土壤农化分析下
土壤农化分析(教案)()
土壤农化分析(教案)(可编辑)第一章:土壤的组成与性质1.1 土壤的组成1.2 土壤的物理性质1.3 土壤的化学性质1.4 土壤的生物性质第二章:土壤样品采集与处理2.1 土壤样品的采集方法2.2 土壤样品的处理方法2.3 土壤样品的保存方法2.4 土壤样品的代表性第三章:土壤养分的测定3.1 土壤有机质的测定3.2 土壤氮素的测定3.3 土壤磷素的测定3.4 土壤钾素的测定第四章:土壤肥力的评价与调控4.1 土壤肥力的评价方法4.2 土壤肥力的调控措施4.3 土壤改良剂的应用4.4 土壤有机肥料的使用第五章:土壤环境质量监测与评价5.1 土壤环境质量的评价指标5.2 土壤污染物的来源与迁移规律5.3 土壤环境质量的监测方法5.4 土壤环境保护与修复技术第六章:土壤中微量元素的测定6.1 土壤中微量元素的种类与作用6.2 土壤中微量元素的测定方法6.3 微量元素缺乏与过量的诊断与调控6.4 微量元素肥料的施用技术第七章:土壤粒径分布与渗透性测定7.1 土壤粒径分布的测定方法7.2 土壤渗透性的测定方法7.3 土壤质地与土壤肥力的关系7.4 土壤结构改良与水肥管理第八章:土壤微生物活性与多样性8.1 土壤微生物的种类与作用8.2 土壤微生物活性的测定方法8.3 土壤微生物多样性的测定方法8.4 土壤微生物生态功能的调控第九章:土壤酶活性与土壤代谢9.1 土壤酶的种类与作用9.2 土壤酶活性的测定方法9.3 土壤代谢产物的测定方法9.4 土壤生物化学过程的调控第十章:土壤质量与农业可持续发展10.1 土壤质量的变化趋势与影响因素10.2 土壤质量保护的措施与政策10.3 农业可持续发展与土壤资源管理10.4 土壤农化分析在农业可持续发展中的应用重点和难点解析一、土壤的组成与性质难点解析:土壤生物性质的动态变化及其与土壤物理、化学性质之间的相互关系。
二、土壤样品采集与处理难点解析:不同土壤类型和环境条件下,采样方法的适应性和准确性。
土壤农化分析实验教学课件
实验1 土壤样品的采集
四、采集土样的工具
采样工具 小土铲 管形土钻 普通土钻
实验1 土壤样品的采集
五、注意事项 1、采样区内S形路线等距离随机取 2、采样点应避开特殊部位 3、每一采样点采集土样的厚度、深度、宽窄、 土样量应大体一致; 4、测定土壤微量元素的土样采集,特别注意 采样工具的选择,要用不锈钢土钻、土铲、 塑料布、塑料袋等,防治污染。
若作物理性质分析,土样通过2mm孔径的筛; 若作化学分析土样一般要通过1mm以下孔径的筛 1) 测定有效养分时,土样不能太细,否则可能破 坏矿物晶粒,使结果偏高(一般1mm,即20目) 2) 测定有机质和养分全量时要细,100目。
实验2 土壤样品的制备与保存
三、实验步骤
3、过筛 特别注意 过筛要使研磨的土样全部过筛,而不能将没过筛的样 品倒掉。 如剩下最后不多的砂砾不能磨碎,应将其称重,计算 测定结果时将该重量计算在总重量中,否则结果不真实。
• 因此:该方法中加显色剂之前不调节 溶液pH。
A
有机质
(黄色)
“钼蓝”
Olsen 法中 “钼蓝”与 有机质的吸 收特性曲线 (nm)
700 nm
880 nm
4、干扰的消除
最主要的干扰是浸出液中可溶性有机质颜色的干扰
消除方法
• 用活性炭脱色 • 不脱色,直接在880nm处比色。
实验4 石灰性土壤有效磷的测定
实验3
土壤有机质的测定
实验3
土壤有机质的测定
土壤有机质测定方法 • 经典方法(干烧法、湿烧法) • 碳自动分析仪 • 直接灼烧法 • 容量法(外加热法、稀释热法) • 比色法
土壤农化分析.3版
土壤农化分析.3版
土壤农化分析是一项重要的农业领域业务,它可以帮助农民更好地管理土壤,提高农业生产的效率和经济效益。
土壤农化分析的主要内容是通过分析土壤的化学特性,测定土壤的外部和内部条件,以便了解土壤的理化特性、生物性特性、水土环境特性和养分状况等。
具体而言,土壤农化分析主要包括以下内容:
一、土壤性质分析:土壤是一种复杂的物质,它要反映土壤结构、机理和特性,还要反映土壤形成的环境条件等。
因此,土壤性质分析是土壤农化分析的重要组成部分。
二、土壤化学分析:土壤是自然界最重要的物质,其中含有大量的元素和其它有机和无机物质。
因此,土壤化学分析是了解土壤农业意义的重要手段。
三、土壤胶体分析:土壤胶体分析可以帮助我们了解土壤中有机物质含量和结构,以及其对有机物的质量降解的可能性等。
五、土壤养分分析:土壤养分分析可以帮助我们了解土壤中的生物可利用营养物质,同时可以检测土壤中有机物和无机物的细微变化,从而了解土壤的综合状况。
土壤农化分析的意义不言而喻,它是从事农业生产的人们掌握农田土壤性质、养分状况和生物生产潜力的过程,能够根据你的分析结果,采取有效的调节配方,以提高土壤肥力、改善土壤状况,有效地提高农业生产效率,从而保护我们的环境,实现可持续发展。
土壤农化分析(教案)()
土壤农化分析(教案)第一章:土壤的组成与结构1.1 土壤的组成1.2 土壤的质地1.3 土壤的剖面结构1.4 土壤的分类与分布第二章:土壤肥力与养分2.1 土壤肥力的概念与评价2.2 土壤养分的来源与转化2.3 土壤养分的测定与调控2.4 土壤改良与施肥技术第三章:土壤水分与土壤侵蚀3.1 土壤水分的来源与分布3.2 土壤水分的测定与调控3.3 土壤侵蚀的类型与过程3.4 土壤侵蚀的防治措施第四章:土壤污染与土壤环境质量4.1 土壤污染的类型与来源4.2 土壤污染的测定与评价4.3 土壤污染的防治措施4.4 土壤环境质量的监测与保护第五章:土壤农化分析方法与技术5.1 土壤样品的采集与处理5.2 土壤养分的测定方法5.3 土壤水分的测定方法5.4 土壤污染物的测定方法第六章:土壤生物学与土壤生态学6.1 土壤生物学的概述6.2 土壤生物的分类与作用6.3 土壤生态系统的结构与功能6.4 土壤生物多样性与保护第七章:土壤农化实验设备与操作7.1 土壤农化实验设备介绍7.2 土壤样品处理设备与操作7.3 土壤养分测定设备与操作7.4 土壤污染物测定设备与操作第八章:土壤农化数据处理与分析8.1 土壤农化数据的基本处理方法8.2 土壤养分数据的统计分析8.3 土壤污染数据的的风险评估8.4 土壤农化数据的信息化管理第九章:土壤农化研究方法与进展9.1 土壤农化研究的基本方法9.2 土壤肥力评价方法与进展9.3 土壤污染研究方法与进展9.4 土壤环境质量研究方法与进展第十章:土壤农化分析案例研究10.1 土壤养分状况调查与评价案例10.2 土壤污染调查与修复案例10.3 土壤肥力改良与提升案例10.4 土壤水资源利用与保护案例第十一章:土壤与植物营养的关系11.1 土壤养分的植物吸收与利用11.2 植物营养诊断与土壤测试11.3 土壤-植物系统中营养物质的循环11.4 植物营养的平衡与调控第十二章:土壤改良与农业可持续发展12.1 土壤侵蚀的控制与土壤保持12.2 土壤盐碱化的改良技术与方法12.3 有机农业与土壤有机质管理12.4 农业可持续发展与土壤资源保护第十三章:土壤环境监测与污染防控13.1 土壤环境监测的方法与技术13.2 土壤污染的生物标志物与生物监测13.3 土壤污染的风险评估与管理13.4 土壤环境保护的政策与实践第十四章:土壤农化技术的应用与管理14.1 土壤肥力提升技术及其应用14.2 土壤污染物去除与修复技术14.3 土壤水资源管理技术及其应用14.4 土壤生物多样性保护与应用第十五章:土壤农化分析的未来趋势15.1 土壤组学与土壤生物标志物的研究15.2 土壤与数字土壤地图15.3 土壤纳米技术在土壤农化分析中的应用15.4 土壤农化分析的挑战与创新方向重点和难点解析重点:1. 土壤的组成与结构,包括不同质地的土壤及其剖面结构。
《土壤农化分析》
《土壤农化分析》一、谈谈你对《土壤农化分析》课程的特性及其与他课程的关系的认识;该课程在科研与生产中,尤其在指导合理施肥中有何作用?答:1、特性:土壤农化分析包括土壤分析、植物分析和肥料分析三个方面,本课程主要着重在土壤分析和植物分析两个方面。
土壤分析主要是土壤的基本化学特性分析,包括化学组成、肥力特性、交换性能、酸碱度、盐分等。
植物分析包括两方面,一是植物养分含量的分析,二是收获品质的分析,本课程着重在于植物养分含量的分析。
《土壤农化分析》是我们农业资源与环境专业的重要基础,它既是一门技术性较强的课程,又是一门应用学科。
既要学好基础理论、基本知识和基本操作,还要学会使用现代分析仪器;同时又要学好专业课和农学类课程,才能正确地把分析结果应用到生产实际和科学研究中去。
2、与其他课程关系的认识:本课程与《土壤学》《植物营养学》等课程密切相关,在我们实践与应用中,《土壤农化分析》为我们提供技术指导,根据不同的背景选择合适的分析方法,最终得到的数据我们可以结合土壤学、植物营养学等知识来进行分析,分析土壤的肥力情况、植物营养状况等以及了解出现这一结果的原因有哪些,《土壤农化分析》与我们学过的这些课程是相互交叉的,《土壤学》《植物营养学》等课程是教我们基础理论知识,《土壤农化分析》则是教我们如何将这些知识运用到实践中。
在学习过程中,我们应做到知识与实践相结合。
3、作用:土壤是农业生产的基础,摸清土壤底细,研究植物营养和作物施肥,都需要化学分析工作,土壤农化分析工作在进行土壤和作物营养诊断,指导作物施肥和提高农业生产上起了很重要的作用。
除此以外,土壤农化分析中土壤分析为土壤分类、土地资源开发利用、土壤改良、合理施肥等提供依据,其植物分析中研究在不同土壤、气候条件和不同栽培措施与施肥技术影响下,植物体内养分含量的变化,为合理施肥提供参考数据。
施肥的目的是为了营养植物,而植物营养又是指导施肥的理论依据。
要进行合理施肥不仅要根据植物营养的理论和植物营养的特点,还要考虑外界条件,包括气候土壤和栽培技术等因素,把他们当作一个整体,使用土壤农化分析中的技术来研究合理施肥的理论和技术,以发挥肥料增产的最大效益。
土壤农化分析
表1-4 国产定量滤纸规格
圆形直径(cm) 7 9 11 12.5 15 18 灰分每张含量(g) 3.5×10-5 5.5×10-5 8.5×10-5 1.0×10-4 1.5×10-4 2.2×10-4
▪ 定性滤纸:定性滤纸的类型与定量滤纸相 同〔无色带标志〕。灰分含量<2g·kg-1
▪ 国外某些定量滤纸的类型有〔黑带〕粗孔; 〔白带〕中孔;〔蓝带〕细孔。
须知
二、预习安排
▪ 马弗炉的使用 ▪ 分光光度计的使用 ▪ 玻璃仪器的洗涤 ▪ 称量练习〔托盘天平的使用,电子天平的
使用:直接称量、间接称量〕 ▪ 样品前处理〔土壤、农产品、化肥〕 ▪ 试剂的配制
三、实验训练
▪ 称量练习:托盘天平、电子天平的使用; 量筒、移液管、容量瓶的使用
▪ 溶液的配制
辅助教学系统中教师课件 网络资源 参考书目 鲍士旦主编,土壤农化分析,中国农业
出版社 段昌群主编,无公害蔬菜生产理论与调
控技术,科学出版社,2006年7月第一 版 金闻博,戴亚主编,烟草化学〔下〕, 合肥经济技术学院 何振立,污染及有益元素的土壤化学平 衡,中国环境科学出版社,1998年
▪ 部颁标准由化工部组织制订、审批、发布,报送国家标准 局备案。其代号是“HG〔化工〕〞;还有一种是化工部 发布的暂时执行标准,代号为“HGB〔化工部〕〞。其 编号形式与国家标准相同。
▪ 企业标准由省化工厅〔局〕或省、市级标准局审批、发布, 在化学试剂行业或一个地区内执行。企业标准代号采用分 数形式“Q/HG或Q、HG〞,即“企/化工〞的汉语拼音 缩写。其编号形式与国家标准相同。
试剂的规格
▪ 我国试剂的规格根本上按纯度划分,共有高纯、 光谱纯、基准、分光纯、优级纯、分析纯和化学 纯7种。
土壤农化分析方法讲解
速效磷步骤简化
称样:称2克土三角瓶加碳粉 加试剂:20ml浸提液 待测液制备:震荡30分钟干过滤;吸取样液 +10ml0.8摩尔硼酸于50ml容量瓶 配标曲:0、0.2、0.4、0.6、0.8、1.0标曲 上机测定:加5ml显色剂,700nm波长显色
土壤交换性钙镁的测定 (原子吸收分光光度法)
• 分析意义 • 缺镁:叶绿素下降 (失绿症) 交换性钙镁是作物生长 发育所必须的中量营养 元素,植物缺钙就会生 长受阻,节间较短、 组织柔软
土壤农化分析方法(之一)
主讲人:韦亨玲
主讲内容
• 一、PH(电位法) • 二、土壤交换性钙镁的测定(中性乙酸铵 原子吸收分光光度法) • 三、土壤有效铁锰铜锌的测定(盐酸溶液c (HCL)=0.1mol/l,原子吸收分光光度法) • 四、土壤有效硼的测定(姜黄素草酸法)
一、PH(电位法) • 分析意义 • 方法原理 • 仪器设备 • 操作步骤 • 注意事项
浓度ppm 0 2 4 6 8 10
吸取体积 ml
0
246来自8100.1mol/l盐酸定容于50毫升容量瓶
分析步骤
• 称取5克土与塑料瓶,加25毫升盐酸溶液c (HCL)=0.1mol/l,震荡90分钟,干过滤, 配标曲上机测定
结果计算
• 土壤有效Cu、Zn(mg/kg)=(ρ-ρ0)*V/m
• ρ:标准曲线查得待测液中Cu或Zn的质量 浓度(μg/ml) • ρ0:标准曲线查得空白液中Cu或Zn的质量 浓度(μg/ml) • V:加入浸提剂的体积,ml(为25ml) • m:样品的质量,g(5克)
测定(比色)
吸取1毫升清液,放入瓷蒸发皿中,加入4 毫升姜黄素溶液,在55±3℃水浴上蒸干,继 续在水浴上蒸干15min以除去残存水分,冷 却至室温。在蒸发过程中现出红色。用移液 管加入95%乙醇20ml,用塑料棒搅拌使残渣 完全溶解,在550nm波长比色。
土壤农化分析 教案
土壤农化分析教案第一章:土壤概述1.1 土壤的定义与重要性1.2 土壤的组成与结构1.3 土壤的分类与分布1.4 土壤的功能与特性第二章:土壤样品采集与处理2.1 土壤样品的采集方法2.2 土壤样品的处理与保存2.3 土壤样品的前处理技术2.4 土壤样品的代表性分析第三章:土壤理化性质分析3.1 土壤颗粒组成分析3.2 土壤水分含量分析3.3 土壤有机质含量分析3.4 土壤pH值分析第四章:土壤养分分析4.1 土壤氮素分析4.2 土壤磷素分析4.3 土壤钾素分析4.4 土壤中其他微量元素分析第五章:土壤污染与修复5.1 土壤污染的类型与来源5.2 土壤污染的影响与评估5.3 土壤修复技术与方法5.4 土壤环境质量标准与监测第六章:土壤肥力评价6.1 土壤肥力的概念与组成6.2 土壤肥力评价方法6.3 土壤肥力指标与评价体系6.4 土壤改良与施肥策略第七章:土壤微生物与土壤肥力7.1 土壤微生物的种类与功能7.2 土壤微生物与土壤肥力的关系7.3 土壤微生物群落分析方法7.4 土壤微生物活性评价与调控第八章:土壤水分与土壤侵蚀8.1 土壤水分的分布与循环8.2 土壤侵蚀的类型与过程8.3 土壤侵蚀的影响与评估8.4 土壤保持与侵蚀控制措施第九章:土壤呼吸与碳循环9.1 土壤呼吸的概念与过程9.2 土壤呼吸的影响因素9.3 土壤碳循环的意义与过程9.4 土壤碳库管理与全球气候变化第十章:土壤环境监测与保护10.1 土壤环境监测的方法与技术10.2 土壤环境保护的政策与法规10.3 土壤环境污染的防治策略10.4 土壤资源的可持续利用与保护第十一章:土壤电化学分析11.1 土壤电化学特性的重要性11.2 土壤电导率分析11.3 土壤pH电位分析11.4 土壤Eh电位分析第十二章:土壤中重金属污染分析12.1 重金属在土壤中的行为12.2 土壤重金属污染的测定方法12.3 土壤重金属污染的评价与风险管理12.4 土壤重金属污染的植物修复技术第十三章:土壤有机污染物分析13.1 土壤有机污染物的类型与特性13.2 土壤中有机污染物的检测技术13.3 土壤有机污染物的迁移与转化13.4 土壤有机污染物的环境风险评估第十四章:土壤酶学与土壤生态学14.1 土壤酶的种类与功能14.2 土壤酶活性与土壤肥力的关系14.3 土壤生态学原理与应用14.4 土壤生物多样性保护与生态系统服务第十五章:土壤农化分析实验室管理15.1 实验室的质量控制与标准化15.2 土壤样品的预处理与分析技术15.3 现代分析技术在土壤农化分析中的应用15.4 土壤农化分析结果的报告与解读重点和难点解析第一章:土壤概述重点:理解土壤的定义、重要性、组成、结构、分类和分布。
土壤农化分析完整
土壤农化分析完整土壤农化分析是农业生产管理中的重要环节,通过对土壤中有机质、养分、微生物等方面的分析,可以准确评估土壤质量和肥力水平,为农民提供科学的土壤管理措施,从而提高农作物的产量和质量。
下面将详细介绍土壤农化分析的步骤和意义。
一、土壤样品的采集在进行土壤农化分析之前,首先要采集代表性的土壤样品。
采样区域应该相对均匀,并且不同类型的土壤要分别采样。
采集土壤样品时要避开路旁、斜坡、河边等容易受到人为污染的地方。
采样工具要干净,避免带入外来污染。
采样深度一般为0-20厘米,将不同位置的样品混合均匀后取一部分作为分析样品。
二、土壤有机质的测定有机质是土壤中的重要组分,对土壤肥力和土壤结构有着重要影响。
有机质的含量可以通过测定土壤中的有机碳含量来判断。
一般可以采用干燥法、酸碱滴定法、元素分析仪等方法进行测定。
三、土壤养分的测定土壤养分是农业生产中的关键要素,包括全氮、全磷、全钾、速效氮、速效磷、速效钾等。
测定土壤养分可以采用化学分析法,如盐酸消化法、硝酸铵提取法等。
四、土壤酸碱度的测定土壤的酸碱度对植物生长和养分吸收有重要影响。
常用的测定土壤酸碱度的方法有pH值测定法和酸碱滴定法。
pH值可以通过酚酞指示剂和pH计进行测定。
五、土壤微生物的测定土壤中的微生物包括细菌、真菌、放线菌等,对土壤生态系统的稳定性和养分转化有着重要的作用。
常用的测定土壤微生物量的方法有好氧培养法、快速测定法等。
六、土壤理化性质的测定土壤的理化性质对农业生产也具有重要影响。
常用的测定土壤理化性质的方法有土壤颗粒组成的测定、土壤含水量的测定、土壤容重的测定等。
1.评估土壤质量和肥力水平,为农民提供科学的土壤管理措施。
通过分析土壤中有机质、养分、微生物等的含量和分布情况,可以了解土壤的肥力状况和潜在的问题,指导农民进行有针对性的施肥和土壤改良工作。
2.提高农作物的产量和质量。
通过合理施肥和土壤管理,提高土壤肥力和改良土壤结构,可以增加农作物对养分的吸收利用率,提高产量和品质。
土壤农化分析报告(完整)
土壤农化分析实验前言为了适应教学、科研和生产的需要,我们编写了这本包括土壤、肥料、植物及农产品分析的《土壤农化分析实验》,作为广大农业科技工作者和高等院校、中等专业学校有关专业师生的实验教材或工具书。
考虑到分析条件等原因,书中有时在同一分析项目中并列了几个容。
土壤分析主要为土壤水分、土壤物理性质、土壤化学性质及土壤酸碱度的分析。
肥料分析主要为有机肥料、单质化学肥料及复合肥有效成分的分析。
植物分析主要为植物营养诊断、植物体常量元素及微量元素分析。
农产品分析主要为农产品中碳水化合物、糖分、淀粉、粗纤维、粗脂肪、Vc及氨基酸等的分析。
由于编者水平所限,书中疏漏,错误之处在所难免,敬请提出宝贵意见,以便进一步修改目录第一篇土壤分析 (8)1—1土壤样品的采集与处理 (8)1—1.1土壤样品的采集 (8)1—1.2土壤样品的处理 (9)1—2土壤水分的测定 (10)1—2.1土壤吸湿水的测定 (10)1—2.2土壤田间持水量的测定 (10)1—3土壤有机质的测定 (11)1—4土壤中氮的测定 (13)1— 4.1 土壤全氮量的测定............................................... . (13)1— 4.2 土壤水解性氮的测定 (14)1— 5 土壤中磷的测定.................................................................................. .15 1— 5.1 土壤全磷的测定 (15)1— 5.2 土壤速效磷的测定 (17)1— 6 土壤钾素的测定 (18)1— 6.1 土壤速效钾的测定 (18)1— 6.2 土壤全钾量的测定 (18)1—7 土壤阳离子交换量的测定 (19)1—8 土壤可溶性盐分的测定 (21)1—8.1 待测液的制备 (21)1—8.2 水溶性盐分总量的测定 (21)1—8.3 碳酸根和重碳酸根的测定 (21)1—8.4 氯离子的测定 (22)1—8.5 硫酸根离子的测定 (22)1—8.6 钙和镁离子的测定 (23)1—8.7 钠和钾离子的测定 (24)1—9 土壤微量元素的测定 (25)1—9.1 土壤有效硼的测定 (25)1—9.2 土壤有效钼的测定 (25)1—9.3 土壤中铜、锌、锰、铁的测定 (27)1—10 土壤酸碱度的测定 (27)1—10.1 混合指示剂比色法 (27)1—10.2 电位测定法 (28)1—11 土壤容重和孔度的测定(环刀法) (28)1—11.1 土壤容重的测定(环刀法) (28)1—11.2 土壤孔度的测定 (29)第二篇肥料分析 (31)2— 1 肥料样品的采集与制备 (31)2— 1.1 化学肥料样品的采集与制备 (31)2— 1.2 有机肥料样品的采集与制备 (31)2— 2 肥料含水量的测定 (31)2— 2.1 常见化肥中含水量的测定 (31)2— 2.2 有机肥料中含水量的测定 (29)2— 3 氮素化肥分析 (32)2— 3.1 氮素化肥总氮量的测定 (32)2— 3.2 氮素化肥中铵态氮的测定 (33)2— 3.3 氮素化肥中硝态氮的测定 (33)2— 3.4 尿素中氮的测定 (34)2— 4 磷素化肥分析 (34)2— 4.1 磷素化肥全磷量的测定 (34)2— 4.2 过磷酸钙中游离酸的测定 (35)2— 4.3 过磷酸钙中有效磷的测定 (36)2— 4.4 碱性热制磷肥有效磷的测定 (36)2— 4.5 磷矿粉中全磷量的测定 (37)2— 4.6 磷矿粉中有效磷的测定 (37)2— 5 钾素化学肥料全钾量分析 (37)2— 6 复合肥料的分析 (38)2—7有机肥料的分析 (38)2-7.1 有机肥料全氮量的测定(铁锌粉还原法) (38)第三篇植物分析 (40)3— 1 植物样品的采集、制备与保存 (40)3— 1.1 植物样品的采集 (40)3— 1.2 植物组织样品的制备与保存 (41)3— 1.3 植物微量元素分析样品的制备与保存 (41)3— 2 植物营养诊断 (41)3— 2.1 植株汁液和浸提液的制备 (41)3— 2.2 试剂配制 (42)3— 2.3 植物组织中硝态氮的测定 (42)3— 2.4 植物组织中磷的测定 (43)3— 2.5 植物组织中钾的测定 (44)3— 3 植物水分的测定 (45)3— 3.1 风干植物样品水分的测定 (45)3— 3.2 新鲜植物样品水分的测定 (45)3— 4 植物粗灰分的测定 (46)3— 5 植物常量元素的分析 (47)3— 5.1 植物全氮、磷、钾的测定 (47)3— 5.1.1 植物样品的消煮 (47)3— 5.1.2 植物全氮的测定 (48)3— 5.1.3 植物全磷的测定 (48)3— 5.1.4 植物全钾的测定 (49)3— 5.2 植物全钙、镁的测定 (50)3— 6 植物微量元素分析 (51)3— 6.1 植物硼的测定 (52)3— 6.2 植物钼的测定 (53)3— 6.3 植物铁、锰、铜、锌的测定 (53)3—7 植物全碳的测定 (54)第四篇农产品分析 (55)4— 1 农产品样品的采取制备与保存 (55)4—1.1 籽粒样品的采集、制备与贮存 (55)4—1.2 水果蔬菜样品的采集、制备与贮存 (55)4— 2 水分的测定(植物产品) (56)4— 3 蛋白质的分析 (58)4—3.1 开氏法测定粗蛋白质 (58)4—3.2 铜盐沉淀法测纯蛋白质 (59)4— 4 农产品中碳水化合物的分析 (60)4— 4.1 糖分的分析 (60)4— 4.1.1 果蔬含糖量的测定 (61)4— 4.1.2 作物可溶性糖的测定(蒽酮比色法) (62)4— 4.2 淀粉的测定 (64)4— 4.2.1 谷物中淀粉的测定(酸水解法) (64)4— 4.2.2 酶水解法 (65)4— 4.3 植物中粗纤维的测定(酸碱洗涤重量法) (66)4— 5 植物中粗脂肪的测定 (67)4— 5.1 油重法 (67)4— 5.2 残余法 (68)4—6 植物中维生素C(2%草酸浸提—2,6—二氯靛酚滴定法) (70)4—7 农产品酸度测定(滴定法) (72)4—7.1 总酸度测定(滴定法) (73)4—8 农产品氨基酸的测定 (74)4—8.1 单指示剂甲醛滴定法 (75)4—8.2 双指示剂甲醛滴定法 (75)4—8.3 茚三酮比色法 (76)4—9 果品硬度的测定 (77)4—10 果品中可溶性固形物的测定(折射仪法) (77)附录A (79)第一篇土壤分析1—1 土壤样品的采集与处理土壤样品的采集是土壤分析工作中的一个重要环节,是直接影响着分析结果和结论是否正确的一个先决条件。
土壤农化分析
一、名词解释(20分)1. 系统误差:是由分析过程中某些固定原因引起的。
例如方法本的缺陷、计量仪器不准确、试剂不纯、环境因素的影响以及分析人员恒定的个人误差等。
2.偶然误差:又称随机误差,是指某些偶然因素,例如气温、气压、湿度的改变,仪器的偶然缺陷或偏离,操作的偶然丢失或沾污等外因引起的误差。
3.加标回收率:,评价分析方法的准确度的指标。
4. 对照试验: 只是一个条件(即因素)不同,其他条件(因素)都相同的情况下所进行的一组实验。
5. 土壤有效氮:包括无机氮和部分有机质中易分解的、比较简单的有机氮。
它是铵态氮、硝态氮、氨基酸、酰胺和易水解的蛋白质氮的总和,通常也称水解氮,它能反映土壤近期内氮素供应情况。
6. 粗蛋白质:粗蛋白质是含氮物质的总称。
包括真蛋白质和含氮物(氨化物)。
7 相对偏差:绝对误差与真值之比,常用百分数表示。
8 空白试验:用蒸馏水代替试液,用同样的方法进行试验,称为空白试验。
9 稀释热法:直接利用浓硫酸和重铬酸钾(2:1)溶液迅速混和时所产生的热(温度在120℃左右)来氧化有机碳,称为稀释热法(水合热法)。
10 好气培养法:好气培养法为取一定量的土壤,在适宜有温度、水分、通气条件下进行培养,测定培养过程中释放出的无机态氮,即在培养之前和培养之后测定土壤中铵态氮和硝态氮的总量,二者之差即为矿化氮。
11 厌气培养法:即在淹水情况下进行培养,测定土壤中由铵化作用释放出的铵态氮。
12 后煮:有机杂环态氮还未完全转化为铵态氮,因此消煮液清亮后仍需消煮一段时间,这个过程叫“后煮”。
13 土壤全磷:土壤中各种形态磷素的总和二、填空题(20分)1 含有机质高于50g·kg-1者,称土样0.1g,含有机质为20~30g·kg-1者,称土样( 0.3 )g,少于20g·kg-1者,称土样0.5g以上。
2 经典测定土壤有机质的方法有干烧法或湿烧法,放出的CO2,一般用苏打石灰吸收称重,或用标准氢氧化钡溶液吸收,再用标准酸滴定。
土壤农化分析常用化指标测定方法【精选】
土壤农化分析常用指标测定方法土壤有机质测定一、原理170~180℃条件下,用一定浓度的K2Cr2O7-H2SO4溶液(过量)氧化土壤有机质,剩余的K2Cr2O7用FeSO4滴定,由消耗的K2Cr2O7量计算出有机碳量,再乘以常数1.724,即为土壤有机质含量。
其反应式如下:K2Cr2O7与有机碳反应K2Cr2O7+8 H2SO4+3C→2Cr2(SO4)3+3CO2+8H2O过量的K2Cr2O7与FeSO4的滴定反应K2Cr2O7+4FeSO4+7 H2SO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H2O二、试剂1、0.4mol/L(K2Cr2O7-浓H2SO4)标准溶液:称取经130℃烘干的K2Cr2O7(AR)39.2245g61溶于水中,加热溶解后加入1000mL浓H2SO4定容至2000mL。
2、0.2mol/L FeSO4溶液:称取FeSO4(AR)56g溶于水中,加浓硫酸5mL,稀释至1L。
3、石英砂:粉末状。
三、实验步骤称取<0.25mm风干土0.5×××~1.0×××g于干燥试管中。
加入少量水润湿样品,准确沿避缓慢加入10.0mL K2Cr2O7-H2SO4混合液,摇分散土样,加入小漏斗,放入铁丝笼中。
将铁丝笼放入已开启185~190℃油浴锅中(使温度在170~180℃)沸腾准确5分钟;取出稍冷,擦净试管外壁油污(同时做空白实验);冷却后把溶液全部转移到200~250mL三角瓶中(最后体积控制在60~70mL),加入指示剂3滴,用已知浓度的FeSO4滴定。
四、结果计算有机质()100724.11.1100.3%30⨯⨯⨯⨯⨯⨯-=-WcVV式中:V0——滴定空白所用的FeSO4溶液的体积(mL);V——滴定样品所用的FeSO4溶液的体积(mL);c——0.2mol/L FeSO4溶液准确浓度;3.0——1/4碳原子的摩尔质量(g/mol);10-3——将mL换算为L;1.1——氧化校正系数;1.724——土壤有机碳换算成土壤有机质的平均换算系数。
土壤农化分析
⼟壤农化分析1、混合⼟样采集的原则和要求?(1)采样原则:具有⾼度的代表性、统⼀性。
(2)两点要求:①避免⼀切主观因素的影响,做到随机、多点取样;②⼏个相互⽐较的样品组应由同⼀时间(早春或晚秋)、同等数量(同样取样⼯具,取同样深度、宽度和厚度)的⼟样组成。
2、混合样品的采集⽬的、缺点、过程?(1)⽬的:把⼟壤不均⼀性的影响减⼩到最低限度,以减⼩采样误差,提⾼分析数据的可靠性,并且⼤⼤减轻了⼯作量。
(2)缺点:是多点样品混合后的测定值,从分析结果看不出该地块⼟壤的细微变化。
(3)过程:①采样区的划分及采样点的布置;②采样路线;③采样⼯具;④采样⽅法。
3⼟样过筛的注意事项?在橡⽪垫上⽤⽊棍磨碎,或粉碎机。
*注意事项:(1)⽯跞不能碎;⼟样要逐次全部过筛,不能半途弃去。
(2)过筛孔径的⼤⼩,主要根据①分析项⽬的要求;②称样量的多少⽽定。
4、那些测定项⽬需要⽤20⽬的⼟样,那些需要100⽬的⼟样?说明原因?(分别列举三个)(1)100⽬(0.15mm或0.25mm):⼟壤全N、有机质、矿质全量、Si、Fe、Al等(2)20⽬:测定速效N、P、K。
(3)它们(全量)的测定不受磨碎程度的影响,且⼟粒愈细与试剂反应愈充分。
(减少样误差和氧化完全)5、何为⼟壤有机质?⼟壤有机质是⼟壤中各种形态有机化合物的总称,它包括⼟壤中各种动植物残体、微⽣物及其分解与合成的各种有机形态。
6、⼟壤有机质的测定原理?(见实验报告)重铬酸钾—硫酸溶液与有机质作⽤:2K2Cr2O7+3C+8H2SO4=2K2SO4+2Cr2(SO4)3+3CO2↑+8H2OK2Cr2O7-在H2SO4存在下,⼟壤有机C氧化成CO2,释放出的CO2可以按照上述⼲烧法测定;也可把CO2导⼊过量Ba(OH)2溶液中使成BaCO3,然后⽤已知的标准酸(HCl)滴定剩余的Ba(OH)2,由净消耗的酸量求OM含量。
(⽤过量的,⼀定量的K2Cr2O7-H2SO4溶液氧化⼟壤有机C,使Org-C氧化成剩余的K2Cr2O7,⽤标准FeSO4回滴,根据净⽤氧化剂(K2Cr2O7)量来计算有机C量,反应式为:氧化:3C+2CrO2-7 +16H+→ 3CO2+4Cr23++8H2O滴定CrO2-7+6Fe2-+14H+ →2Cr3+ +6Fe3++7H2O终点指⽰剂有邻菲罗啉,⼆苯胺等。
土壤农化分析(完整)
土壤农化分析实验前言为了适应教学、科研和生产的需要,我们编写了这本包括土壤、肥料、植物及农产品分析的《土壤农化分析实验》,作为广大农业科技工作者和高等院校、中等专业学校有关专业师生的实验教材或工具书。
考虑到分析条件等原因,书中有时在同一分析项目中并列了几个方法,可根据分析项目和要求等选择应用。
本书包括四个方面的内容。
土壤分析主要为土壤水分、土壤物理性质、土壤化学性质及土壤酸碱度的分析。
肥料分析主要为有机肥料、单质化学肥料及复合肥有效成分的分析。
植物分析主要为植物营养诊断、植物体常量元素及微量元素分析。
农产品分析主要为农产品中碳水化合物、糖分、淀粉、粗纤维、粗脂肪、Vc及氨基酸等的分析。
由于编者水平所限,书中疏漏,错误之处在所难免,敬请提出宝贵意见,以便进一步修改目录第一篇土壤分析 (8)1—1土壤样品的采集与处理 (8)1—1.1土壤样品的采集 (8)1—1.2土壤样品的处理 (9)1—2土壤水分的测定................................................ (10)1—2.1土壤吸湿水的测定.................................... . (10)1—2.2土壤田间持水量的测定.................................... . (10)1—3土壤有机质的测定................................................... (11)1—4土壤中氮的测定......................................................... (13)1—4.1 土壤全氮量的测定............................................... . (13)1—4.2 土壤水解性氮的测定 (14)1—5 土壤中磷的测定.................................................................................. .15 1—5.1 土壤全磷的测定 (15)1—5.2 土壤速效磷的测定 (17)1—6 土壤钾素的测定 (18)1—6.1 土壤速效钾的测定 (18)1—6.2 土壤全钾量的测定 (18)1—7 土壤阳离子交换量的测定 (19)1—8 土壤可溶性盐分的测定 (21)1—8.1 待测液的制备 (21)1—8.2 水溶性盐分总量的测定 (21)1—8.3 碳酸根和重碳酸根的测定 (21)1—8.4 氯离子的测定 (22)1—8.5 硫酸根离子的测定 (22)1—8.6 钙和镁离子的测定 (23)1—8.7 钠和钾离子的测定 (24)1—9 土壤微量元素的测定 (25)1—9.1 土壤有效硼的测定 (25)1—9.2 土壤有效钼的测定 (25)1—9.3 土壤中铜、锌、锰、铁的测定 (27)1—10 土壤酸碱度的测定 (27)1—10.1 混合指示剂比色法 (27)1—10.2 电位测定法 (28)1—11 土壤容重和孔度的测定(环刀法) (28)1—11.1 土壤容重的测定(环刀法) (28)1—11.2 土壤孔度的测定 (29)第二篇肥料分析 (31)2—1 肥料样品的采集与制备 (31)2—1.1 化学肥料样品的采集与制备 (31)2—1.2 有机肥料样品的采集与制备 (31)2—2 肥料含水量的测定 (31)2—2.1 常见化肥中含水量的测定 (31)2—2.2 有机肥料中含水量的测定 (29)2—3 氮素化肥分析 (32)2—3.1 氮素化肥总氮量的测定 (32)2—3.2 氮素化肥中铵态氮的测定 (33)2—3.3 氮素化肥中硝态氮的测定 (33)2—3.4 尿素中氮的测定 (34)2—4 磷素化肥分析 (34)2—4.1 磷素化肥全磷量的测定 (34)2—4.2 过磷酸钙中游离酸的测定 (35)2—4.3 过磷酸钙中有效磷的测定 (36)2—4.4 碱性热制磷肥有效磷的测定 (36)2—4.5 磷矿粉中全磷量的测定 (37)2—4.6 磷矿粉中有效磷的测定 (37)2—5 钾素化学肥料全钾量分析 (37)2—6 复合肥料的分析 (38)2—7有机肥料的分析 (38)2-7.1 有机肥料全氮量的测定(铁锌粉还原法) (38)第三篇植物分析 (40)3—1 植物样品的采集、制备与保存 (40)3—1.1 植物样品的采集 (40)3—1.2 植物组织样品的制备与保存 (41)3—1.3 植物微量元素分析样品的制备与保存 (41)3—2 植物营养诊断 (41)3—2.1 植株汁液和浸提液的制备 (41)3—2.2 试剂配制 (42)3—2.3 植物组织中硝态氮的测定 (42)3—2.4 植物组织中磷的测定 (43)3—2.5 植物组织中钾的测定 (44)3—3 植物水分的测定 (45)3—3.1 风干植物样品水分的测定 (45)3—3.2 新鲜植物样品水分的测定 (45)3—4 植物粗灰分的测定 (46)3—5 植物常量元素的分析 (47)3—5.1 植物全氮、磷、钾的测定 (47)3—5.1.1 植物样品的消煮 (47)3—5.1.2 植物全氮的测定 (48)3—5.1.3 植物全磷的测定 (48)3—5.1.4 植物全钾的测定 (49)3—5.2 植物全钙、镁的测定 (50)3—6 植物微量元素分析 (51)3—6.1 植物硼的测定 (52)3—6.2 植物钼的测定 (53)3—6.3 植物铁、锰、铜、锌的测定 (53)3—7 植物全碳的测定 (54)第四篇农产品分析 (55)4—1 农产品样品的采取制备与保存 (55)4—1.1 籽粒样品的采集、制备与贮存 (55)4—1.2 水果蔬菜样品的采集、制备与贮存 (55)4—2 水分的测定(植物产品) (56)4—3 蛋白质的分析 (58)4—3.1 开氏法测定粗蛋白质 (58)4—3.2 铜盐沉淀法测纯蛋白质 (59)4—4 农产品中碳水化合物的分析 (60)4—4.1 糖分的分析 (60)4—4.1.1 果蔬含糖量的测定 (61)4—4.1.2 作物可溶性糖的测定(蒽酮比色法) (62)4—4.2 淀粉的测定 (64)4—4.2.1 谷物中淀粉的测定(酸水解法) (64)4—4.2.2 酶水解法 (65)4—4.3 植物中粗纤维的测定(酸碱洗涤重量法) (66)4—5 植物中粗脂肪的测定 (67)4—5.1 油重法 (67)4—5.2 残余法 (68)4—6 植物中维生素C的测定(2%草酸浸提—2,6—二氯靛酚滴定法) (70)4—7 农产品酸度测定(滴定法) (72)4—7.1 总酸度测定(滴定法) (73)4—8 农产品氨基酸的测定 (74)4—8.1 单指示剂甲醛滴定法 (75)4—8.2 双指示剂甲醛滴定法 (75)4—8.3 茚三酮比色法 (76)4—9 果品硬度的测定 (77)4—10 果品中可溶性固形物的测定(折射仪法) (77)附录A (79)第一篇土壤分析1—1 土壤样品的采集与处理土壤样品的采集是土壤分析工作中的一个重要环节,是直接影响着分析结果和结论是否正确的一个先决条件。
《土壤农化分析实验》课件
实验内容
实验内容包括土壤样品的采集、处理和制备,土壤有机质 、氮、磷、钾等养分的测定,以及土壤酸碱度、阳离子交 换容量等指标的测定。
实验结果
通过实验,学生能够获得土壤样品中各养分的含量、土壤 酸碱度、阳离子交换容量等数据,并进行分析和评价。
实验中遇到的问题及解决方案
问题
01 土壤样品不均匀,导致测定结
土壤有机质的测定
01
02
03
样品处理
将土壤样品进行酸化处理 ,以破坏土壤中的有机物 ,释放出其中的碳。
氧化剂制备
制备高锰酸钾或重铬酸钾 氧化剂,用于氧化土壤中 的有机碳。
滴定分析
将氧化剂加入样品中,通 过滴定法测定土壤中有机 碳的含量,从而计算出土 壤有机质的含量。
土壤pH值的测定
样品制备
将土壤样品与蒸馏水按一 定比例混合,制成土壤悬 浊液。
土壤氮、磷、钾的测定
原理
利用化学分析法测定土壤中氮、磷、钾的含量。
步骤
将处理好的土壤样品用酸或碱溶解,然后加入相应的试剂进行沉淀或络合反应,再通过比 色法或滴定法测定氮、磷、钾的含量。
注意事项
在测定过程中要严格控制反应条件,如温度、酸度等,以保证测定结果的准确性。同时, 由于氮、磷、钾的含量可能会随着季节和作物生长状况的变化而变化,因此需要定期进行 测定和分析。
法测定。
注意事项
消化过程中要严格控制温度和时 间,避免样品烧焦或产生其他副
反应。
土壤pH值的测定
原理
利用酸度计测定土壤pH值。
步骤
将土壤悬浊液制备好后,用酸度计测定其pH值,并记录 数据。
注意事项
在测定前要确保酸度计校准准确,避免误差。同时,土壤 pH值可能会受到土壤类型、气候、季节等多种因素的影 响,因此需要多次测定取平均值。
土壤农化分析
1)我国试剂规格是按纯度划分的,由国家主管部门颁布,常规试剂质量指标主要有优级纯(一级纯)、分析纯(二级纯)、化学纯(三级纯)三种,其中优级纯(一级纯)纯度最高。
2)油料作物种子种游离态油脂测定,直接与间接法是常规方法,二者又可称之为油重法、残余法。
3)铜还原直接滴定法测糖是在沸热条件下,用糖液滴定费林试剂。
4)配制标准系列是,线性校准曲线中标准溶液浓度值,应不少于(6)个点,求出校准曲线的回归方程式,相关系数(r)值应不少于(0.999)5)分析植物叶片中氨基酸总量,可用(茚三酮)与氨基酸在100摄氏度条件下生成紫色物质,紫色物质用(比色法)测定。
6)描述测定值与真实值之间的接近程度常用(准确度)表示,而(精密度)则是表示几次重复实验结果的接近程度。
7)开氏法测定全氮所使用的混合催化剂所起的作用不同,硫酸钾为增温剂,硫酸铜为催化剂,se为催化剂8)土壤钼可采用催化极普法或NH4SCN比色法测定,其中前者灵敏度更高。
9)土壤筛有两种表示方法,一种以“mm孔径”表示,另一种用目表示,换算关系是筛孔直径(mm)=16/目(或1英寸孔数)10)土壤有机物分为三类:1动植物残体2动植物残体的半分解产物及微生物代谢产物3腐殖酸类物质,分析土壤有机质仅包括2,311)速效磷测定,一般偏酸性的土壤采用NH4F—HCL溶液,中性的和石灰性的用碳酸氢钠溶液。
12)铵态氮肥测定方法蒸馏滴定法和甲醛法。
13)土壤全B量的常规分析方法是碳酸钠熔融,溶解后用甲亚胺或姜黄素比色法测定。
14)邻啡罗啉指示剂:称取邻啡罗啉(AR)1.485g与FeSO4.7H2O 0.695g溶于100ml水中。
15)2-羧基代二苯胺:称取C13H11O2N 0.25g研细加0.1M NaoH 12ml,加热溶解,冷却后定容至250ml,澄清取上清液。
16)甲基红-溴甲酚绿:0.5g溴甲酚绿和0.1g甲基红溶于100ml乙醇中。
17)采样(土壤)遵循的原则:代表性、典型性、对应性、适时性、防止污染。
土壤农化分析(完整)(两篇)
引言概述:土壤农化分析是一项重要的农业技术,通过对土壤样品进行检测和分析,可以了解到土壤的理化性质和营养状况,为农业生产提供科学依据和指导。
本文将从土壤采样方法、土壤理化性质分析、土壤养分分析、土壤酸碱度分析和土壤肥力评价等五个大点阐述土壤农化分析的相关内容。
正文内容:一、土壤采样方法1.确定采样地点:在农业生产中,应根据不同土地利用方式和作物需求,选择具有代表性且有代表性的采样地点。
2.采样工具选择:采样工具包括土壤钻孔器、铁锹、塑料袋等,应根据采样目的和土壤类型选择合适的采样工具。
3.采样深度:根据不同作物根系分布深度及养分分布情况,制定合理的采样深度。
4.采样数量:根据采样地块总面积和不同土壤类型的覆盖情况,确定合适的采样点数量。
5.采样方法:采用“Z”字形或螺旋形采样法,保证土壤样品的代表性。
二、土壤理化性质分析1.土壤质地分析:通过测定土壤颗粒组成比例,确定土壤质地类型,包括砂壤土、壤土和粘土等。
2.土壤含水量分析:通过测定土壤湿度和水分的含量,了解土壤水分的分布和利用情况,为合理施肥和灌溉提供依据。
3.土壤含气量分析:通过测定土壤孔隙度和空气含量,了解土壤通气情况,为根系呼吸和微生物活动提供充足的氧气。
4.土壤有机质分析:通过测定土壤中有机质含量,了解土壤的肥力水平和有机质的分解速度,为有机肥的施用提供依据。
5.土壤酸碱度分析:通过测定土壤的pH值,了解土壤的酸碱性,为土壤调理和肥料选择提供指导。
三、土壤养分分析1.全量养分分析:通过测定土壤中总氮、有效磷、速效钾等主要养分的含量,了解土壤的整体养分状况,为合理施肥提供依据。
2.速效养分分析:通过测定土壤中速效态氮、磷、钾等养分的含量,了解土壤养分供应能力和及时调控的需要。
3.微量元素分析:通过测定土壤中微量元素如铁、锌、铜等的含量,了解土壤的微量元素状况,为微量元素肥料的施用提供依据。
4.养分比例分析:通过计算土壤中主要养分的比例,了解土壤养分平衡性,为优化施肥方案和调整土壤肥力提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1植物分析按照测试方式和所测成分形态的不同,又可分为全量分析,可溶性养分的组织速测2 植物样品的采集原则:代表性,典型性,适时性,防止污染3 植物组织样品的采集,首先要定样株。
制备:鲜样;干样①洗涤:在刚采集的新鲜状态冲洗,否则一些易溶性养分很容易从已4 经死亡的组织中洗出,洗去表层。
②杀酶:80~90℃,15~30min(新鲜样品应该立刻干燥,减少体内因呼吸作用和霉菌活动引起的生物和化学变化)③粉碎→保存(磨口的广口瓶)(分析后,最好在玛瑙研钵上研磨)5 籽粒样品的采集,制备:定样株,采籽粒→一公斤左右瓜果蔬菜样品的采集和制备:采回时应冲洗,擦干,短时间内保存可以采用冷藏式,酒精浸泡处理,分析时,一般采取新鲜样品。
6 植物水分的测定目的:①水分含量是鉴定品质和判断是否适于储存的重要标准。
②植物体内的水分和干物质含量是植物生理状态和成熟度的重要指标。
7 水分的测定:(1)常压直接烘干法。
原理:样品在100—105℃情况下烘干一定时间至恒重,失去的质量被认为是水分的质量。
注意:本法适用于含水较少的样品。
恒重:前后两次重量之差不超过2mg。
(2)减压加热干燥法。
原理:在减压条件下,样品中水分在很低温度时蒸发逐尽,样品在干燥前后质量之差即为水分质量。
(3)常压二步烘干法。
原理:将鲜样置于口径稍大的容器中,添加硅砂和硅藻作为干燥辅助剂,先在低温(50--55℃)鼓风至烘脆,再在沸水浴中加热20—40h,除去大部分水分,大致干燥后再在100—105℃烘至恒重。
(4)共沸蒸馏法。
原理:用一种与水不溶,能与水形成恒沸混合物,或沸点在100℃以上的有机液体为载体,与含水的样品一起蒸馏,使待测样品中水分的沸点降低,由此可以在较低温度下样品中的水分能迅速的蒸馏出来,将蒸馏的水和载体的混合蒸汽冷凝,并收集在有刻度的接收器中,待水相和有机相分开后,即可读出水分的体积,计算样品的水分%。
此法更加适用于含有挥发性和干性油的样品。
8总灰分(粗灰分):在植物组织的农产品分析中,样品经高温灼烧,有机物中的C H O等物质与氧气结合生成CO2,水等而炭化,残留物呈无色或灰白色的氧化物的总称。
测定的意义:(1)测定植株各部的灰分含量,可以了解各种作物在不同生育期和不同器官中灰分及变动情况,对于确定作物收获期等都有重要参考价值。
(2)除测定总灰分外,其他各种灰分元素的测定,对于评价植株的营养状况也具有参考价值。
为什么是粗灰分?由于在实验中燃烧的炭粒不易完全燃尽,样品上可能粘附少量的尘土和泥沙,而且灼烧后无机盐组成有所改变或损失。
9常用灰分测定方法:一般灰化法;灰化后的残灰用水浸湿后在次灰化;灰化后的残灰用热水溶解过滤后再次灰化残渣;添加醋酸镁或碳酸钙等灰化;添加硫酸灰化(使阳离子全部为硫酸盐)10粗灰分的测定:(1)直接灰化法(一般不做空白试验)原理:将样品小心加热炭化和灼烧,除尽有机质,剩下的有机矿物质冷却后称重,即可计算样品总灰分含量。
干燥剂:一般用用135℃下烘几小时的变色硅胶注意:灰化过程中,加热速度不可太快,以防急剧于馏时灼热物局部产生大量气体而至微粒爆炸,而且在高温时p,s等也可能被炭粒还原为氢化物公式:粗灰分%=(m2-m1)/(m3-m1)×100(2)添加醋酸镁灰化法。
原理:谷物及其制品中,PO43-一般过剩阳离子,高温时P等酸性离子易遗失,且灰化中形成K Na磷酸盐,容易形成较低温度下熔融的较低温度的有机物,因而包裹在炭表面,造成供氧不足,延长灰化时间,且难以灰化完全。
因此添加灰化辅助剂,如醋酸镁与过剩的磷酸结合,残灰不熔融,呈白色松散状态,避免P的损失。
灰化时间大大缩短。
并且不损坏灰化容器。
但需做空白实验。
粗灰分(%)=(m2-m1-b)100/(m3-m1),b 为空白实验时残渣质量。
11植物常量元素的测定。
(1)植株全N的测定。
开氏法:用浓硫酸与混合加速剂消煮样品,将有机N转化铵态氮后用蒸馏滴定法。
混合加速剂:硫酸钾或硫酸钠、硫酸铜、Se。
(2)硫酸—双氧水,一次消煮可同时测N P K多种元素。
(3)硫酸—高氯酸,的氧化剂作用过于强烈,易造成N的损失,使结果不可靠。
12(1)植株全N的测定:原理:植物样在浓硫酸溶液中,历经脱水碳化,氧化等一系列作用,而氧化剂H2o2在热H2S溶液中分解出的新生态O具有强烈的氧化作用,分解硫酸没有破坏的有机物和C使有机N、P等转化为无机铵盐和磷酸盐等,因此可以在同一消煮液分别测定N、PK等元素的联合测定。
(2)奈式比色法原理:待测液中的铵在PH=11的碱性条件下,与奈式试剂作用生成橘黄色配合物,PH=4时褐色,从ph=4~11之间随ph值升高而颜色加深,ph=11时显色完全,其橘黄色的深浅在显色液NH4+~N的浓度在0.2~3mg/L时符合定律。
注意:(1)测定中有很多物质会引起浑浊,尤其是钙离子和镁离子的干扰,可加酒石酸钠掩蔽。
(2)做空白(3)双氧水滴加时直接加入溶液中,挂在壁上会很快分解,失去效用。
(4)溶液中残余的双氧水要加热分解,否则会影响N P的比色测定。
(5)如果待测液含量过高,则稀释后在测定。
(3)水扬酸—Zn粉还原法。
原理:硝态氮室温下与硫酸介质中水扬酸作用,生成硝基水扬酸,再用Na2S2O3或锌粉还原,变成氨基水扬酸,然后进行硫酸—混合加速剂法消煮分解,将全部有机N转化为铵盐,铵态氮的测定用半微量蒸馏法进行。
13植物中P的测定:当P的含量高时,选用钒钼黄法为佳,反之则可用钼蓝法原理:消煮分解制备待测液同测全N,待测液中正磷酸能与偏钒酸盐和钼酸盐在酸性条件(酸度太低时显色不完全或不显色,太低时可能生成沉淀或其它物质)下作用,形成黄色的杂聚化物钒钼酸盐。
溶液的黄色很稳定,起深浅与P含量成正比,可用比色法测定P的含量。
全P(%)=p*v*ts*10-4/m特点:H2SO4-H2O2消煮,钒钼黄比色法做空白,灵敏度较钼蓝法低,但其干扰离子少,特别是FE3+的允许量适高于钼蓝法14 植物中全K的测定:植物体内的K素几乎全部以离子态存在于组织中,用火焰光度计法测定(快速方便,结果可靠准确)全K (%)=p*v*ts*10-4/m ts=消煮液定容体积(ml)/吸收消煮液体积(ml)要求:溶液酸度不超过0.25mol/L15溶液中钙镁离子的测定—EDTA配合滴定,或AAS法EDTA配合滴定原理,植物经干灰化后用稀HCL煮沸,溶解样品中的钙和镁,待测溶液中CA2+ MG2+用EDTA直接滴定法测量,对P较高的用EDTA反滴定法16 植物微量元素的测定,Cu Zn的测定—AAS法(原子吸收分光光度法)11Pr分样方法:(1)利用Pr共性,即含N量,肽键,折射率测定Pr含量(2)利用Pr中特定An残基,酸,碱性基团和芳香基团测定Pr含量粗Pr:开氏法因其中上有氨基酸,酰氨等非Pr氨,故称粗Pr纯Pr:如果Pr用重金属盐等沉淀分离以后,进行全N测定,有N换算而成的Pr的含量,称为“纯Pr”17 籽粒中粗Pr的测定:H2SO4——K2SO4——CUSO4——SE消煮法方法原理:用开氏消煮法定N,再将测得的含N值乘以Pr换算系数,即得粗Pr含量。
N含量换算成Pr的系数,一般采用6.25,这是由Pr平均含N16%为根据导出的值。
双缩脲法:原理:pr的肽结构,具有类质于双缩脲可溶性基因,在碱性条件下能与Cu2+生成紫红色可溶络合物,Pr含肽键多时呈兰色,反之肽键呈红色,这种那个颜色反应为双缩脲反应,实验证明,Pr溶液浓度在1-1.5mg之间,呈色溶液的吸收值与Pr含量成正比关系,故可用此法18水溶性糖的测定:首先用80摄氏度水浸提,也可以用酒精浸提(淀粉和葡萄糖高时采用)水果蔬菜等通常用水作浸提剂。
干扰物质有:Pr An多糖及色素等澄清剂的作用:沉淀一些干扰物质。
澄清剂的要求:(1)能完全除去干扰物质(2)不会吸附糖类,也不改变糖类的比旋光度等理化性质(3)过剩的澄清剂应不干扰后面的操作或易于除,掉澄清剂种类(避免使用过量):(1)中性醋酸铝:能除去Pr,丹宁,有机酸,果胶,还能凝聚其它胶体,脱重力差,不能用于深色糖及糖浆制品,果蔬等(2)碱性醋酸铝:缺点:生成体积较大的沉淀,可带走还原糖,特别是用于处理深色的蔗糖溶液,作供旋光仪测定之用。
(3)醋酸锌和重铁氯化钾溶液:澄清效果好,使用色泽较浅,富含Pr的提取液(4)Al(OH)3:浅色糖的澄清(5)活性炭19 单糖的测定:单量分析法,铜还原法,氰化盐碘量法,铜还原—直接测定法(适宜于含糖量高的样品)方法原理:还原糖可使菲林试剂还原生成CU2O的沉淀,而本身被氧化和降解成糖酸。
菲林试剂是由CUSO4溶解,NAOH和KNO2C4H4O6溶液组成,酒石酸盐可与铜盐形成配离子而不致生成氢氧化铜沉淀。
在煮沸条件下,用还原糖待测液滴定一定量的菲林试剂时,铜的酒石酸配离子被还原糖还原,产生红色CU2O沉淀,还原糖则被氧化和降解。
滴定时是以亚甲基盐为氧化还原指示剂,稍过量的还原糖可使蓝色的氧化型亚甲基蓝还原为无色的还原型甲基蓝,即达滴定终点。
以亚甲基蓝为氧化还原指示剂,由兰色变为无色注意:(1)加粉状CACO3目的:中和样品中的酸度(2)无色的还原型亚甲基蓝极易被大气中的氧气氧化,恢复原来的兰色,所以滴定过程中三角瓶不能离开水溶性糖包括单糖(葡萄糖,果糖)双糖(蔗糖)20 水溶性糖的测定:(1)夏费—索姆吉法(2)半微量法(3)适用于含糖少的植物样品(4)需做空白标定方法原理:夏费—索姆吉试剂与还原糖作用生成CU2O沉淀,其原理与铜还原法相同。
用H2SO4取时,CU2O即溶解成CU+离子。
试剂中的KIO3与KI在酸化同时发生,试剂中的KIO3,是定量加入的,所以生成的I2也是一定量的,生成的I2与CU+离子发生氧化还原反应,消耗一部分I2溶液中剩余的I2以淀粉为指示剂,用NA2SO2O3标准溶液滴定,在测定同时做空白标定,以水代替糖试液,由空白标定消耗的NA2S2O3升数减去实测糖液消耗的NA2S2O3毫升数,查表即得所测糖液中还原糖的毫克数。
21蔗糖的测定:蔗糖(%)={(水溶性糖总量%)—(水解前的还原糖含量%)}*0.9522 淀粉的测定:淀粉经由酸水解成葡萄糖淀粉经由酶水解成麦芽糖和糊精再经酸水解成葡萄糖淀粉经分散和酸解后具有一定的旋光性,则是旋光法测定淀粉含量的基础23谷物种子粗淀粉的测定CACL2—HOAC浸提—旋光法(重复性好,操作也简单,快速)方法原理:淀粉是多糖聚合物,可用CACL2—HOAC为分散和液化剂,在一定酸度和加热条件下,是淀粉溶解和部分醇酸解,生成一定的水解产物,具有一定的旋光性,可用旋光计测定。
注意事项:(1)CACL2—HOAC溶液的酸度必须调节至PH2.3 (2)样品中含有水溶性糖类,须先用80%乙醇洗糖(3)CACL2—HOAC溶液应放在放入甘油浴前约5MIN时,才加入,以防样品粘附在瓶底,影响分散效果(4)试液证明,在加热初期搅拌,淀粉易结块。