差动保护课件
合集下载
变压器继电保护差动优秀课件
2020/10/24
11
保护装置外部转换
2020/10/24
12
保护装置内部转换
I
Y A
1
Y
侧
I
Y C
1
I
Y B
1
I
A
1
△
侧
不同 相
I
B
1
I
C
1
一次电流
I A ( I A I B ) / 3
I B ( I B I C ) / 3
I C ( I C I A ) / 3
主变Y侧 主变△侧不变换
若取 KTA IT.n 5
IY T.n
,
I T.n
则:变压器Y侧,电流为 35 A
变压器 侧,电流为 5A
2020/10/24
32
一、变压器差动保护的原理
1.内部故障时 设变压器两侧额定电流分别为
2020/10/24
IrI2 - I2 K 1TA I1- I1 Iunb
33
1.3相位补偿后,电流互感器变比的选择
特点:1、含有大量非周期分量,曲线偏向 时间轴一侧 。波形不对称
2、大量高次谐波。二次谐波为主 3、具有间断角
2020/10/24
6
采用速饱和变流器
电磁式差动继电器 变流器:差动电流不直接流入继电器线圈, 经变流器滤除电流中非周期分量
2020/10/24
K
Wd
W2
KD
7
波形不对称原理
微机保护可以识别差动电流的正负半周是否对称,当电流波形严重不 对称时判为励磁涌流情况,闭锁差动保护。
2020/10/24
Y侧
UY T.n
115KV,
差动保护PPT (1).
假定: CT- ratio: 1/1 IP1 = I1F IP2 = I2F
假定: CT- ratio: 1/1 IP1 = IF IP2 = -IF IDiff = │IP1 + IP2 │ = IF - IF = 0 不跳闸
IDiff = │IP1 + IP2 │ = │I1F + I2F │ 跳闸
Block
with IDiff> = setting
IDiff> 2 10 IRest =│IS1│+│IS2│
Principles Transf. Diff 5
基本原理: 3相系统的测量回路
西门子能源自动化 ----让您永争第一
3相系统的基本回路: 发电机 /电动机/ 电抗
L1 L2 L3
差流
制动电流
定值设定,考虑磁化 电流或充电电流影响
由于CT变比不同产 生的线性误差 综合特性
IDiff=
│IS1+IS2│ IN
Trip
在如下假定条件下: │ε 1 │ = │ε 2 │ and I1 = I2 传统的差动保护特性应该是: IDiff = IDiff> + ε1· I1 + ε2· I2 = IDiff> + 2·ε1 · I1
3000/1A 2887A
容量: 100MVA ,矢量组: YNd5 低压侧: 20kV 高压侧: 110kV
750/1A
ILoad= 525A
L1 L2 L3
0.96A
0.7A
差流
29 Wdg.
IR
23 Wdg.
制动电流
传统差动保护
匹配变压器 -向量组自适应 -电流值自适应 -零序电流处理 IR = 0.555· √3 = 0.96A
母线差动保护培训课件
1. 由于电流互感器存在角度误差,因此即使一、二次电流有效值的差不大于 10%,它所引起的差电流也往往会大于一次电流的10%。
2. 即使一次电流达到100多倍额定电流,其二次电流也不会为零。 3. 当一次电流含有很大的非周期分量且衰减时间常数较长时,在暂态过程中,尤
其是在起始的2~3个周波之内,二次电流会出现严重的缺损,从而引起的 很大的差电流。 4. 短路初始阶段电流互感器并不会马上饱和,一、二次总有一段正确传变时间, 一般情况下该时间大于2ms。
1
.
I1
TA1
2
.
I2
TA2
.I3
TA3
3
.I4
TA4
4
母线差动保护遇到的主要问题
负荷电流产生的制动电流将影响重负荷下母线上发生高阻接地时,差动 保护的灵敏度。希望差动保护的动作应尽量不受负荷电流、短路点的过 渡电阻的影响。
当母线运行方式发生变化时不必进行二次回路的切换,仍然能只切故障 母线。
I
m
I
j
DIT
DI cdzd
j 1
K
DIcdzd
m
I
j
m
K I j
j 1
j 1
I
大差 可整定,小差 K
K 0.75
该继电器在母线内部短路时可快速、灵敏地动作;母线外短路
TA不饱和时能可靠不动。
•工频变化量阻抗继电器( ) Z
ZS1 ZS2 ZS3
Rg
ES1 ES 2 ES3
工频变化量阻抗继电器( )Z
无论是母线内、母线外故障, 元件都会自U适应地开放。
自适应加权算法 S S
0
加权算法
t
0
t
等权算法Βιβλιοθήκη • 以 U元件动作为基准时间,U元件动作后 BLCD 和 Z
2. 即使一次电流达到100多倍额定电流,其二次电流也不会为零。 3. 当一次电流含有很大的非周期分量且衰减时间常数较长时,在暂态过程中,尤
其是在起始的2~3个周波之内,二次电流会出现严重的缺损,从而引起的 很大的差电流。 4. 短路初始阶段电流互感器并不会马上饱和,一、二次总有一段正确传变时间, 一般情况下该时间大于2ms。
1
.
I1
TA1
2
.
I2
TA2
.I3
TA3
3
.I4
TA4
4
母线差动保护遇到的主要问题
负荷电流产生的制动电流将影响重负荷下母线上发生高阻接地时,差动 保护的灵敏度。希望差动保护的动作应尽量不受负荷电流、短路点的过 渡电阻的影响。
当母线运行方式发生变化时不必进行二次回路的切换,仍然能只切故障 母线。
I
m
I
j
DIT
DI cdzd
j 1
K
DIcdzd
m
I
j
m
K I j
j 1
j 1
I
大差 可整定,小差 K
K 0.75
该继电器在母线内部短路时可快速、灵敏地动作;母线外短路
TA不饱和时能可靠不动。
•工频变化量阻抗继电器( ) Z
ZS1 ZS2 ZS3
Rg
ES1 ES 2 ES3
工频变化量阻抗继电器( )Z
无论是母线内、母线外故障, 元件都会自U适应地开放。
自适应加权算法 S S
0
加权算法
t
0
t
等权算法Βιβλιοθήκη • 以 U元件动作为基准时间,U元件动作后 BLCD 和 Z
变压器差动保护ppt课件
IA2 I0 IB2 I0 IC2 I0
22
1. 三相电力变压器保护的接线 (2) Y/Δ-11接线两绕组三相变压器
常规变压器保护接线 Y
方式:
I
Y A1
I
Y B1
I
A1
nTAY
nTA
I
Y A1
I
Y B1
Ia
Ib
nTAY
nTA
nTA nTAY
一次额定电流为150~5000A。
nTA nT 难以完全满足造成。
nTAY
3
设变压器星形侧一次电流IY为,TA的变比为nTA
三角侧一次电流I为 ,TA的变比为nTA
对于Y/d-11变压器:
Iunb
I 3 I nTA nTA
(1
nTAnT ) I 3 3nTA nTA
2电力变压器保护
1
2.1 变变压压器器的保故护—障—类主型要和内不容 正常 工作状态
2.2 变压器的纵差动保护 2.3 变压器相间短路的后备保护 2.4 变压器接地短路的后备保护
变压器保护
2.1 变压器的故障类型和 不正常工作状态
3
2.1.1变压器故障和不正常运行状态
1.变压器故障 (1)油箱内部故障
1)各相绕组之间的相间短路; 2)单相绕组部分线匝之间的匝间短路; 3)单相绕组和铁心间绝缘损坏引起的接地短路。 (2)油箱外部故障 1)引出线的相间短路; 2)绝缘套管闪烁或破坏、引出线通过外壳
发生的单相接地短路。
4
2.1.1变压器故障和不正常运行状态
2.变压器异常运行状态 (1)外部相间短路引起的过电流; (2)外部接地短路引起的过电压; (3)负荷超过额定容量引起的过负荷; (4)漏油等原因引起的油面降低; (5)过励磁。
线路的差动保护课件
根据保护对象的不同,差动保护可以分为变压器差动保护、 发电机差动保护、母线差动保护等。
பைடு நூலகம்
差动保护的应用场景
差动保护广泛应用于电力系统的变压器、发电机、母线等 关键设备的保护。
在变压器中,差动保护用于检测和隔离变压器绕组和引线 的短路故障。在发电机中,差动保护用于检测和隔离定子 绕组和转子绕组的短路故障。在母线中,差动保护用于检 测和隔离母线及其连接设备的短路故障。
模拟线路故障情况,测试线路差动保护装置 的故障检测和隔离能力。
现场测试
在电力系统中,对实际运行的线路差动保护 装置进行测试,验证其功能和性能。
耐压测试
对线路差动保护装置进行高电压测试,验证 其在高电压下的性能和稳定性。
线路差动保护的验证过程
功能验证
验证线路差动保护装置的基本功能,如故障 检测、隔离等是否正常。
某500kV超高压输电线路的差动保护测试
经过严格的功能和性能验证,该线路差动保护装置在超高压输电线路中表现出良好的性能和稳定性。
05
线路差动保护的发展趋 势与展望
线路差动保护技术的未来发展方向
数字化发展
利用数字信号处理技术提 高差动保护的可靠性和灵 敏度。
智能化发展
结合人工智能和大数据技 术,实现差动保护的智能 诊断和预警。
缺点
差动保护装置也存在一些缺点。例如,它容易受到电流互感器饱和和涌流的影响,导致误动作或拒动作。此外, 对于小电流接地系统,差动保护装置的应用也受到限制。
线路差动保护的关键技术
01
电流互感器选择
选择合适的电流互感器是差动保护的关键之一。电流互感器应具有高精
度、低饱和、低误差等特点,以保证差动保护的可靠性和准确性。
பைடு நூலகம்
差动保护的应用场景
差动保护广泛应用于电力系统的变压器、发电机、母线等 关键设备的保护。
在变压器中,差动保护用于检测和隔离变压器绕组和引线 的短路故障。在发电机中,差动保护用于检测和隔离定子 绕组和转子绕组的短路故障。在母线中,差动保护用于检 测和隔离母线及其连接设备的短路故障。
模拟线路故障情况,测试线路差动保护装置 的故障检测和隔离能力。
现场测试
在电力系统中,对实际运行的线路差动保护 装置进行测试,验证其功能和性能。
耐压测试
对线路差动保护装置进行高电压测试,验证 其在高电压下的性能和稳定性。
线路差动保护的验证过程
功能验证
验证线路差动保护装置的基本功能,如故障 检测、隔离等是否正常。
某500kV超高压输电线路的差动保护测试
经过严格的功能和性能验证,该线路差动保护装置在超高压输电线路中表现出良好的性能和稳定性。
05
线路差动保护的发展趋 势与展望
线路差动保护技术的未来发展方向
数字化发展
利用数字信号处理技术提 高差动保护的可靠性和灵 敏度。
智能化发展
结合人工智能和大数据技 术,实现差动保护的智能 诊断和预警。
缺点
差动保护装置也存在一些缺点。例如,它容易受到电流互感器饱和和涌流的影响,导致误动作或拒动作。此外, 对于小电流接地系统,差动保护装置的应用也受到限制。
线路差动保护的关键技术
01
电流互感器选择
选择合适的电流互感器是差动保护的关键之一。电流互感器应具有高精
度、低饱和、低误差等特点,以保证差动保护的可靠性和准确性。
电力系统继电保护课件-第六章差动保护上课稿
Id Ih.res
, Id 0.6Ires , Id 0.8Ires Ih.res
Id 3Ih.res Id 3Ih.res
3.低定值分相电流差动保护 低定值分相电流差动保护的动作判据:
Id Il.res
, Id 0.6Ires , Id 0.8Ires Il.res
Id 3Il.res Id 3Il.res
第四节 平行线路横联方向差动保护
❖ 一、横联方向差动保护工作原理
❖ 横联方向差动保护用于同杆架设的双回线路。 1.横联方向差动保护的构成
M
TA1
L1
TA3
N
M侧保护 N侧保护
~
电流件
电流元件
方向元件
方向元件
TA2
L2
TA4
❖ 2.横联方向差动保护的工作原理 通过比较两回线中电流的大小和方向,判断 故障和故障点的位置。
线路L1内部故障时:
M
QF1 L1
N
QF3
M侧保护
N侧保护
~
电流元件
电流元件
方向元件
方向元件
L2
QF2
QF4
(b)
图6-17(b)
II III
在电源侧(M 侧):
Ir II III /KTA
Ir Iset 时
电流元件动作
Ir 由极性端流入 正方向元件动作
驱动 QF1 跳闸
在负荷侧(N 侧):
4.零序电流差动保护 ❖ 零序电流差动保护的动作判据为:
I 0.d I 0 .set
I0.d 0.75I 0.res
❖ 经电容补偿后的零序差动电流:
I0.d IMU IMUC IMV IMVC IMW IMWC INU INUC INV INVC INW INWC
变压器差动保护整理PPT教学课件
20
(一)比率制动的纵差保护 1.和差式比率制动的差动保护
21ቤተ መጻሕፍቲ ባይዱ
正常及外部故障时
Ir
I2-I2
1 KTA
I1-I1 Iunb
22
内部故障时
Ir
I2
I2
1 KTA
I1 I1
Ik kTA
23
取:动作分量 Iop I2 I2 Ih IL
29
根据:励磁涌流波形有间断角的特点‘ 采用:波形比较技术将变压器的励磁涌流和故障电
流分开。 判据如下:
set
set
通常取:
set 140 set 65
30
只要任一相差动电流大于差动 速断的整定值,保护瞬时动作。
设以高压侧二次额定电流为基准,则:
高压侧平衡系数为
Kbh 1
中压侧平衡系数为
Kbm
I nm.c I nh.c
低压侧平衡系数为
K bl
I nl.c I nh.c
12
1.励磁涌流的影响 Iexs
变压器的励磁涌流是指在变压器空载合 闸或者外部故障切除后电压恢复时,可能出 现的较大的励磁电流。
13
1.励磁涌流的影响 Iexs
I1 I2 Im
Ir
Iunb
Im KTA
14
铁芯中的磁通不能突变
铁芯中出现一个暂态磁通 铁芯中的磁通将达到最大值
2m s
铁芯严重饱和,励磁电流将剧烈增大
15
3.励磁涌流的特点
(1)包含有非周期分量 (2)幅值大,但衰减快 (3)包含有高次谐波分量 (4)波形之间有间断
(一)比率制动的纵差保护 1.和差式比率制动的差动保护
21ቤተ መጻሕፍቲ ባይዱ
正常及外部故障时
Ir
I2-I2
1 KTA
I1-I1 Iunb
22
内部故障时
Ir
I2
I2
1 KTA
I1 I1
Ik kTA
23
取:动作分量 Iop I2 I2 Ih IL
29
根据:励磁涌流波形有间断角的特点‘ 采用:波形比较技术将变压器的励磁涌流和故障电
流分开。 判据如下:
set
set
通常取:
set 140 set 65
30
只要任一相差动电流大于差动 速断的整定值,保护瞬时动作。
设以高压侧二次额定电流为基准,则:
高压侧平衡系数为
Kbh 1
中压侧平衡系数为
Kbm
I nm.c I nh.c
低压侧平衡系数为
K bl
I nl.c I nh.c
12
1.励磁涌流的影响 Iexs
变压器的励磁涌流是指在变压器空载合 闸或者外部故障切除后电压恢复时,可能出 现的较大的励磁电流。
13
1.励磁涌流的影响 Iexs
I1 I2 Im
Ir
Iunb
Im KTA
14
铁芯中的磁通不能突变
铁芯中出现一个暂态磁通 铁芯中的磁通将达到最大值
2m s
铁芯严重饱和,励磁电流将剧烈增大
15
3.励磁涌流的特点
(1)包含有非周期分量 (2)幅值大,但衰减快 (3)包含有高次谐波分量 (4)波形之间有间断
差动保护技术原理ppt课件
• 本侧装置判定TA断线后,能可靠闭锁差动 保护
8
满足差动方程
差动压板投入 CT断线 TWJ
I0qd dIqd
发送差动允许标志
Up<65%Un PTDX Ir>4IL
30ms 9
差动允许标志
• I0qd+dIqd:线路正常运行时能保证两侧差 动保护可靠开放;
• TWJ:能保证线路合闸于故障时差动保护可 靠开放;
• 零差保护引入了低制动系数、经电容电流补偿的稳 态相差动选相元件,灵敏度高,在长线经高阻接地 时也能选相跳闸;
• 所有差动继电器的制动系数均为0.75,并采用了浮 动的制动门槛,抗TA饱和能力强
29
30
差动保护特点
• 装置采用了经差流开放的电压起动元件,负荷 侧装置能正常起动
• 差动保护能自动适应系统运行方式的改变 • 装置能实测电容电流,根据差动电流验证线路
• 能可靠躲过线路区外故障引起的TA饱和电 流;线路重负荷时灵敏度较差;
• TA断线时能可靠不误动; • 兼顾了可靠性、快速性和选择性。
12
3. 稳态差动Ⅱ段
稳态差动>0.75稳态制动 稳态差动>差流低门槛 分相差动投入标志
稳态差动Ⅱ段 40ms/0
13
保护动作区域
ICD
0.75
IH
IM
IR
稳态差动Ⅰ段 5ms/0
5
保护动作区域
ICD
0.75
IH
IR
IH
max
差动电流高定值,4IC
,4
U X
N C
6
分相差动投入条件
对侧差动允许标志 满足差流方程 差动压板投入 TA断线
启动
8
满足差动方程
差动压板投入 CT断线 TWJ
I0qd dIqd
发送差动允许标志
Up<65%Un PTDX Ir>4IL
30ms 9
差动允许标志
• I0qd+dIqd:线路正常运行时能保证两侧差 动保护可靠开放;
• TWJ:能保证线路合闸于故障时差动保护可 靠开放;
• 零差保护引入了低制动系数、经电容电流补偿的稳 态相差动选相元件,灵敏度高,在长线经高阻接地 时也能选相跳闸;
• 所有差动继电器的制动系数均为0.75,并采用了浮 动的制动门槛,抗TA饱和能力强
29
30
差动保护特点
• 装置采用了经差流开放的电压起动元件,负荷 侧装置能正常起动
• 差动保护能自动适应系统运行方式的改变 • 装置能实测电容电流,根据差动电流验证线路
• 能可靠躲过线路区外故障引起的TA饱和电 流;线路重负荷时灵敏度较差;
• TA断线时能可靠不误动; • 兼顾了可靠性、快速性和选择性。
12
3. 稳态差动Ⅱ段
稳态差动>0.75稳态制动 稳态差动>差流低门槛 分相差动投入标志
稳态差动Ⅱ段 40ms/0
13
保护动作区域
ICD
0.75
IH
IM
IR
稳态差动Ⅰ段 5ms/0
5
保护动作区域
ICD
0.75
IH
IR
IH
max
差动电流高定值,4IC
,4
U X
N C
6
分相差动投入条件
对侧差动允许标志 满足差流方程 差动压板投入 TA断线
启动
变压器差动保护ppt课件
nT
判据: Id IH IL Iset
nTAL
Id
I set K I rel unbmax
I·L
·IL'
11
2.2.2 变压器差动保护的不平衡电流
一、稳态运行条件下的不平衡电流
正常运行或故障后已达稳态,差动电流 中只有工频分量;忽略变压器的励磁电流 (2~5%)
12
1. 三相电力变压器保护的接线 (1) Y/Y-12接线双绕组三相变压器
I&d I&H' I&L'
I·H
·IH'
nTAH
正常运行或外部故障时,应使
Id 0
Id
nT
IH IL
Id
nTAL
I·L
·IL'
IH IL nTAH nTAL
TA变比选取原则
nTAL nTAH
nT
10
2.2.1 变压器纵差动保护的基本原理
I·H
·IH'
nTAH
内部故障时:
Id Ik
Id
解决办法: 选择两侧同相位的电流量构成差动回
路。
15
1. 三相电力变压器保护的接线
(2) Y/Δ-11接线两绕组三相变压 器
Y
IA2
IC2 IA2
IA2
30 IA2 IB2
IC2 IC2
IB2 IC2
IB2 IB2
IA2
IA2 IB2
IB2
IB2 IC2
IC2
IC2 IA2
16
1. 三相电力变压器保护的接线 (2) Y/Δ-11接线两绕组三相变压器
2电力变压器保护
1
2.1 变变压压器器的保故护—障—类主型要和内不容 正常 工作状态
高压电动机变频差动保护改造实践课件
经验教训
在改造过程中,我们遇到了一些技术难题和挑战,如设备兼 容性问题、安装调试复杂度高等。这些问题的出现提醒我们 在未来的工作中需要更加注重前期调研和方案设计,以便更 好地应对可能出现的问题。
对未来研究和应用的建议
深入研究 推广应用 加强培训 持续监测与维护
建议进一步深入研究高压电动机变频差动保护的理论基础和应 用技术,以提高保护装置的性能和稳定性。
鉴于本次改造的成功经验,建议在类似的高压电动机系统中推 广应用变频差动保护技术,以提高整个系统的安全性和可靠性
。
为了提高工作人员的专业技能和应对能力,建议定期开展相关 培训和交流活动。
建议对改造后的高压电动机系统进行持续的监测和维护,确保 其长期稳定运行。
2023
REPORTING
THANKS
感谢观看
改造的具体步骤
旧设备拆除
按照改造方案,逐步拆除原有的保护 装置和控制设备,为新设备的安装做 好准备。
新设备安装与调试
根据改造方案,安装新的变频差动保 护装置,并进行详细的调试,确保设 备功能正常、运行稳定。
控制系统优化
结合新设备的特性,对电动机的控制 逻辑进行优化,提高控制精度和稳定 性。
系统联调与验收
详细记录改造过程、遇到的问题及解决方 法,形成完整的改造报告,为今后的维护 和升级提供参考。
2023
PART 06
改造效果评估及优化建议
REPORTING
改造后的效果评估
保护功能完善性
经过改造,高压电动机的变频差动保护功能得到了显著提升,有效降 低了设备故障率,提高了运行稳定性。
运行效率提升
改造后,电动机的启动和运行效率均有所提高,减少了不必要的能源 浪费,符合节能减排的要求。
在改造过程中,我们遇到了一些技术难题和挑战,如设备兼 容性问题、安装调试复杂度高等。这些问题的出现提醒我们 在未来的工作中需要更加注重前期调研和方案设计,以便更 好地应对可能出现的问题。
对未来研究和应用的建议
深入研究 推广应用 加强培训 持续监测与维护
建议进一步深入研究高压电动机变频差动保护的理论基础和应 用技术,以提高保护装置的性能和稳定性。
鉴于本次改造的成功经验,建议在类似的高压电动机系统中推 广应用变频差动保护技术,以提高整个系统的安全性和可靠性
。
为了提高工作人员的专业技能和应对能力,建议定期开展相关 培训和交流活动。
建议对改造后的高压电动机系统进行持续的监测和维护,确保 其长期稳定运行。
2023
REPORTING
THANKS
感谢观看
改造的具体步骤
旧设备拆除
按照改造方案,逐步拆除原有的保护 装置和控制设备,为新设备的安装做 好准备。
新设备安装与调试
根据改造方案,安装新的变频差动保 护装置,并进行详细的调试,确保设 备功能正常、运行稳定。
控制系统优化
结合新设备的特性,对电动机的控制 逻辑进行优化,提高控制精度和稳定 性。
系统联调与验收
详细记录改造过程、遇到的问题及解决方 法,形成完整的改造报告,为今后的维护 和升级提供参考。
2023
PART 06
改造效果评估及优化建议
REPORTING
改造后的效果评估
保护功能完善性
经过改造,高压电动机的变频差动保护功能得到了显著提升,有效降 低了设备故障率,提高了运行稳定性。
运行效率提升
改造后,电动机的启动和运行效率均有所提高,减少了不必要的能源 浪费,符合节能减排的要求。
电力变压器主变差动保护培训课件
器可靠动作。
原理图
不平衡电流的产生
(1)变压器各侧绕组接线方式不同。 (2)变压器各侧电流互感器的型号和变比不相 同,实际的电流互感器变比和计算变比不相同。 (3)带负荷调分接头引起变压器变比的改变。 (4)变压器空载投入或外部故障,电流互感器 铁芯饱和,电压恢复时产生的励磁涌流。
如何减小不平衡电流
变压器二次额定电流 I2e
各侧平衡系数k
220kV Y0
1200A/5A
472A
1.96A 4.000
Hale Waihona Puke 115kV Y01250A/5A
904A
3.61A 2.177
10.5kV Δ-11
3000A/5A
9897A
16.5A 0.476
减少差动不平衡电流
适当地增大电流互感器变比,以降低短路电流 倍数,这样可以有效削弱励磁涌流,减少差动 回路中产生的不平衡电流,提高差动保护的灵 敏度。这对避免保护区外故障,尤其是最严重 的三相金属性短路而导致的主变差动保护误动 作尤为有效。举例如下表(灵敏度计算过程略) 。
I高2e=I高1e/n高TA=314.9/500 ×1.732 ≈ 1.0908A 低压侧: I低1e=Se/(√3)U低e
= 12 × 107/ (√3)×21000 ≈ 3299.2A
I低2e=I低1e/n低TA=3299.2/1000 ≈ 3.2992A
5.2 平衡系数计算
按照习惯,各侧CT二次额定以数值小的为 基准值,故,本例以高压侧为基准值。 高压侧:K高= I高2e / I高2e =1 低压侧:K低= I高2e / I低2e =1.0908/3.2992 ≈0.33 不平衡电流: IK= (I高2e × K高) - (I低2e × K低) ≈0
原理图
不平衡电流的产生
(1)变压器各侧绕组接线方式不同。 (2)变压器各侧电流互感器的型号和变比不相 同,实际的电流互感器变比和计算变比不相同。 (3)带负荷调分接头引起变压器变比的改变。 (4)变压器空载投入或外部故障,电流互感器 铁芯饱和,电压恢复时产生的励磁涌流。
如何减小不平衡电流
变压器二次额定电流 I2e
各侧平衡系数k
220kV Y0
1200A/5A
472A
1.96A 4.000
Hale Waihona Puke 115kV Y01250A/5A
904A
3.61A 2.177
10.5kV Δ-11
3000A/5A
9897A
16.5A 0.476
减少差动不平衡电流
适当地增大电流互感器变比,以降低短路电流 倍数,这样可以有效削弱励磁涌流,减少差动 回路中产生的不平衡电流,提高差动保护的灵 敏度。这对避免保护区外故障,尤其是最严重 的三相金属性短路而导致的主变差动保护误动 作尤为有效。举例如下表(灵敏度计算过程略) 。
I高2e=I高1e/n高TA=314.9/500 ×1.732 ≈ 1.0908A 低压侧: I低1e=Se/(√3)U低e
= 12 × 107/ (√3)×21000 ≈ 3299.2A
I低2e=I低1e/n低TA=3299.2/1000 ≈ 3.2992A
5.2 平衡系数计算
按照习惯,各侧CT二次额定以数值小的为 基准值,故,本例以高压侧为基准值。 高压侧:K高= I高2e / I高2e =1 低压侧:K低= I高2e / I低2e =1.0908/3.2992 ≈0.33 不平衡电流: IK= (I高2e × K高) - (I低2e × K低) ≈0
母线差动保护运维培训PPT课件
母线差动保 护
基本知识
动作区
B
A
Id IS Id KIr
n
n
Id I j Ir I j
j1
j1
母线差动保 护
基本知识
为什么设复合电压闭锁?
1.复合电压闭锁是防止母差 保护误动,提高母差保护可 靠性 2.复压闭锁功能包括:低电 压元件、负序电压元件、零 序电压元件
运维注意 事项
互联压板
双母接线方式在倒闸操作前 应投入互联压板,操作过程 中互联告警信号不用复归, 待操作结束后检查闸刀位置 与一次一致后,再解开互联 压板复归。
运维注意 事项
分裂压板
双母接线方式由并列转分段 (分段转并列)操作,先不投 (退)分裂压板,待母联开关 拉开(合上)后,在母差保护 屏开入中确认母联分位(合位) 后再投入(解除)分裂压板。
运维注意 事项
刀闸变位或位置
母差保护在运行中如刀异闸常变位
或位置告警信号时,不能立即 复归,应进入开入菜单对闸刀 位置进行确认,与一次完全相 符后才可以复归;否则,有强 制闸刀位置功能的应强制使其 一致,同时通知检修人员现场 维修。
运维注意 事项
其它异常信号
母差保护在运行中如装置自 检异常或开入量异常又查不 到异常设备时,应申请停用 保护,通知检修人员或厂家 技术人员来现场处理。ccc
母线差动 保护
母线差动保护
护
主要内容
一
基本知识点
二
重点注意事项
三
运维项目内容
四
检修项目内容
母线差动保 护
基本知识
何谓母线、母线所属设备?
母线是电力系统中一个重要的组成元件: 1、指电力网中汇集、分配电能的汇流排 ; 2、从网络拓扑图上看母线是系统中的一 个功率节点。 3、母线所属设备包括母线及连在母线上 的闸刀、开关、 压变、流变、避雷器等。
《差动保护》PPT课件
精选课件ppt
16
内部故障时,流如差动继电器的电流为:Ir II2III2
该电流大于KD的动作电流时,KD动作。
由此可见,按照该原理构成的差动保护,对故障有极高的 灵敏度,保护范围为“构成差动保护的两侧电流互感器之间的 所有元件”,可以灵活运用,但需将被保护对象纵向两侧的TA 二次侧连接成闭合环流回路 。
工程实践中,由于输电线路距离长,采用该保护方式不现
精选课件ppt
11
DCD—2 差动继电器
精选课件ppt
12
5.4 用DCD—2差动继电器构成的纵差保护
精选课件ppt
13
变压器纵差保护展开接线图
精选课件ppt
信号回路 14
不考虑相位补偿时纵差保护展开图
精选课件ppt
信号回路 15
发电机纵差保护原理接线示意图
至延时信号 信 号
跳QF 跳灭磁开关
• 变压器星形侧变比:
nTA1
3I1N 5
• 变压器三角形侧变比:
nTA 2
I2N 5
精选课件ppt
7
五、励磁涌流的影响
所谓励磁涌流,就是变压器空载合闸时的暂态励磁电流。
由于变压器的励磁电流只流经它的电源侧,故造成变压器两侧电流不 平衡,从而在差动回路内产生不平衡电流。
当变压器空载投入和外部故障切除后电压恢复时,可能出现很大的励 磁涌流,其值可达变压器额定电流的6~8倍。可能造成保护误动作.
知识与能力要求:
掌握差动继电器的构成与使用;理解差 动保护的基本原理与组成。
精选课件ppt
1
5.1 纵差保护的基本原理
纵联差动保护是通过比较 被保护对象纵向两侧电流的大 小和相位的原理实现的。
CSC103B高压线路光纤差动保护课件
SDH (同步) 内-内
注意:有些SDH设备具有2M支路信号输出再定时的功能,必须关闭, 否则会造成丢帧或误码,致使通道告警。
CSC101、102系列高压线路保护介绍
保护功能:光纤差动保护通道连接及设置
b)复接64KPCM机同向接口: 两侧都选择64K的通信速率。 保护及PCM(脉码调制)机的时钟设置:
CSC101、102系列高压线路保护介绍
保功能:方向元件
正方向元件的动作判据:在正向区内且3I0 > 3I0dz 反方向元件的动作判据:在反向区内且3I0 > 0.625×3I0dz 其中3I0dz为纵联零流定值、零流I、II、III、IV段定值中最小值。 3U0要大于1V固定门槛。
鉴于零序方向保护经常因3Uo接反而误动,装置取消了外接3Uo接线回 路,因此判方向的3Uo取自产3Uo,即三个相电压的相量和。装置的外 接3Uo已取消,无论判方向还是幅值都用自产3Uo
i i i k 、k T 、k 2T 分别为当前时刻、1周前、2周前时刻的采样值。
T 为采样周期。CSC系列的保护为每周波24点采样。 △3i0 为零序电流突变量。 IQD 为突变量电流启动定值。 当任意的相间电流突变量或零序电流突变量连续4次超过启动门槛值时, 保护启动。
CSC101、102系列高压线路保护介绍
CSC101、102系列高压线路保护介绍
保护功能:光纤差动保护通道连接及设置
2)复用光纤通道:由光电转换装置、复用数字设备等构成
CSC101、102系列高压线路保护介绍
保护功能:光纤差动保护通道连接及设置
a)复用2M(E1)的通道设置: 两侧的保护都选择2M的通信速率。 保护时钟设置,如下表:
PDH (准同步) 两侧保护的时钟 内-内
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工频时
((主3)要安为装L地的Z点 阻0抗.0)4
f1
f
差动保护课件
(2)结合电容器(耦合电容C电容很小)
作用:①将载波信号传递到输电线路(耦合信号) ②使高频收、发信机与高压线路绝缘
对工频呈极大阻抗——极小工频泄漏电流
(3)连接滤波器
与结合电容器共同组成一个四端网络——“带通滤波器” 输电线路波阻抗为:400Ω 同轴电缆波阻抗为:100Ω 作用:与(2)一起对载波进行滤波、隔离作用、阻抗匹配 作用、避免高频信号在传送过程中发生反射,减少损耗, 增加输出功率。
将输电线两端的保护装置纵向联结起来,将各 端电气量(电流、功率的方向等)传送到对端, 将两端电气量比较,以判断故障在本线路范围 内还是在本线路保护范围之外,从而决定是否 切除被保护线路。
差动保护课件
差动保护课件
2. 纵联保护按使用通道分类
为了交换信息,需要利用通道。纵联保护按照 所利用通道的不同类型可以分为4种(通常纵联 保护也按此命名): (1)导引线纵联保护(简称导引线保护、纵联保护) (2)电力线载波纵联保护(简称载波保护) (3)微波纵联保护(简称微波保护) (4)光纤纵联保护(简称光纤保护)。
高频闭锁方向保护 高频闭锁负序方向保护 高频闭锁距离保护 高频闭锁零序方向保护
相差高频保护: 相差高频保护
差动保护课件
五、高频闭锁方向保护
1、工作原理
经常无电流而在外部故障时发闭锁信号,闭锁 信号由短路功率方向为负一端发出,两端都接收, 把保护闭锁。
高频保护
高频保护
A 1
d
B
2
3
4
C
5
6D
Sd
Sd
差动保护课件
4.纵联差动保护原理
(1)定义
纵联差动保护: 用辅助导线或称导引线作为通道的纵联保护
(2)正常运行时
IJ II2bM PI02N
IbP——不平衡电流 由CT的幅值误差和相位误差造成 即由于CT的磁化特性不一致,励磁电流不等等原因引起。 稳态负荷时IbP很小→0 短路→铁心饱和→IbP较大
差动保护课件
3.纵联保护按保护动作原理分类
(1)方向纵联保护
两侧保护继电器仅反应本侧的电气量,利用通道将 继电器对故障方向判别的结果传送到对侧,每侧保护根据 两侧保护继电器的动作过程逻辑判断区分是区内还是区外 故障。
(2)差动纵联保护
这类保护利用通道将本侧电流的波形或代表电流相 位、幅值的信号传送到对侧,每侧保护根据对两侧电流的 幅值和相位比较的结果区分是区内还是区外故障。
▪构成 ▪分类 ▪原理
差动保护课件
一、概念
1、定义 高频保护:是以输电线载波通道作为通信通道的纵联保护.
广泛应用于高压和超高压输电线路 无时限快速保护,无需与下一线路配合,同时比较两端电 流的相位或功率方向区分内、外故障
电流相位(功率方向)→高频信号→输电线本身 →对端→比较 2、分类
方向高频保护(功率方向比较) 相差高频保护(比较两端电流的相位)
二、高频载波通道的构成
•阻波器 •结合电容器 •连接滤波器 •高频收、发信机
差动保护课件
1. 阻波器
L=0.1mH, C=20~250uF
(1)构成
由一电感线圈与可 变电容器并联组成的回路。
(2)阻抗 并联后阻抗与频率 Z
有关,当并联谐振时阻抗 最大。
一般取载波频率=并联谐振 频率(50KHZ~300KHZ)
Sd
Sd
图4-9 高频闭锁方向保护的作用原理
差动保护课件
高频保护
高频保护
A 1
d
B
2
3
4
C
5
6D
Sd
Sd
Sd
Sd
图4-9 高频闭锁方向保护的作用原理
d短路: 3、4功率方向为正,不发闭锁信号 2、5为负,发闭锁信号
差动保护课件
(3) 外部故障
IJ I2MI2NIb P
差动保护课件
(4)内部故障
IJ I2MI2Nn1CTId
差动保护课件
(5)原理接线 环流法 均压法 环流法
M
N
IM
I N
I Im
J
I n
i
U m 导引线
U n
环流法
差动保护课件
I I n
J
Im
均压法
M
N
IM
I N
I
I
Im
In
i 0
U m 导引线
差动保护课件
3、原理
耦合
耦合
保
收信
护
发信
收信
保
发信
护
载波:50KHZ~300KHZ 以“导线——大地”为通道
差动保护课件
4、特点:
(1)、全线快速保护 (2)、两套装置之间 (3)、与系统运行方式无关 (4)、不受振荡影响 (5)、Idz>Ibpmax (6)、主保护 (7)、价格高
差动保护课件
U n
均压法
差动保护课件
二、保护特点
1、保护原理本身可以区分内、外部故障,可 实现全线快速保护
2、保护范围是两个CT之间 3、与系统运行方式无关 4、不受系统振荡的影响 5、 IdzKkIbpmax
差动保护课件
6、可作为线路主保护(配置后备保护:电流
or距离)
7、只能用于短线路(由于通道导线的限制)
高频信号与高频电流的区别
2、传输的信号 传送闭锁信号 传送允许信号 传送跳闸信号
差动保护课件
3、信号的作用: 闭锁信号:指收不到这种信号是保护动作的 必要条件 允许信号:指收到这种信号是保护动作的 必要条件 跳闸信号:指收到这种信号是保护动作的充 分必要条件
差动保护课件
四、高频保护的分类
方向高频保护
第四章.输电线路纵联保护
▪输电线路纵联差动保护 ▪输电线路高频保护
差动保护课件
问题的提出:
前述保护存在的主要问题 ①单侧量保护只能保护本线路的一部分 ②受运行方式影响;长线路,重负荷Klm低
差动保护课件
第一节. 输电线纵联差动保护(纵差保护) 一.原理: 1. 纵联保护:就是用某种通信通道(简称通道)
差接地极
(4)高频电缆
用来连接户内的收发信机与户外的连接滤波器 为屏蔽干扰信号,减少高频损耗,采用单芯同 轴电缆,波阻抗100欧姆。
(5)高频收、发信机 发送和接收高频信号
差动保护课件
三、高频通道的工作方式和高频信号的作用
1、工作方式 经常无高频电流(即故障时 发信号) 经常有高频电流(即长期发 信号)
1~10kV
1~2km
35kV
3~4km
110~330kV 5~7km
差动保护课件
三、影响输电线纵联差动保护的因素
1、电流互感器的误差和不平衡电流与 二次侧负载 误差 一次电流 误差
磁化特性不一致,励磁电流不等造成的
2、导引线的阻抗和分布电容 3、导引线的故障和感应过电压
差动保护课件
第二节.输电线路的高频保护