立数学模型或方程,将实际问题转化为数学问题。
3、求解:根据建立的模型或方程,进行计算或推理,得出结果。
4、验证:对结果进行验证,检查是否符合实际情况或题意。
三、例子1、代数应用题:某公司有两个车间A和B,A车间有100名工人,B 车间有50名工人。
现在公司要调整人员分配,从A车间调x名工人到B车间,使得A车间和B车间的工人数量相等。
问x等于多少?解:设从A车间调x名工人到B车间。
根据题目,可以建立以下方程:100 - x = 50 + x解得:x = 25答:从A车间调25名工人到B车间,使得A车间和B车间的工人数量相等。
2、几何应用题:如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm。
点P从点A出发,以1cm/s的速度向点C移动;同时,点Q从点B出发,以2cm/s的速度向点A移动。
问什么时候△APQ的面积最大?解:设经过t秒后,△APQ的面积最大。
根据题目,可以建立以下方程:S = (6 - t)(8 - 2t)/2 = -t² + 2t + 24 = - (t - 1)² + 25当t=1时,S有最大值25。
答:经过1秒后,△APQ的面积最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学应用题
〖知识点〗
列方程(组)解应用题的一般步骤、列方程(组)解应用题的核心、应用问题的主要类型〖大纲要求〗能够列方程(组)解应用题
内容分析
列出方程(组)解应用题的一般步骤是:
1审题:弄清题意和题目中的已知数、未知数;
2找等量关系:找出能够表示应用题全部含义的一个(或几个)相等关系;
3设未知数:据找出的相等关系选择直接或间接设置未知数
4列方程(组):根据确立的等量关系列出方程
5解方程(或方程组),求出未知数的值;
6检验:针对结果进行必要的检验;
7作答:包括单位名称在内进行完整的答语。
一,行程问题
行程问题要点解析
基本概念:行程问题是研究物体运动的,它
研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追击问题:追击时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2 流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
基本题型:已知路程(相遇问题、追击问题)、时间(相遇时间、追击时间)、速度(速度和、速度差)中任意两个量,求出第三个量。
A B
D
F
二、利润问题
每件商品的利润=售价-进货价
毛利润=销售额-费用
利润率=(售价--进价)/进价*100%
三、计算利息的基本公式
储蓄存款利息计算的基本公式为:利息=本金×存期×利率
利率的换算:
年利率、月利率、日利率三者的换算关系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。
使用利率要注意与存期相一致。
利润与折扣问题的公式
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
四、浓度问题
溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
五、增长率问题
若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则
它们的数量关系可表示为:a(1+x)n =b或a(1-x) =bn
初中阶段几个主要的运用问题及其数量关系
1、行程问题
·基本量及关系:路程=速度×时间
·相遇问题中的相等关系:
一个的行程+另一个的行程=两者之间的距离·追及问题中的相等关系:
追及者的行程-被追者的行程=相距的路程·顺(逆)风(水)行驶问题
顺速=V静+风(水)速
逆速=V静-风(水)速
2、销售问题
·基本量:成本(进价)、售价(实售价)、
利润(亏损额)、利润率(亏损率)
·基本关系:
利润=售价-成本、亏损额=成本-售价、
利润=成本×利润率亏损额=成本×亏损率 3、工程问题
·基本量及关系:
工作总量=工作效率×工作时间
4、分配型问题
此问题中一般存在不变量,而不变量
正是列方程必不可少的一种相等关系。