自动变速箱原理及构造

合集下载

自动挡变速箱原理

自动挡变速箱原理

自动挡变速箱原理1.液力变矩器:自动挡变速箱的核心部件之一是液力变矩器。

液力变矩器利用液体的流动来完成能量的传递。

它由引擎侧涡轮叶轮、泵轮和传动侧涡轮叶轮组成。

引擎侧涡轮叶轮和泵轮通过液压传动装置相连接,可以传递动力。

液压传动装置根据转速和负载的变化,调整引擎侧涡轮叶轮和泵轮之间的流体阻力,从而实现传动效果。

2.齿轮组:自动挡变速箱中的齿轮组用于传递动力,实现不同齿比的变速。

齿轮组中包括主动齿轮、从动齿轮和倒档齿轮等。

通过控制不同齿轮之间的啮合关系,可以实现车辆不同速度段的换挡控制。

3.液压系统:液压系统是自动挡变速箱中的一个重要组成部分。

它由油泵、油筒、电磁阀和控制模块等部件组成。

液压系统通过控制油的流向和压力,实现齿轮组的换挡以及液力变矩器的调节。

不同车型的液压系统结构和控制策略可能会有所不同。

1.低速启动阶段:当驾驶员启动汽车时,液力变矩器会将引擎转速传递到齿轮组。

汽车以较低的齿比启动,从而提供较大的起动力。

2.加速阶段:当汽车需要加速时,液力变矩器会逐渐将动力输出到齿轮组。

液压系统会通过电磁阀和控制模块,根据车速和发动机负载的变化,调整泵轮和涡轮叶轮之间的流量和阻力,实现平稳的加速。

3.变速阶段:当车速逐渐增加时,液压系统会控制齿轮组的换挡。

根据转速和负载的需求,液压系统会控制电磁阀的开关,改变齿轮组的啮合位置,实现不同齿比的换挡。

4.减速和停车:当驾驶员需要减速或停车时,液压系统会停止引擎的输入功率,并将动力传递到齿轮组。

在减速和停车的过程中,液压系统会通过电磁阀的控制,调整液力变矩器的阻力,使得汽车平稳停下。

总之,自动挡变速箱通过液力变矩器、齿轮组和液压系统的配合工作,实现汽车在不同速度下的变速和换挡。

它的工作原理复杂,但通过系统的控制和调节,使得驾驶员能够更加方便和舒适地驾驶汽车。

爱信6at变速箱的构造及原理

爱信6at变速箱的构造及原理

爱信6at变速箱的构造及原理一、概述爱信6AT变速箱是一款广泛应用于汽车领域的自动变速箱,其具有换挡平顺、传动效率高、可靠性好等特点。

本文将详细介绍爱信6AT 变速箱的构造及原理,帮助读者了解其工作机制和维修保养方法。

二、构造1. 内部结构爱信6AT变速箱主要由液力变矩器、行星齿轮组、换挡执行机构、润滑系统、冷却系统等组成。

其内部结构复杂,由多个液压缸、阀门、密封件等构成,确保了变速箱的正常运行。

2. 外部结构爱信6AT变速箱外部主要由壳体、油底壳、手动阀箱、输入输出轴等构成。

壳体是变速箱的主体,由铝合金等材料构成,具有较高的强度和耐腐蚀性。

油底壳用于储存变速箱油,并具有一定的散热作用。

手动阀箱用于控制变速箱的换挡过程,输入输出轴则将动力传输至车轮。

三、原理1. 工作原理爱信6AT变速箱通过液力变矩器传递动力,当发动机运转时,变速箱油在液压缸的作用下推动行星齿轮组运转,从而实现不同的传动比。

手动阀箱则通过控制液压缸的开启和关闭,实现不同档位的切换。

润滑系统和冷却系统则保证了变速箱的正常运行。

2. 换挡过程爱信6AT变速箱的换挡过程由手动阀箱控制,通过按压、释放液压活塞来实现不同档位的切换。

具体过程如下:当驾驶员踩下离合器踏板时,手动阀箱释放换挡执行机构的液压,使得行星齿轮组和离合器片结合或分离,从而实现换挡。

同时,液压系统还控制阀体,实现变速箱油的流动,确保换挡过程的流畅。

3. 动力传递过程爱信6AT变速箱的动力传递过程包括输入轴、行星齿轮组、锁止离合器、输出轴等部件。

当驾驶员踩下油门踏板时,输入轴驱动行星齿轮组运转,并通过锁止离合器将动力传递至输出轴,最终传送到车轮。

在低速挡时,离合器处于分离状态,确保了变速箱的平顺性。

而在高速挡时,离合器结合,提高了传动效率。

四、维修保养1. 日常保养爱信6AT变速箱的日常保养包括定期更换变速箱油和检查油液位。

变速箱油对变速箱的运行至关重要,能够起到润滑、冷却、传动的功能。

at自动变速箱工作原理

at自动变速箱工作原理

at自动变速箱工作原理
AT自动变速箱工作原理是通过一系列的传动元件和液压系统
来实现汽车的变速功能。

其中,关键的主要部件包括液力变矩器、行星齿轮组、离合器和液压控制系统。

下面将逐步介绍这些部件的工作原理。

液力变矩器是AT自动变速箱的核心部件之一。

它通过液体的
动能传递和转换来实现发动机与车辆之间的连接。

液力变矩器由驱动轮、驱动轴、泵轮和涡轮组成。

当发动机运转时,液力变矩器会将发动机的动力传递到涡轮,从而驱动车辆。

行星齿轮组是AT自动变速箱中的另一个重要部件。

它由太阳
齿轮、行星齿轮和环绕齿轮组成。

这些组件通过一系列的齿轮传动来实现不同的变速比。

当齿轮组合在不同方式时,可以实现不同的速度输出。

通过调整不同的齿轮组合,车辆可以在不同速度下保持理想的运行状态。

离合器是用于连接和断开发动机动力的装置。

AT自动变速箱
中的离合器由多个离合片组成。

当需要改变变速时,液压控制系统会对离合器施加压力来连接或断开离合片。

这样可以实现不同齿轮的切换,从而改变车辆的速度和动力输出。

液压控制系统是AT自动变速箱的控制中枢。

它由液压泵、液
压阀和传感器组成。

当车辆需要变速时,液压泵会产生液压力,并通过液压阀将其传递到对应的离合器和齿轮组合上。

传感器会通过监测车辆的速度、转速和负载等参数来判断何时进行变速,并向液压控制系统发送信号。

通过上述的工作原理,AT自动变速箱可以根据车辆的速度和负载条件,自动选择合适的变速比,实现平稳的加速和高效的能量传递。

变速箱基本原理

变速箱基本原理

变速箱基本原理变速箱是汽车动力传动系统的重要组成部分,它的基本原理是通过改变齿轮的传动比,使发动机的转速与车轮的转速达到最佳匹配,从而实现车辆的顺畅加速和高速行驶。

本文将从变速箱的工作原理、主要构造及其作用等方面进行介绍。

一、变速箱的工作原理变速箱利用不同齿轮的组合来改变发动机的转速和车轮的转速,从而实现不同速度的行驶。

它的工作原理可以简单分为两个部分:齿轮传动和离合器。

齿轮传动是变速箱实现不同传动比的关键。

变速箱内部有多个齿轮,它们通过不同的组合方式来实现不同的传动比。

当齿轮传动比较大时,车轮转速较低,适合低速行驶和爬坡;当齿轮传动比较小时,车轮转速较高,适合高速行驶。

通过齿轮的组合变化,变速箱可以提供多档位的选择,满足不同行驶条件下的需求。

离合器则是实现发动机与变速箱的连接与分离。

当车辆起步或者换挡时,发动机和变速箱之间需要进行连接,而在停车或者换挡时需要分离。

离合器的主要作用是通过摩擦片的压合与分离,实现发动机与变速箱之间的有无连接。

离合器的操作由驾驶员通过踩离合器踏板来控制。

二、变速箱的主要构造变速箱主要由齿轮、轴承、离合器和控制系统等组成。

齿轮是变速箱的核心部件,它们通过咬合传递动力。

齿轮一般分为一级齿轮、二级齿轮等,不同的齿轮组合形成不同的传动比。

轴承主要用于支撑和定位齿轮和其他运动部件,减小摩擦和磨损。

离合器是变速箱的一个重要部件,它通过摩擦片的压合与分离,实现发动机与变速箱之间的连接与分离。

离合器的操作由驾驶员通过踩离合器踏板来控制。

控制系统是变速箱的智能化部分,它通过传感器和电子控制单元来感知车辆的运动状态和驾驶员的操作,并根据这些信息来控制变速箱的工作。

控制系统可以根据不同的驾驶需求,自动选择合适的挡位,并进行换挡操作。

三、变速箱的作用变速箱的作用主要体现在以下几个方面:1. 提供多档位选择:变速箱可以提供多档位的选择,适应不同的行驶条件。

低档位提供较大的传动比,适合起步和爬坡;高档位提供较小的传动比,适合高速行驶。

自动挡汽车dct变速箱内部工作原理

自动挡汽车dct变速箱内部工作原理

自动挡汽车DCT变速箱内部工作原理1. 引言自动挡汽车(Dual Clutch Transmission, DCT)变速箱是一种先进的变速器类型,它结合了手动挡和自动挡的优点。

DCT变速箱采用了两个离合器和两个独立操作的离合器控制单元,以实现快速而平滑的换挡过程。

本文将详细解释DCT变速箱内部的工作原理。

2. DCT基本构造DCT变速箱由以下几个主要组件构成:2.1 主轴主轴是DCT变速箱中最重要的组件之一,它连接发动机输出轴和驱动轮。

主轴上安装有多个齿轮,通过不同齿数的齿轮组合实现不同的传动比。

2.2 离合器DCT变速箱中有两个离合器:第一个离合器连接到一套齿轮,用于驱动车辆在低档位行驶;第二个离合器连接到另一套齿轮,用于高档位行驶。

这两个离合器可以独立操作,以实现平滑换挡。

2.3 齿轮机构DCT变速箱中的齿轮机构由多个齿轮组成,每个齿轮与主轴的某个位置相连。

通过选择不同的齿轮组合,可以实现不同的传动比。

其中一个离合器连接到一套齿轮,而另一个离合器连接到另一套齿轮。

2.4 控制单元DCT变速箱中有两个独立操作的离合器控制单元,用于控制两个离合器的操作。

这些控制单元根据车辆速度、加速度和驾驶者输入等信息来判断何时换挡,并发送指令给离合器。

3. 工作原理DCT变速箱通过两个独立操作的离合器和多组齿轮实现换挡过程。

下面将详细解释DCT变速箱内部工作原理:3.1 初始状态在初始状态下,第一个离合器处于闭合状态,连接到低档位的齿轮组;而第二个离合器则处于断开状态。

此时发动机输出功率通过第一个离合器传递给低档位的齿轮组,从而驱动车辆。

3.2 换挡过程当需要升档时,第一个离合器逐渐断开,同时第二个离合器逐渐闭合。

在这个过程中,两个离合器的操作有一小段时间重叠,以确保平稳的换挡。

当第一个离合器完全断开后,第二个离合器闭合,连接到高档位的齿轮组。

3.3 换挡完成当换挡完成后,第一个离合器完全断开,第二个离合器完全闭合。

丰田cvt变速箱的原理和结构

丰田cvt变速箱的原理和结构

丰田cvt变速箱的原理和结构丰田CVT变速箱,即无级变速器,是一种基于连续变速比原理的自动变速箱。

它通过无级变化的齿轮传动比来实现不同速度范围的变速,在提供较高效率和更平顺的驾驶感受的同时,还能提高燃油经济性和减少尾气排放。

一、CVT原理1. 基本原理:传统的变速箱通过预设的齿轮来进行换挡,而CVT则采用钢带或链条连接的两个可变直径的变速器,使发动机在任何速度范围内保持在最高效率点。

它可以连续调整齿轮比,实现无级变速。

2. 变速器构造:CVT传动系统由主动轮和从动轮组成,主动轮连接发动机输出轴,从动轮连接传动轴。

3. 钢带传动:CVT采用钢带传动,即由钢质带轮连接主动轮和从动轮。

变速器通过改变主动轮和从动轮的直径来改变装置的速比。

4. 液力传动:CVT变速箱的核心是液力驱动器,它通过油泵和涡轮组成。

液力传动器可以在低速和高速下提供不同的变速比,以适应不同的驾驶条件。

二、CVT结构1. 油泵和涡轮:CVT变速箱中的液力传动器包含一个油泵和一个涡轮。

油泵通过转子将油液从油箱抽出,并将其压入涡轮。

涡轮将来自油泵的油液转化为动能,驱动主动轮。

2. 变速器齿轮组:CVT变速器齿轮组由一对齿轮和一个动力输入轴组成。

齿轮是由齿轮传动器和轴的方式连接在一起的,齿轮可变直径设计使得变速器可以提供不同速度范围的变速。

3. 离合器:CVT变速箱中的离合器用于使发动机与变速器相连接或分离。

当离合器关闭时,发动机的动力传递给变速器。

4. 控制单元:CVT变速箱的控制单元是一个电子装置,它通过监测车辆的动态参数和控制传动系统来实现最佳性能和燃油经济性。

5. 驱动模式:CVT变速箱通常配有多种驱动模式,例如经济模式、运动模式和雪地模式等,以满足不同驾驶需求。

三、CVT的优势1. 平顺变速:CVT变速箱通过连续变速比的传动方式,使车辆的加速变得更加平顺。

没有传统变速箱的切换震动和间隙,提供良好的驾驶体验。

2. 高效节能:CVT变速箱能够让发动机保持在最高效率工作点,提高燃油经济性。

AT自动变速箱的结构及工作原理

AT自动变速箱的结构及工作原理

AT自动变速箱的结构及工作原理AT自动变速箱(Automatic Transmission)是一种能够自动控制车辆换挡的关键部件。

相对于传统的手动变速箱,AT变速箱具有更高的换挡顺畅性、操作简便性和驾驶舒适性。

本文将详细介绍AT自动变速箱的结构和工作原理。

一、AT自动变速箱的结构AT自动变速箱由以下几大部分组成:油泵、液力变矩器、齿轮组、离合器组(包括多片湿式摩擦片离合器和湿式多盘离合器)、制动器组(包括多片湿式摩擦片制动器和离合器式制动器)、控制系统和传感器等。

下面将对每个部分进行详细介绍。

1.油泵:油泵是AT变速器传动的动力源,负责提供润滑油压力和流量,以保证各个部件正常工作。

油泵通常由泵体、泵轮和泵齿轮组成。

2.液力变矩器:液力变矩器是AT变速器的重要部件之一,用于传递发动机的扭矩到齿轮组。

液力变矩器主要由涡轮和泵轮组成,涡轮与泵轮通过液力传递扭矩。

当发动机转速变化时,涡轮和泵轮之间的液力传递会发生变化,从而实现换挡。

3.齿轮组:齿轮组是AT变速箱的能量传递部分,由多个齿轮和轴组成。

不同的齿轮组合可以实现不同的挡位和变速比。

常用的齿轮组结构有行星齿轮、齿轮套和离合器组。

4.离合器组:离合器组是AT变速器实现换挡的关键组成部分。

多片湿式摩擦片离合器和湿式多盘离合器是常见的两种类型。

离合器组通过控制一些离合器的接合和分离,实现不同挡位间的自由切换。

5.制动器组:制动器组主要用于防止一些齿轮或离合器在不需要时仍然转动,从而实现换挡时的平稳过渡。

多片湿式摩擦片制动器和离合器式制动器是常见的两种制动器类型。

6.控制系统和传感器:控制系统通过接收传感器反馈的信息,控制离合器组和制动器组的工作,实现换挡过程的控制和调整。

传感器用于检测发动机转速、车速、油温等参数。

以上是AT自动变速箱的主要结构部分,每个部分都具有不可替代的功能。

二、AT自动变速箱的工作原理1.空挡/停车:当变速杆处于空挡或停车位时,离合器组和制动器组都处于解除状态,发动机的扭矩无法传递到驱动系统。

自动变速箱工作原理

自动变速箱工作原理

自动变速箱工作原理
自动变速箱工作原理是由多个组件和传动装置组成的系统。

主要的组件包括液力变矩器、行星齿轮机构、湿式多片离合器和控制单元。

液力变矩器是自动变速箱的核心部件之一。

它由泵轮、涡轮和导轮组成。

当发动机转速增加时,泵轮会推动液体进入涡轮,并使转动的动力传递到行星齿轮机构。

同时,导轮会受到液体的反作用力,使变矩器保持平衡和稳定。

行星齿轮机构由多个行星齿轮组成,通过连接齿轮的轴和壳体的外表面来传递动力。

其中,太阳齿轮是连接到发动机输出轴的主要齿轮,在液力变矩器的作用下,太阳齿轮的转动会驱动其他齿轮旋转,并且通过轴上的离合器将动力传递到车辆的传动轴上。

湿式多片离合器位于行星齿轮机构内部,用于改变行星齿轮的传动路径和比例。

离合器由摩擦片组成,当它们接触时,可以将相邻的齿轮锁定在一起,形成不同的传动比。

通过控制离合器的接触和脱离,可以实现变速器的换挡操作。

控制单元是自动变速箱的智能核心,它通过传感器和计算机程序监控车辆的速度、转速和驾驶习惯。

基于这些信息,控制单元将发送信号给液力变矩器和离合器来控制变速箱的换挡和传动比。

总之,自动变速箱通过液力变矩器、行星齿轮机构、湿式多片
离合器和控制单元等组件的协同作用,实现了自动换挡和传输动力的功能。

这使得驾驶者可以更加轻松和舒适地驾驶车辆,同时提高了车辆的燃油经济性和操控性能。

AT自动变速箱的结构及工作原理

AT自动变速箱的结构及工作原理

AT自动变速箱的结构及工作原理
AT自动变速箱是一种能够自动调节齿轮和离合器比例的变速器,以适应不同条件下的行驶时速和发动机扭矩需求。

其主要由液力变矩器、齿轮箱、以及控制系统等组成。

液力变矩器是AT变速箱的核心元件,由液力离合器、液力扭矩放大器、以及液力传动机构组成。

液力离合器相当于变速箱与发动机之间的连接器,并且其具有工作时扭矩放大特性,可使发动机的低速高扭矩输出有效转移到低速低扭矩输出。

齿轮箱主要由行星齿轮组、轴与轴承、以及离合器与制动器等构成。

行星齿轮组一般由环齿、行星轮、太阳轮三部分组成,可实现高速低扭矩和低速高扭矩的转换,同时通过制动器和离合器的控制可以实现齿轮之间的换挡。

控制系统主要由变速器控制器、传感器以及电控单元等组成。

变速器控制器接收传感器传递的车速、油门开度、以及变速器输入等参数后进行信号处理,然后通过电磁阀控制离合器和制动器的动作,以实现齿轮的换挡。

在工作过程中,液力变矩器能够自由调节发动机输出转矩,在低速行驶时,其具有强大的传动能力,从而可以更好地适应城市交通拥堵。

同时,在高速行驶过程中则适用于燃油经济性的需求,实现了能量利用的最大化。

总体而言,AT自动变速箱通过液力传动和电子控制的方式实
现了换挡并不断优化工作效率,使得驾驶更为舒适,同时更加符合现代化生活的各种用车需求。

自动档变速箱工作原理

自动档变速箱工作原理

自动档变速箱工作原理
自动变速箱是一种更先进的车辆变速器,它利用一定的机械、液压或电子控制系统来实现变速操作,从而改变发动机输出转矩和车辆速度之间的配比关系。

其工作原理主要包括齿轮组、液力变矩器、离合器和控制系统等几个关键部分。

1. 齿轮组:自动变速箱中的齿轮组由多个齿轮组成,每个齿轮都有不同的大小和齿数,通过不同组合来实现不同的速度传递。

齿轮组通常包括行星齿轮组,它们可以提供多种变速比,使得车辆可以在不同的速度范围内运行。

2. 液力变矩器:液力变矩器是自动变速箱中的一个重要组件,它负责将发动机输出的动力传递给齿轮组。

液力变矩器利用液体在转子内部产生涡流,实现发动机转速和齿轮箱输入轴的连接,从而将传动动力传递到齿轮组。

3. 离合器:离合器在自动变速箱的工作中起到关键的作用,它用于控制动力的传递和切断。

当需要变速时,离合器会断开发动机与车辆轮胎之间的连接,同时改变齿轮组的传动比例。

离合器的工作状态是由控制系统根据车辆的加速、减速和行驶情况来调节的。

4. 控制系统:自动变速箱的控制系统是实现自动化变速的核心部分。

控制系统通过传感器监测车辆的速度、油门踏板的位置和发动机转速等信息,然后根据预设的算法和程序来调整离合器和齿轮组的工作状态,使得变速箱可以自动适应不同的驾驶需求。

通过齿轮组、液力变矩器、离合器和控制系统的协调工作,自动变速箱可以根据驾驶员的需求和车辆的行驶状况进行智能的变速操作,提供更加舒适和高效的驾驶体验。

自动变速箱齿轮变速机构工作原理

自动变速箱齿轮变速机构工作原理

自动变速箱(Automatic Transmission)是一种能够根据车辆行驶状态和驾驶需求自动选择适当的齿比以提供动力传输的装置。

其中,齿轮变速机构扮演着关键的角色。

以下是自动变速箱齿轮变速机构的工作原理简述:
1.齿轮组成:自动变速箱的齿轮组由多个不同大小的齿轮组成,这些齿轮之间通过离合器、
制动器和转子等元件相互连接。

2.多段式设计:齿轮组通常分为多个段(或称为档位),每个段对应特定的齿比。

不同档
位的选用通过操作杆或电子控制单元来实现。

3.离合器和制动器:在自动变速箱中,离合器和制动器被用于控制齿轮的连接与断开。


合器用于连接齿轮,制动器则用于制止某个齿轮旋转。

4.液压系统:自动变速箱的液压系统负责控制离合器和制动器的操作。

通过调节液压压力,
实现齿轮的换挡和变速。

5.动力传输:发动机产生的动力通过液力变矩器(Torque Converter)传递至齿轮组。


力变矩器是自动变速箱中的一个重要组件,它利用油液的流动来实现发动机与齿轮组之间的动力传递。

6.控制系统:自动变速箱的控制系统使用传感器和电子控制单元(ECU)来监测车辆的行
驶状态和驾驶者的需求,根据这些信息来选择合适的档位和齿比。

整个过程中,齿轮变速机构根据不同的工作状态和驾驶条件,通过选择合适的齿比来匹配发动机输出的扭矩和车辆的速度需求,以提供平稳的动力传输和舒适的驾驶体验。

请注意,以上是一个简化的描述,实际自动变速箱的工作原理可能因不同的设计和技术而有所差异。

汽车变速箱的工作原理

汽车变速箱的工作原理

汽车变速箱的工作原理汽车变速箱是汽车传动系统中的核心部件,其主要功能是根据行驶速度和负载条件,通过改变齿轮比,实现动力传递和驱动轮的调速。

下面将详细介绍汽车变速箱的工作原理。

一、手动变速箱工作原理手动变速箱采用齿轮传动原理,通过离合器将发动机动力传递给齿轮系统,引导输入轴带动齿轮旋转。

齿轮系统中的不同齿轮组合形成不同的齿轮比,实现不同的速度变换。

当驾驶员切换挡位时,通过操纵离合器、换挡杆和同步器等操作机构,将特定的齿轮组合锁定在输出轴上,从而达到速度变换的目的。

二、自动变速箱工作原理自动变速箱根据车速、转速和负载等参数,通过液力变矩器和齿轮系统实现无级变速。

液力变矩器是自动变速箱的核心部件,它将发动机动力传递给齿轮系统,并通过液力传动实现动力的传递和调节。

在低速行驶时,液力变矩器提供较大的变矩放大比,使车辆能够顺利起步和爬坡;而在高速行驶时,变矩放大比减小,提高传动效率。

同时,通过液压控制单元感知并实时调整变矩器的工作状态,使变速箱能够根据不同驾驶条件和行驶路况进行自动变速。

三、自动手动一体变速箱工作原理自动手动一体变速箱集成了手动变速箱和自动变速箱的特点。

它通过油压传动系统和电控系统实现自动化的换挡操作。

在自动模式下,车辆会根据驾驶条件和行驶路况自动选择最适合的挡位。

而在手动模式下,驾驶员可以通过换挡拨片或换挡杆手动实现挡位的切换。

四、无级变速箱工作原理无级变速箱采用连续变速的原理,通过两个锥形轮组合和钢带实现传动。

当钢带移动至不同锥形轮的位置时,拉紧程度的改变会导致输出和输入的速度比例变化,实现无级变速。

无级变速箱具有较宽的变速范围和平顺的变速过程,能够提高燃油经济性和驾驶舒适性。

总结:汽车变速箱的工作原理分为手动变速箱、自动变速箱、自动手动一体变速箱和无级变速箱,它们都是根据不同的机械结构和传动方式实现动力传递和速度变换。

了解汽车变速箱的工作原理对于驾驶员合理使用变速箱、提高驾驶效率具有重要意义。

汽车变速箱构造与工作原理

汽车变速箱构造与工作原理

汽车变速箱构造与工作原理汽车变速箱是指汽车传动系统中的一个重要部件,用于调整引擎输出转矩和车轮驱动力之间的关系,使汽车能够在不同速度和负载下正常运行。

在汽车中,常见的变速箱类型包括手动变速箱、自动变速箱和CVT变速箱。

下面将详细介绍这几种变速箱的构造和工作原理。

手动变速箱是一种由驾驶员手动操作的变速装置,它主要由离合器、齿轮组和选择机构组成。

手动变速箱的工作原理是通过操作离合器和选择机构来使不同齿轮组合投入或脱出,以实现车辆的前进、后退或停车。

在手动变速箱中,离合器用于分离发动机和变速箱,当驾驶员操作离合器踏板时,发动机的转矩不会传递到变速箱和车轮上,从而实现换档。

而选择机构的作用是使驾驶员可以选择不同的齿轮组合,从而改变车辆的速度和转矩输出。

自动变速箱是一种由液力变矩器和行星齿轮组成的变速装置,它通过液力的作用将发动机的转矩传递到车轮上。

自动变速箱的工作原理是通过液力变矩器的工作来实现离合器的功能,它可以自动根据车速和负载的变化来调整传动比,从而实现换挡操作。

液力变矩器主要由泵轮、涡轮和涡轮蜗杆组成,当发动机工作时,泵轮会带动液体流动,从而转动涡轮,然后通过涡轮蜗杆将转动方向改为与泵轮相反,最后将转矩传递到行星齿轮组,从而实现车辆的前进。

CVT变速箱是一种采用可变传动比的变速装置,它主要由驱动轮、驱动链带和锥轮组成。

CVT变速箱的工作原理是通过改变驱动链带在驱动轮和锥轮之间的位置和张力,以实现无级变速。

当发动机工作时,驱动轮会带动驱动链带转动,并且通过改变锥轮的位置和张力,来改变驱动链带的传动比。

CVT变速箱具有传动比连续可调的特点,可以使发动机在不同转速下都能提供最佳的输出功率和燃油经济性。

总的来说,汽车变速箱在汽车传动系统中起着关键的作用,它通过调整发动机转矩和车轮驱动力之间的关系,使车辆能够在不同速度和负载下正常运行。

不同类型的变速箱具有不同的构造和工作原理,但它们都能够满足汽车换档和变速需求。

at变速箱的工作原理

at变速箱的工作原理

at变速箱的工作原理AT变速箱是一种自动变速器,其工作原理是利用液压传动和齿轮传动的原理,将发动机的转速转换成车轮的转速,从而实现车辆的加速和减速。

本文将介绍AT变速箱的工作原理及其主要组成部分。

一、AT变速箱的工作原理AT变速箱的工作原理可以分为两个部分:液压传动和齿轮传动。

1. 液压传动AT变速箱中的液压传动系统包括液压泵、液压离合器、液压制动器和液压控制阀等。

当驾驶员踩下油门时,发动机将产生动力,驱动液压泵旋转,从而将液压油压送到液压离合器和液压制动器中。

液压离合器和液压制动器分别起到连接和断开发动机和变速箱之间的传动作用。

当液压离合器接通时,发动机的动力将传递到变速箱中,从而驱动车轮。

当液压制动器接通时,车轮将停止转动,从而实现车辆的减速。

2. 齿轮传动AT变速箱中的齿轮传动系统包括行星齿轮组和离合器等。

行星齿轮组由太阳齿轮、行星齿轮和环形齿轮组成,通过离合器的控制实现不同齿比的转换。

当驾驶员需要加速时,液压控制阀会将离合器控制在低速齿比上,从而实现车辆的加速。

当驾驶员需要高速巡航时,液压控制阀会将离合器控制在高速齿比上,从而实现车辆的高速行驶。

二、AT变速箱的主要组成部分1. 液压泵液压泵是AT变速箱的动力源,其主要作用是将发动机产生的动力转换成液压能,从而驱动液压传动系统的工作。

液压泵通常采用齿轮泵或液压叶轮泵,其工作原理类似于发动机的油泵。

2. 液压离合器和液压制动器液压离合器和液压制动器是AT变速箱中的核心部件,其主要作用是连接和断开发动机和变速箱之间的传动作用。

液压离合器和液压制动器的控制由液压控制阀完成,其工作原理类似于汽车的离合器和刹车。

3. 液压控制阀液压控制阀是AT变速箱中的控制中心,其主要作用是控制液压传动系统的工作。

液压控制阀通常采用电磁阀或伺服阀,其工作原理类似于汽车的电控系统。

4. 行星齿轮组和离合器行星齿轮组和离合器是AT变速箱中的齿轮传动系统,其主要作用是实现不同齿比的转换。

双离合器自动变速箱的组成与工作原理

双离合器自动变速箱的组成与工作原理

双离合器自动变速箱的组成与工作原理随着汽车科技的不断发展,自动变速箱已经成为现代汽车的主流配置之一。

而在自动变速箱中,双离合器自动变速箱因其快速、平顺的换挡和高效的能量传递而备受青睐。

本文将从双离合器自动变速箱的组成和工作原理入手,深入探讨这一先进技术的内在机理。

一、双离合器自动变速箱的组成1. 主要组成部分:1)双离合器:作为自动变速箱的核心部件,双离合器具有双离合的功能,能够实现两个离合器的独立控制,从而实现快速换挡和平顺的动力传递。

2)输入轴和输出轴:输入轴与发动机连接,输出轴与车轮连接,它们负责传递动力并转换转速。

3)液压控制单元:用于控制离合器的压力和变速器内部的液压系统,实现变速箱的换挡和工作逻辑控制。

4)行星齿轮组:用于实现不同齿比的传动,从而实现不同的挡位。

2. 工作原理:双离合器自动变速箱通过双离合器和液压控制单元的协同工作,实现了自动化的离合和换挡操作。

当车辆行驶时,双离合器会根据车速和油门开度等参数,自动选择适合的离合器进行工作。

这样一来,不仅可以保证换挡过程的平顺性,还能够提高燃油经济性和动力传递效率。

二、工作原理的深入解析1. 双离合器的工作原理:双离合器自动变速箱的核心在于双离合器的设计。

它由两个独立的离合器组成,分别负责传递动力和实现换挡操作。

当车辆行驶时,一个离合器负责当前挡位的离合,同时预备下一个挡位的离合器也随之启动,从而实现了换挡过程的零延迟和平稳性,使驾驶感受更加舒适。

2. 液压控制单元的作用:液压控制单元是双离合器自动变速箱的智能化控制核心,它能够根据车辆的实际行驶状态和驾驶员的驾驶习惯,实时调整离合器的工作压力和换挡逻辑,使车辆在不同工况下都能够实现最佳性能和燃油经济性的平衡。

三、个人观点与总结双离合器自动变速箱作为一种领先的汽车技朮,在提高行车舒适性和燃油经济性方面具有明显的优势。

其独特的双离合器和智能化液压控制系统的设计,标志着汽车变速箱技朮的一次革命性更新。

自动变速箱的组成和工作原理

自动变速箱的组成和工作原理

自动变速箱工作原理一、综述如果你开过自动档的车的话,你就知道自动档和手动档有两大区别①自动档没有离合器,不像手动.②自动档不用换档,把档把拨到DRIVE D档就行。

③自动变速箱(加上扭矩转换器TORQUE CONVERT有勺地方叫它湿式离合器)和手动变速箱(加上离合器)用完全不同的方法做到了相同的功用。

Hg Eturl 业汽车中自动变速箱的位置跟手动变速箱一样,自动变速箱的主要作用就是把引擎的输出变换出很大的速度变化范围输出到驱动轮上。

奔驰CLK自动变速箱的解剖图宝马7型的6速变速器手动和自动变速箱之间一个很重要的不同就是,手动变速箱通过把不同直径的齿轮锁住到输出轴上来达到改变齿轮比,而自动变速箱却用同一组齿轮的不同排列来产生不同的齿轮比。

那组齿轮叫做行星齿轮一个自动变速箱是两个行星齿轮组合在一起组成的一个整体从左到右:圈齿RING轮GEAR行星载体PLANETCARRIER和两个太阳齿SUN GEARS 任何行星齿轮都有三个重要组成部分:太阳齿行星齿和行星齿载体圈齿每个组成部分都可以变化成为输入,输出或者静止。

选择不同的组合, 就可以得到不同的齿轮比。

这样的话一组齿轮毋需和其他齿轮联上,分开就可以输出不同的齿轮比。

把两组齿轮排成一行就可以得到四个前进档和一个倒车档。

FljrwtiMl •Gofwwclml toOutput Power Flow(gjyOQQ Mr/* 验uft扭矩转换器(也叫湿式离合器)TORQUE CONVERTER工作原理如果你读过上面关于手动变速箱的讨论,你就知道引擎是通过离合器和手动变速箱连接的。

如果没有离合器的话要停车的话就非得把引擎关掉。

但是用自动变速箱的汽车是不用离合器的。

它使用的是扭矩转换器。

现在我们来看看为什么自动变速箱需要扭矩转换器,扭矩转换器的工作原理和扭矩转换器的优点和不足。

和手动变速箱一样,自动变速箱的汽车也需要在车轮和变速箱静止时能够让引擎仍旧能够转动。

at自动变速箱原理

at自动变速箱原理

at自动变速箱原理自动变速箱(Automatic Transmission,简称AT)是一种自动控制换挡的变速器,广泛应用于汽车行业。

它可以根据车速、负载和驾驶员的需求自动调整变速器的挡位,提供更高的驾驶舒适性和性能表现。

本文将详细介绍AT自动变速箱的原理和工作机制。

一、基本组成结构AT自动变速箱由液力变矩器、齿轮组、液压控制系统、液压控制单元和传感器组成。

1.液力变矩器液力变矩器是AT自动变速箱的核心部件之一,它通过油压传递力矩,实现引擎和变速器的连接。

液力变矩器由涡轮叶轮、泵轮和导向叶轮等组成,当发动机运转时,液力变矩器通过涡轮叶轮将引擎的动力传递给传动齿轮。

2.齿轮组齿轮组包括一系列齿轮、离合器和制动器,用于不同挡位的换挡和动力传递。

通过齿轮的组合和离合器的控制,AT自动变速箱可以实现正、倒、低速和高速等不同挡位的切换。

3.液压控制系统和液压控制单元液压控制系统由液压泵、液压油路和控制阀组成,负责控制液压油的流动和压力变化。

液压控制单元通过接收传感器信号和驾驶员的操作指令,调节液压控制系统,实现换挡和变速的控制。

4.传感器组传感器组是AT自动变速箱的感知器官,它通过感应车辆行驶的状态和变化,向液压控制单元提供实时的信息。

常见的传感器有车速传感器、转速传感器和油压传感器等。

二、工作原理AT自动变速箱的工作原理可以简单分为三个阶段:液力传递、挡位切换和动力输出。

1.液力传递阶段当发动机启动后,液力变矩器开始工作,将发动机的动力传递给涡轮叶轮。

液力传递阶段可以实现发动机和变速器之间的连接,同时提供一定的扭矩放大效果,使汽车在启动和低速行驶时更加平稳。

2.挡位切换阶段在行驶过程中,根据车速、负载和驾驶员的需求,液压控制单元会根据传感器提供的信息,判断是否需要进行挡位切换。

液压控制单元会控制离合器和制动器的操作,将换挡过程分为多个阶段,实现挡位的平稳切换。

3.动力输出阶段当挡位切换完成后,齿轮组会将动力输出到车轮,驱动汽车前进。

汽车自动变速器(PPT13)

汽车自动变速器(PPT13)

清洗变速器滤网
02
定期清洗变速器滤网,防止杂质和颗粒对变速器内部零件造成
磨损。
检查并调整变速器控制系统
03
检查变速器的电子控制系统,确保其正常工作,并根据需要进
行调整。
故障诊断与排除方法
观察故障现象
注意自动变速器的工作状态, 观察是否有异响、顿挫、漏油
等异常现象。
使用诊断工具
利用专业的汽车诊断工具,读 取变速器的故障码和数据流, 帮助定位故障。
检查相关部件
根据故障现象和诊断结果,检 查与故障相关的部件,如传感 器、执行器、控制模块等。
更换或维修故障部件
对于损坏或失效的部件,进行 更换或维修,恢复变速器的正
常工作状态。
05
自动变速器在新能源汽车中的应用
新能源汽车对自动变速器的需求特点
高效能量转换新能源汽车需要自动 Nhomakorabea 速器实现高效能量转换
控制策略优化
通过优化控制策略,提高变速器的响 应速度和换挡平顺性,提升驾驶体验 。
轻量化设计
采用高强度铝合金等轻量化材料,降 低变速器重量,提高整车续航里程。
高可靠性保障
通过严格的试验验证和质量控制,确 保变速器的可靠性和稳定性。
未来发展趋势预测
多挡位自动变速器
随着新能源汽车对动力性和经济性的更 高要求,多挡位自动变速器将成为发展
趋势。
集成化设计
将自动变速器与其他动力总成部件进 行集成化设计,降低整车重量和成本

智能化控制
结合人工智能、大数据等技术,实现 自动变速器的智能化控制,提高换挡 品质和燃油经济性。
电动化发展
随着电动汽车的普及,电动化自动变 速器将成为未来发展的重要方向。

变速箱结构与原理

变速箱结构与原理

变速箱结构与原理在汽车工程中,变速箱被认为是车辆传动系统的核心部件之一。

它的作用是将发动机的输出转矩通过不同齿轮比例的调整,提供适合不同行驶状态和路况的扭矩输出,以达到更高的速度或更大的爬坡能力。

本文将详细介绍变速箱的结构与工作原理。

一、变速箱结构1. 齿轮系统:变速箱的核心部分是齿轮系统。

它由主轴、从轴和齿轮组成。

主轴连着发动机,从轴则连接传动轴。

通过主轴和从轴上的齿轮之间的啮合,扭矩被传送到传动轴,从而推动车辆行驶。

2. 离合器:变速箱中的离合器主要用于断开发动机和变速箱之间的连接。

当车辆停止或换挡时,离合器可以使发动机与变速箱脱离,避免熄火或者损坏其他传动部件。

3. 轴承:变速箱中的轴承主要用于支撑和固定齿轮。

它们减少了齿轮与壳体之间的摩擦,并保持齿轮的稳定运行。

4. 润滑系统:变速箱的润滑系统用于提供润滑油,降低齿轮和轴承的摩擦,并帮助散热。

润滑油还可以冲洗齿轮系统的沉积物,保证变速箱长期稳定运行。

5. 操作装置:变速箱的操作装置包括换挡杆和换挡机构。

通过操作换挡杆,驾驶员可以选择前进、倒退、停车等不同的驾驶模式。

二、变速箱的工作原理变速箱的工作原理基于齿轮的不同啮合比例,以调整发动机输出的扭矩。

下面将介绍自动变速箱和手动变速箱的工作原理。

1. 自动变速箱工作原理:自动变速箱通过液压系统和离合器控制来实现换挡过程。

当车辆行驶时,变速箱内的液压泵会将液压油传输至液压控制单元。

该单元通过控制离合器的开闭程度,调整齿轮的输入和输出比例,从而实现平稳的换挡过程。

2. 手动变速箱工作原理:手动变速箱的工作原理相对简单。

驾驶员通过踩离合器,将发动机与变速箱分离。

然后利用换挡杆选择不同的齿轮比例,再通过松开离合器使发动机重新连接到变速箱,实现换挡过程。

三、变速箱的优势和应用变速箱作为汽车传动系统的重要组成部分,具有以下优势和应用:1. 提供多种行驶模式选择:变速箱可以根据行驶状态和路况,提供不同的变速比例,以满足驾驶员的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动变速箱原理及构造
To 26
滚柱式单向离合器
自动变速箱原理及构造
楔块式单向离合器 锁止
自由
自动变速箱原理及构造
To 26
制动带和伺服器 使某元件固定在壳体上
自动变速箱原理及构造
To 26
油泵 控制摩擦元件的结合和释放 将润滑油提供给运动部件 变矩器内液体提供(传递力) 控制油路内液压提供 锁止离合器的结合和释放
电阻21-26 ℃
关闭卸压通道 自动变速箱原理及构造
变矩器TCC电磁阀工作条件 1.制动时TCC不结合
2.最大和最小节气门时不结合
3.ECT<20℃时不结合
4.ATF<29℃时不结合
5.D4、33、D3高速大负载时结合
6.ATF>135 ℃,在D4时一直结合
自动变速箱原理及构造
To 39
换挡电磁阀A、B 常开电磁阀
自动变速箱原理及构造
液力变矩器 基本结构 工作原理和作用
自动变速箱原理及构造
To 4
自动变速箱原理及构造
泵轮 导轮 涡轮 锁止离合器
自动变速箱原理及构造
与输入轴相连
驱动油泵
自动变速箱原理及构造
To 5
传递动力 增大扭矩 直接传递动力 隔离发动机震动 飞轮
To 4
自动偶变速合箱原原理理及构造
PCM通过TFP的开、关组合,确定手动 阀的实际位置。
为啮合离合器 的加压油液
用将带有花键的盘、壳体和轴套连接 为一体,象一个装置一样转动。 自动变速箱原理及构造
离合器正被加压,所有 的离合器盘挤压在一起
施压后使离合器片压紧
自动变速箱原理及构造
离合器结合,滚珠在油 压作用下顶住出口,建 立作用油压
离合器释放,滚珠在离心 力作用下离开阀座,释放 油压
自动变速箱原理及构造
To 26
锁定离合器
使后行星架通过离合器片固定在变速箱壳体上
变速箱箱体 太阳齿轮
离合器轴套
离合器盘
后行星架总成
自动变速箱原理及构造
离合器工作过程
离合器壳体
作用 摩擦盘 活塞
离合器 轴套
离合器壳体
作用活塞
离合器已释放 离合器盘分开
油通道
油通道
钢盘
释放弹簧 输入轴
油液压 迫活塞
上面右侧放大的剖面示意图,显示了 油液的流动。这个液流可以移动活塞 ,和将离合器盘锁止在一起。这个作
自动变速箱原理及构造
油泵结构
自动变速箱原理及构造
变排量调节原理
自动变速箱原理及构造
To 4
A. 压力控制电磁阀 B. TCC控制电磁阀 C. 换档电磁阀“A” D. 换档电磁阀“B” E. 3-2降档控制电磁阀 F.TCC PWM电磁阀
F 自动变速箱原理及构造
To 4
压力调节电磁 阀(PC)
内齿圈 Internal gear 简称I
自动变速箱原理及构造
齿数相互关系 太阳轮最少 内齿圈次之 行星架最多
自动变速箱原理及构造
I
太阳轮输入
行星架固定
C
内齿圈输出
减速
超速
S
反向
直接档
自动变速箱原理及构造
空档
自动变速箱操纵装置
驱动离合器 制动离合器 单向离合器 制动带
自动变速箱原理及构造
To 4
自动变速箱原理及构造
失速转速偏低 失速转速偏高
动力不足 导轮打滑
各档位离合器或制动器 全部偏高,油压过低造成
自动变速箱原理及构造
To 10
行星齿轮组
行星齿轮架
内齿圈 太阳轮
自动变速箱原理及构造
太阳轮
Sun gear 简称S
自动变速箱原理及构造
行星架 Carrier 简称C
自动变速箱原理及构造
通过改变线圈电流来改变油泵输出油压 电流越小,主油压越高
自动变速箱原理及构造电Fra bibliotek3-5ΩPCM以脉宽调制信号(PWM) 控制电流
正脉宽越大,电流越大,主油压越低
自动变速箱原理及构造
自动变速箱原理及构造
To 39
变矩器TCC电磁阀
常开电磁阀
控制变矩器离合 器的作用和分离
PCM控制接地
阀门向上移动
多片式离合器
摩擦片
摩擦片表面粘合有摩擦材料。 齿牙的切口在内径侧。
钢片
钢片具有平整表面,而且非常 光滑,所以它可以和摩擦片进 行充分的接合。钢盘片的齿牙 的切口是在外缘上。
离合器组片总成 交替叠加的钢片和摩擦片
自动变速箱原理及构造
驱动离合器
使动力从输入轴通过离合器片传给前环齿轮
输入轴 离合器壳体 离合器盘 前环齿轮
在其它档位时,占空比 0 %,电磁阀关闭。
当车辆从3档降到2档时,PCM控制减少 电磁阀占空比 占空比的大小由车速决定
车速较自动低变速箱时原理及,构造 占空比较小。
变速箱油压手动阀位置开关(TFP) TFP共有5个 压力开关 D4、Lo、R 为常开开关
D2、D3为 常闭开关
自动变速箱原理及构造
用于感应不同阀体的通道上是否有油压
档位
电磁阀A 电磁阀B 电阻19-24 ℃
P、R、N
ON
ON
1
ON
ON
2
OFF
ON
3
OFF
OFF
4
ON
OFF
利用电磁阀A、B不同组合,
控制变速箱自动变在速箱原不理及同构造 档位。
To 39
3-2降档控制电磁阀 常闭式脉宽调制(PWM)电磁阀 电阻20-24℃
自动变速箱原理及构造
在2、3、4档时,电 磁阀以90%占空比通 电,电磁阀打开
液体流向
自动变速箱原理及构造
To 10
液流
涡轮
液流的改向 定轮锁定
变矩器状态1
自动变速箱原理及构造
泵轮
自动变速箱原理及构造
K
增扭区域
3
2
1
0
输出扭矩 K:变矩系数=
输入扭矩
偶合区域
i
0.8
1
输出转速 i:速比=
输入转速
自动变速箱原理及构造
To 10
直接传动 涡轮与泵轮存在一定的转速差 锁止离合器 通过花键与涡轮机械相连 可在花键上前后移动 使涡轮与变矩器盖(泵轮)结合,实现直接传动
自动变速箱
4
档四 个 前 进
L 60
数扭 矩 系
自动变速箱原理及构造
E
制电 子 控
AT基本原理
PCM检测各个传感器提供的数据, 通过对电子元件和液压的控制, 实现自动换挡。
特点:
自动变速箱原理及构造
操作简单 乘坐舒适 油耗增加 结构复杂
4L60E自动变速箱基本组成
液力变矩器 机械传动部分 油泵 液压、电气控制部分 机械组成部分
锁止离合器故障
自动变速箱原理及构造
如果导轮双向打滑,车辆在起步与高速时有何现象?
起步无力 高速正常
失速转速低
如果导轮双向锁止,车辆在起步与高速时有何现象? 起步正常 高速无力 油温急剧升高
自动变速箱原理及构造
失速测试 目的:检查发动机与变速箱总体性能,包括导轮、 离合器、制动器、油压等。 测试步骤: 1. 热车 2. 固定车辆 3. 左脚踩刹车,入R、D等档 4. 右脚油门踩到底,少于5秒 5. 观察发动机转速
相关文档
最新文档