量子光学华师

量子光学华师
量子光学华师

量子光学 544

量子光学 百科名片 量子光学 量子光学是应用辐射的量子理论研究光辐射的产生、相干统计性质、传输、检测以及光与物质相互作用中的基础物理问题的一门学科。量子光学一词是在有了激光后才提出来的。 目录[隐藏] [编辑本段] 简介 概念 量子光学quantum optics 以辐射的量子理论研究光的产生、传输、检测及光与物质相互作用的学科。到了 量子光学图例 19世纪,特别在光的电磁理论建立后,在解释光的反射、折射、干涉、衍射和偏振等与光的传播有关的现象时,光的波动理论取得了完全的成功(见波动光学)。19 世纪末和20世纪初发现了黑体辐射规律和光电效应等另一类光学现象,在解释这些涉及光的产生及光与物质相互作用的现象时,旧的波动理论遇到了无法克服的困难。1900年,M.普朗克为解决黑体辐射规律问题提出了能量子假设,并得到了黑体辐射的普朗克公式,很好地解释了黑体辐射规律(见普朗克假设)。 光子假设

1905年,A.阿尔伯特·爱因斯坦提出了光子假设,成功地解释了光电效应。阿尔伯特·爱因斯坦认为光子不仅具有能量,而且与普通实物粒子一样具有质量和动量(见光的二象性)。1923年,A.H.康普顿利用光子与自由电子的弹性碰撞过程解释了X 射线的散射实验(见康普顿散射)。与此同时,各种光谱仪的普遍使用促进了光谱学的发展,通过原子光谱来探索原子内部的结构及其发光机制导致了量子力学的建立。 所有这一切为量子光学奠定了基础。20世纪60年代激光的问世大大地推动了量子光学的发展,在激光理论 量子光学图例 中建立了半经典理论和全量子理论。半经典理论把物质看成是遵守量子力学规律的粒子集合体,而激光光场则遵守经典的麦克斯韦电磁方程组。此理论能较好地解决有关激光与物质相互作用的许多问题,但不能解释与辐射场量子化有关的现象,例如激光的相干统计性和物质的自发辐射行为等。在全量子理论中,把激光场看成是量子化了的光子群,这种理论体系能对辐射场的量子涨落现象以及涉及激光与物质相互作用的各种现象给予严格而全面的描述。对激光的产生机理,包括对自发辐射和受激辐射更详细的研究,以及对激光的传输、检测和统计性等的研究是量子光学的主要研究课题。[编辑本段] 研究内容 统计性质 下面从光的相干统计性质、自发辐射、受激辐射等方面简要阐述量子光学的内容。 图1a示出由点光源S发出经双缝P1,P2的振动E1(t+τ),E2(t)在屏上Q点叠加,光强I(Q)可表示为 图1a 式中〈〉表示对时间t求统计平均,τ表示经狭缝P1,P2的光的相对时间延迟,с为光速。式(1)右端前两项为E1,E2的光强,后两项为E1,E2在Q点叠加后的干涉项,描述屏上干涉条纹。若将狭缝拿掉如图1b,用光电管接收Q,Q'点的光强,输出随机的光电流信号n(t+τ),n'(t), 图1d 。实验表明,这两个随机信号存在一定的相关性。它们的积对时间求平均n(t+τ)n'(t)>与相对时间延迟τ有关,这种相关性又称为光子符合计数。因为仅当n(t+τ)与n'(t)

光电器件测试

光电器件性能测试与应用 一、实验目的: 1.了解光敏二极管、三极管的结构及工作原理。 2.掌握常用光敏器件的性能和极限参数。 3.体验光敏器件的具体应用。 二、光敏器件的工作原理 2.1 光敏二极管是一种光伏效应器件。由于势垒区内建电场的作用。PN 结、肖特基结(即金属半导体结)等在受光照时会产生一个光生电动势,这就是光伏效应。以光伏效应为工作机理的器件通称为光伏效应器件。因此,光敏二极管、光敏三极管及均效应光敏管,光激可控硅等特种光敏器件,都属于光伏效应器件。 在光照下,若入射光子的能量大于禁带宽度,则PN 结内会产生光生电子空穴对,这些光生载流子存在了一段长短不同的时间后,又会因复合而消失。如图2-1所示,势垒区两边 产生的载流子中总有一部分能在复合前扩散到 势垒区的边界,基中少子受势垒区电场的吸引被扫向对面区域,多子则受势垒区电场的排斥而留在本区。势垒区内产生的光生电子和光生空穴一经产生使受到电场的作用。分别被扫向N 区和P 区,这样,就产生出由势垒区中产生的电子空穴对及势垒区两边能运动到势垒区的少子所构成的光电流I L ,它的方向是由N 区经势垒区流向P 区,即与光照对PN 结的反向饱和电流方向相同,因此,若I L 仅表示光电流的数值,则这个光电流应写为﹣I L ,以保持PN 结电流的习惯方向。 当PN 结短路时,这个光电流将全部流过 短接回路,即从势垒区和P 区流入N 区的光生电子将通过短接回路全部流到P 区电极处,与P 区流出的光生空穴复合,因此,短路时外接回路中的电流是I L ,方向由P 端(“端”指外端电极处,下同)流向N 端,即I =﹣I L ,这时,PN 结中的载流子浓度维持平衡值,势垒高度亦无变化。 当PN 结开路或接有负载时,势垒区电场收集的光生载流子便不能或不能全部流出,P 区和N 区就分别出现光生空穴和光生电子的积累,它使P 区电位升高,N 区电位降低,造成 了一个光生电动势,这电动势使势垒高度下降,相当于加在PN 结上的正向偏压,只不过这是光照造成的而不是用电源馈送的,故称为光生电压。它使P 区光生空穴和N 区光生电子分别向N 区和P 区回注,并分别在N 区与P 区与电子和空穴复合,形成了由P 区以势垒区指向N 区的正向注入电流I J ,若PN 结开路,则流过势垒区的总电流应为零,I J 有最大值,即 max max ()0,J L J L I I I I +?==

冷原子物理意义

冷原子物理的意义 按照人类对微观世界的认识深入程度划分,当代物理学有三个最主要的研究领域,即粒子物理,原子分子与光物理(AMO)和凝聚态物理。这三个领域的物理学家瓜分了决大多数20世纪50年代以来的诺贝尔物理学奖。 就这三个大领域的基础性和应用性来说,原子分子与光物理领域介于其他两者之间。它没有像粒子物理物理那样需要依靠大型实验设备展开基础性探索工作,也没有像凝聚态物理那样把更多的研究方向瞄准于可遇见的应用。因此在原子分子与光物理领域中,许多研究方向的现实意义并不为人所熟知,激光冷却技术和冷原子物理就是其中一例。 作为这个大领域的最热门方向之一,激光冷却技术冷原子物理领域曾在5 年内诞生了两次诺贝尔物理学奖,分别是1997年朱棣文(S. Chu), 科昂-塔努基(C. Cohen-Tannoudji)和菲利普斯(W. Phillips)因发明了激光冷却技术而获奖;以及2 001年维曼(C. Wieman),康乃尔(E. Cornell), 和凯特勒(W. Ketterle)利用激光冷却技术获得玻色-爱因斯坦凝聚(BEC)而获奖。就连2005年诺贝尔物理学奖的获奖成果也与冷原子物理紧密相关,获奖人之一的汉施(T. Hansch)也曾是激光冷却思想最早的提出者之一。 一个小小的研究领域能这样受到重视,它深层次的研究意义分不开的。冷原子物理领域的开创者们也许不会想到,依靠激光冷却技术获得的超低温原子因为有着其他状态的物质(常温原子)所没有的优势,在可预见的未来将对人类文明发展起到十分关键作用。 一、可观测相干的物质波波长 微观世界的粒子都具有波粒二相性。德布罗意波(物质波)波长λ=h/mv,与粒子的动量呈反比。室温原子因为平均速度达到几百米每妙,其德布罗意波长为很小,大约为10-12米量级,原子大多处在不同的量子态上,相干长度很短,难以形成干涉。冷原子最低温度可达到几个纳K,平均速度可达到几厘米每秒,德布罗意波长约为10-7米量级,相干长度很长,能够宏观观测到相干现象。当碱

常用电力电子器件特性测试

实验二:常用电力电子器件特性测试 (一)实验目的 (1)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;(2)掌握各器件的参数设置方法,以及对触发信号的要求。 (二)实验原理 图1.MATLAB电力电子器件模型 MATLAB电力电子器件模型使用的是简化的宏模型,只要求器件的外特性与实际器件特性基本相符。MATLAB电力电子器件模型主要仿真了电力电子器件的开关特性,并且不同电力电子器件模型都具有类似的模型结构。 模型中的电阻Ron和直流电压源Vf分别用来反映电力电子器件的导通电阻和导通时的门槛电压。串联电感限制了器件开关过程中的电流升降速度,模拟器件导通或关断时的动态过程。MATLAB电力电子器件模型一般都没有考虑器件关断时的漏电流。 在MATLAB电力电子器件模型中已经并联了简单的RC串联缓冲电路,在参数表中设置,名称分别为Rs和Cs。更复杂的缓冲电路则需要另外建立。对于MOSFET模型还反并联了二极管,在使用中要注意,需要设置体内二极管的正向压降Vf和等效电阻Rd。对于GTO和IGBT需要设置电流下降时间Tf和电流拖尾时间Tt。 MATLAB的电力电子器件必须连接在电路中使用,也就是要有电流的回路,

但是器件的驱动仅仅是取决于门极信号的有无,没有电压型和电流型驱动的区别,也不需要形成驱动的回路。尽管模型与实际器件工作有差异,但使MATLAB电力电子器件模型与控制连接的时候很方便。MATLAB的电力电子器件模型中含有电感,因此具有电流源的性质,所以在模块参数中还包含了IC即初始电流项。此外也不能开路工作。 含电力电子模型的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s。电力电子器件的模块上,一般都带有一个测量输出端口,通过输出端m可以观测器件的电压和电流。本实验将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 (1)在MATLAB/Simulink中构建仿真电路,设置相关参数。 (2)改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 Matlab平台 2.仿真参数 (1)Thyristor参数设置: 直流源和电阻参数:

光电探测器特性测试实验

光电探测器特性测试实验 光电探测器是一种将辐射能转换成电讯号的器件,是光电系统的核心组成部分,在光电系统中的作用是发现信号、测量信号,并为随后的应用提取某些必要的信息。光电探测器的种类很多,新的器件也不断出现,按探测机理的物理效应可分为两大类:一类是利用各种光子效应的光子探测器,另一类是利用温度变化的热探测器。 1、光敏电阻 光敏电阻是用光电导体制成的光电器件,又称光导管.它是基于半导体光电效应工作的。光敏电阻没有极性,纯粹是一个电阻器件,使用时可加直流电压,也可以加交流电压。当无光照时,光敏电阻值(暗电阻)很大,电路中电流很小。当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减少,因此电路中电流迅速增加。 光敏电阻的暗电阻越大.而亮电阻越小.则性能越好,也就是说,暗电流要小,光电流要大,这样的光敏电阻的灵敏度就高。实际上,大多数光敏电阻的暗电阻往往超过1M欧,甚至高达100MΩ,而亮电阻即使在正常白昼条件下也可降到1kΩ以下,可见光敏电阻的灵敏度是相当高的。 频率特性:非平衡载流子的产生与复合都有一个时间过程,在一定程度上影响了光敏电阻对变化光照的响应。

光谱响应特性:由所用半导体材料的禁带宽度决定。PbS 2、 光敏二极管 光敏二极管是一种光伏探测器,主要利用了PN 结的光伏效应。对光伏探测器总的伏安特性可表达为 s kT qV s s D I e I I I I --=-=)1(0 式中I 中是流过探测器总电流,I so 二极管反向饱和电流,I s 是光照时的光电流,q 是电子电荷,V 是探测器两端电压,k 为玻耳兹曼常数,T 器件绝对温度。 当入射光的强度发生变化,通过光敏二极管的电流随之变化,于是在光敏二极管的二端电压也发生变化。光照时导通,光不照时,处于截止状态,并且光电流和照度成线性关系。 光照特性:输出的饱和光电流与光照度之间的关系。 光谱特性:取决于所采用材料的禁带宽度,同事也与结构工艺有着密切的关系。 频率特性:由光生载流子的渡越时间和L R j C 的乘积决定。 伏安特性:在零偏压下,光电二极管仍有光电流,这是光生伏特效应所产生的短路电流。 3、 光敏三极管 在光敏二极管的基础上,为了获得内增益,就利用了晶体三极管的电流放大作用,用Ge 或Si 单晶体制造NPN 或PNP 型光敏三极管。 光敏三极管可以等效一个光电二极管与另一个一般晶体管基极和集电极并联:集电极-基极产生的电流,输入到三极管的基极再放大。不同之处是,集电极电流(光电流)由集电结上产生的I φ控制。集电极起双重作用:把光信号变成电信号起光电二极管作用;使光电流再放大起一般三极管的集电结作用。一般光敏三极管只引出E 、C 两个电极,体积小,光电特性是非线性的,广泛应用于光电自动控制作光电开关应用。

电力电子技术仿真实验指导书

《电力电子技术实验》指导书 合肥师范学院电子信息工程学院

实验一电力电子器件 仿真过程: 进入MATLAB环境,点击工具栏中的Simulink选项。进入所需的仿真环境,如图所示。点击File/New/Model新建一个仿真平台。点击左边的器件分类,找到Simulink和SimPowerSystems,分别在他们的下拉选项中找到所需的器件,用鼠标左键点击所需的元件不放,然后直接拉到Model平台中。 图 实验一的具体过程: 第一步:打开仿真环境新建一个仿真平台,根据表中的路径找到我们所需的器件跟连接器。

提取出来的器件模型如图所示: 图 第二步,元件的复制跟粘贴。有时候相同的模块在仿真中需要多次用到,这时按照常规的方法可以进行复制跟粘贴,可以用一个虚线框复制整个仿真模型。还有一个常用方便的方法是在选中模块的同时按下Ctrl键拖拉鼠标,选中的模块上会出现一个小“+”好,继续按住鼠标和Ctrl键不动,移动鼠标就可以将模块拖拉到模型的其他地方复制出一个相同的模块,同时该模块名后会自动加“1”,因为在同一仿真模型中,不允许出现两个名字相同的模块。 第三步,把元件的位置调整好,准备进行连接线,具体做法是移动鼠标到一个器件的连接点上,会出现一个“十字”形的光标,按住鼠标左键不放,一直到你所要连接另一个器件的连接点上,放开左键,这样线就连好了,如果想要连接分支线,可以要在需要分支的地方按住Ctrl键,然后按住鼠标左键就可以拉出一根分支线了。 在连接示波器时会发现示波器只有一个接线端子,这时可以参照下面示波器的参数调整的方法进行增加端子。在调整元件位置的时候,有时你会遇到有些元件需要改变方向才更方便于连接线,这时可以选中要改变方向的模块,使用Format菜单下的Flip block 和Rotate

光电二三极管特性测试实验报告

光敏二极管特性测试实验 一、实验目的 1.学习光电器件的光电特性、伏安特性的测试方法; 2.掌握光电器件的工作原理、适用范围和应用基础。 二、实验内容 1、光电二极管暗电流测试实验 2、光电二极管光电流测试实验 3、光电二极管伏安特性测试实验 4、光电二极管光电特性测试实验 5、光电二极管时间特性测试实验 6、光电二极管光谱特性测试实验 7、光电三极管光电流测试实验 8、光电三极管伏安特性测试实验 9、光电三极管光电特性测试实验 10、光电三极管时间特性测试实验 11、光电三极管光谱特性测试实验 三、实验仪器 1、光电二三极管综合实验仪 1个 2、光通路组件 1套 3、光照度计 1个 4、电源线 1根 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1、概述

随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,但输出电流普遍比光电池小,一般为数微安到数十微安。按材料分,光敏二极管有硅、砷化铅光敏二极管等许多种,由于硅材料的暗电流温度系数较小,工艺较成熟,因此在实验际中使用最为广泛。 光敏三极管与光敏二极管的工作原理基本相同,工作原理都是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。 2、光电二三极管的工作原理 光生伏特效应:光生伏特效应是一种内光电效应。光生伏特效应是光照使不均匀半导体或均匀半导体中光生电子和空穴在空间分开而产生电位差的现象。对于不均匀半导体,由于同质的半导体不同的掺杂形成的PN结、不同质的半导体组成的异质结或金属与半导体接触形成的肖特基势垒都存在内建电场,当光照射这种半导体时,由于半导体对光的吸收而产生了光生电子和空穴,它们在内建电场的作用下就会向相反的方向移动和聚集而产生电位差。这种现象是最重要的一类光生伏特效应。均匀半导体体内没有内建电场,当光照射时,因眼光生载流子浓度梯度不同而引起载流子的扩散运动,且电子和空穴的迁移率不相等,使两种载流

量子光学考试综述

量子光学考试综述 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

1. 相干态的定义: 错误! 错误!平移算符 相干态的特性: 错误!光子数分布:泊松分布 错误!非正交、超完备 错误!最小不确定乘积态 介于经典态和非经典态之间的一种态 2. 相干态的,光子数分布为随机分布<泊松分布),通常, 的光场量子态称为光子群聚态,意味着光子倾向于成对到达探测器;的光场量子态称为光子反群聚态,意味着光子倾向于以均匀的时间间隔到达探测器。因此,热光场态是一种光子群聚态,而光子数态是一种光子反群聚态。光子反群聚效应是一种所谓的非经典效应,从而间接证明了光子数态为非经典态,热光场态为经典态,而相干态是一种介于经典态和非经典态的状态。b5E2RGbCAP 3电磁场量子态的准概率分布函数<有;P—函数、Q—函数、Wigner 函数):电磁场量子态在相空间的表示p1EanqFDPw 下面定义三种特征函数:

其中是复参数,以上分别叫做正规排列特征函数、反正规排列特征函数和Wigner特征函数。 三种准概率分布函数与三种特征函数之间的对应关系为: 具有非负性和非奇异性,因此具有与经典统计力学中的概率分布函数完全相同的性质,可以看作真正意义上的概率分布函数。但是随量子态的变化不够灵敏,因此它有时不能很好地区分不同的量子态。对有些量子态,可以取负值或具有奇异性,因此它是一种准概率分布函数。但有些量子态<例如光子数态)的往往过于奇异,以至于不符合通常意义上函数的定义。对有些量子态,可以取负值,因此它也是一种准概率分布函数。相比之下,对常见的量子态,是非奇异的,且它随量子态的变化比 灵敏,因此可以很好地区分不同的量子态。还具有其它一些优点,因此它是一类重要的准概率分布函数。DXDiTa9E3d 4.半经典理论中在光场的作用下原子的布居数差呈现标准的余弦振荡,而全量子理论中原子的布居数出现崩塌与再现。RTCrpUDGiT 当入射光场为真空态时, 全量子理论与半经典理论的主要区别在于:半经典理论中如果没有光场作用,处于上能态的原子将不会向下能态跃迁;而全量子理论

电力电子实验指导书(2013) 2

实验一三相桥式全控整流实验 一.实验目的 1.熟悉MCL-18, MCL-33组件。 2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。 3.了解集成触发器的调整方法及各点波形。 二.实验内容 1.三相桥式全控整流电路 2.观察整流下或模拟电路故障现象时的波形。 三.实验线路及原理 实验线路下图所示。主电路由三相全控变流电路桥给直流电机供电。可实现直流电动机的调压调速。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。 四.实验设备及仪器 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3. 电机导轨及测速发电机(或光电编码器) 4.二踪示波器 5.万用表 五.实验方法 1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL-18电源开关,给定电压有电压显示。 (2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。 (3)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。 (4)用示波器观察同步变压器电压和触发脉冲波形,观察移相控制过程并记录波形。其中一个探头接脉冲信号另一个接同步电压信号,两探头共15V地线。 U 注:将I组桥式触发脉冲的六个开关均拨到“接通”。GT和AP1已内部连线无需接线。将 blf 接地。 (5)将给定器输出Ug接至MCL-33面板的Uct端,调节偏移电压Ub,在Uct=0时,使 =150o。 2.三相桥式全控整流电路供电直流电动机调压调速实验 (1)按上图接线,UVW电源线按实验板指定颜色接入保存相序正确,经指导教师检查后方可送电。送电前注意将给定电位器逆时针转到底,保证给定为0V或负给定。 (2)送电顺序合上电源总开关后先送控制电源,再按启动按扭送主回路电源。停机时前将给定电压降至零,按先停主电源后停控制电源顺序停电。 (3)调节Uct,移相控制整流电压,缓慢升速,用示波器观察记录转速为400、800、1200转/分时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并记录相应的Ud和交流输入电压U2数值,计算相应的移相控制角数值。

光电探测器特性测量实验报告

实验1 光电探测器光谱响应特性实验 实验目的 1. 加深对光谱响应概念的理解; 2. 掌握光谱响应的测试方法; 3. 熟悉热释电探测器和硅光电二极管的使用。 实验内容 1. 用热释电探测器测量钨丝灯的光谱特性曲线; 2. 用比较法测量硅光电二极管的光谱响应曲线。 实验原理 光谱响应度是光电探测器对单色入射辐射的响应能力。电压光谱响应度 ()v R λ定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号 电压,用公式表示,则为 () ()() v V R P λλλ= (1-1) 而光电探测器在波长为λ的单位入射辐射功率的作用下,其所输出的光电流叫做探测器的电流光谱响应度,用下式表示 () ()() i I R P λλλ= (1-2) 式中,()P λ为波长为λ时的入射光功率;()V λ为光电探测器在入射光功率 ()P λ作用下的输出信号电压;()I λ则为输出用电流表示的输出信号电流。为简 写起见,()v R λ和()i R λ均可以用()R λ表示。但在具体计算时应区分()v R λ和()i R λ,显然,二者具有不同的单位。 通常,测量光电探测器的光谱响应多用单色仪对辐射源的辐射功率进行分光来得到不同波长的单色辐射,然后测量在各种波长的辐射照射下光电探测器输出的电信号()V λ。然而由于实际光源的辐射功率是波长的函数,因此在相对测量中要确定单色辐射功率()P λ需要利用参考探测器(基准探测器)。即使用一个光

谱响应度为()f R λ的探测器为基准,用同一波长的单色辐射分别照射待测探测器和基准探测器。由参考探测器的电信号输出(例如为电压信号)()f V λ可得单色辐射功率()=()()f P V R λλλ,再通过(1-1)式计算即可得到待测探测器的光谱响应度。 本实验采用单色仪对钨丝灯辐射进行分光,得到单色光功率()P λ ,这里用响应度和波长无关的热释电探测器作参考探测器,测得()P λ入射时的输出电压为()f V λ。若用f R 表示热释电探测器的响应度,则显然有 ()()f f f V P R K λλ= (1-3) 这里f K 为热释电探测器前放和主放放大倍数的乘织,即总的放大倍数。在本实验中=100300f K ?,f R 为热释电探测器的响应度,实验中在所用的25Hz 调制频率下,=900/f R V W 。 然后在相同的光功率()P λ下,用硅光电二极管测量相应的单色光,得到输出电压()b V λ,从而得到光电二极管的光谱相应度 ()() ()()()b b f f f V K V R P V R K λλλλλ= = (1-4) 式中b K 为硅光电二极管测量时总的放大倍数,这里=150300b K ?。 实验仪器 单色仪、热释电探测器组件、光电二极管探测器组件、选频放大器、光源。

光学工程前沿报告1 潘运

光学工程前沿之来自量子世界的新技术 潘运(MF1415003) (南京大学光通信中心江苏南京 210008) 摘要:本文是听完全国光电技术与系统学术会议中量子技术的邀请报告后,自己的一些感想和总结。郭光灿院士首先介绍了量子世界的与经典世界的一些不同的特点,用来引起大家对量子学的兴趣,然后着重介绍了量子密码和量子计算这两方面的量子学的应用,这两项应用着重体现了量子学巨大的发展前景,最后鼓励大家投身与科学研究的事业中来,体现了郭院士不仅自己专心搞研究而且期望拉起一个研究队伍的科研理念。本篇报告着重介绍量子光学的一些基础性知识,并且对会议中量子学的应用做一些介绍。 关键词:量子光学,量子信息技术,量子世界 Abstract:This article is after listening to the National Optoelectronic Technology and Systems Conference invited the report quantum technology, some of their own feelings and summary. Academician Guangcan Guo first introduced the quantum world with some of the different characteristics of the classical world, to arouse interest in quantum science, and then focuses on the quantum cryptography and quantum computing applications of quantum science in these two areas, which focuses on two applications quantum Theory reflects strong growth prospects, and finally to encourage everyone to join the cause of scientific research in the past, reflecting the professor Guo concentrate not only their own research and expect to pull out of a research team of research ideas. This chapter report highlights some of the basic quantum optics knowledge, and for meeting the application of quantum science to do some introduction. Keywords: Quantum Optics,Quantum information technology,Quantum World 1.引言 量子世界具有经典世界所不具有的特点,对于常年生活在宏观世界中的人来说,这种微观的量子世界的特点可能会然人感到怪异。但是正是由于量

电力电子技术实验报告

实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验 一、实验目的 (1)掌握各种电力电子器件的工作特性。 (2)掌握各器件对触发信号的要求。 二、实验所需挂件及附件 序 型号备注 号 1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK06 给定及实验器件该挂件包含“二极管”等几个模块。 3DJK07 新器件特性实验 DJK09 单相调压与可调负 4 载 5万用表自备 将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R 串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。 实验线路的具体接线如下图所示: 四、实验内容 (1)晶闸管(SCR)特性实验。

(3)功率场效应管(MOSFET)特性实验。

(5)绝缘双极性晶体管(IGBT)特性实验。 五、实验方法 (1)按图3-26接线,首先将晶闸管(SCR)接入主电路,在实验开始时,将DJK06上的给定电位器RP1沿逆时针旋到底,S1拨到“正给定”侧,S2拨到“给定”侧,单相调压器逆时针调到底,DJK09上的可调电阻调到阻值为最大的位置;打开DJK06的电源开关,按下控制屏上的“启动”按钮,然后缓慢调节调压器,同时监视电压表的读数,当直流电压升到40V时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读数,当电压表指示接近零(表示管子完全导通),停止调节,记录给定电压U

光伏探测器光电特性实验讲义

光伏探测器光电特性实验 光电二极管与光电池是根据光伏效应制成的pn 结光电器件,短路电流与入射光强成正比是其一个突出优点,在精确测量光强时常用作光探测器。光敏电阻是基于光电导效应原理工作的半导体光电器件,灵敏度高,体积小,重量轻,常用于自动化技术中的光控电路。 【实验目的】 1. 观测光电二极管的光电特性; 2. 观测光电池的光电特性。 【仪器仪器】 光电二极管,光电池,直流电源,小灯泡(6V ,0.15A ),数字万用电表两块(其中一块表有直流电流200A μ量程),电阻箱,实验暗箱等。如图1所示。 图1 光伏探测器光电特性实验仪实验装置 技术指标 1.直流电源 0-4V 连续可调,显示分辨率0.01V ; 2.电阻箱 0-99999.9Ω可调,分辨率0.1Ω; 3.数字万用表 电流测量分辨率0.01A μ(20A μ档); 4.光敏电阻 暗电阻大于4M Ω; 5.小灯泡 额定电压6.3V ,额定电流0.1A 。 6. 传感器移动范围 约17cm

【实验原理】 1. 光伏效应 当光照射在pn 结上时,由光子所产生的电子与空穴将分别向n 区和p 区集结,使pn 结两端产生 电动势。这一现象称为光伏效应,如图2所示。利用半导体pn 结光伏效应可制成光伏探测器,常用的光伏探测器有光电池、光电二极管、光电三极管等。 光电池是根据光伏效应制成的pn 结光电器件。不需要加偏压就可以把光能转化为电能。光电池的用途,一是用作 探测器;二是作为太阳能电池,将太阳能转化为电能。光电池的结构示意图及应用电路如图3所示。 光电池的光照特性主要有伏安特性、入射光强-电流(电压)特性和入射光功率-负载特性。 2. 光照下的pn 结特性 光照下pn 结的伏安特性曲线如图4所示。无光照时,pn 结的伏安特性曲线和普通二极管的一样。有光照时,pn 结吸收光能,产生反向光电流,光照越强,光电流越大。 光伏器件用作探测器时,需要加反偏压或是不加偏压。不加偏压时,光伏器件工作在图4的第四象限,称为光伏 图2 pn 结光伏效应原理图 (b ) (a ) 图3 光电池的结构示意图(a )及基本应用电路(b ) 图4 光伏探测器的伏安特性曲线

物理学院光电信息科学与工程专业(理)

物理学院光电信息科学与工程专业(理) 级本科培养方案 一、培养目标 本专业培养适应社会主义现代化建设需要的,德、智、体、美全面发展的,具有光电信息科学与技术的知识背景和学科交叉能力,具有创新意识和实践能力的复合型拔尖人才。学生具有优秀的道德品质,扎实的专业技能,有成为行业领袖的气质,爱国爱民。 毕业生应具有坚实的自然科学和较好的人文社会科学基础,并熟练掌握一门外语;系统地掌握本专业领域中较宽的科学和技术基础理论;了解光信息科学技术领域的前沿和发展动态;具有创新意识和跟踪掌握该领域新理论、新知识、新技术的能力;掌握文献索引、资料查询的基本方法,熟悉国家信息产业政策及国内外有关知识产权的法律法规,具有一定的科学研究能力。 二、培养规格和要求 本专业基本学制年,授理学学士学位,培养要求如下: 、通过专业基础课以及专业核心课程,打造学生厚实的基础知识体系,使学生一方面获得坚实的数学、物理和光信息科学等基础知识,同时也具备光电子学、光信息学、光电子材料与光通信方向的专业技能。此外,在公共必修课中培养学生较高道德修养、较强的身体素质、较深的文化底蕴,形成正确地世界观、人生观、价值观,使学生做到德才兼备、全面发展。 、通过公共选修课中的通识课程、学科中专业选修课程,拓展学生的科学文化视野,提高人文修养和科学素养,促进学生建立良好的大局观与创新意识,为学生争当某领域领军人物,形成领袖气质奠定良好的基础。 、通过专业实践课、研究型的专业选修课,以及学院提供的国际交流和业余科研课题,强化学生专业技术能力,学术研究能力,全面提升学生知识综合运用能力,培养学生修身齐家意识,树立正确的家国情怀。 三、授予学位与修业年限 按要求完成学业者授予理学学士学位。修业年限:四年。

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

实验五-光无源器件特性测试实验(精)

常用光纤器件特性测试实验 实验五光无源器件特性测试实验 一、实验目的 1、了解光无源器件, Y 型分路器以及波分复用器的工作原理及其结构 2、掌握它们的正确使用方法 3、掌握它们主要特性参数的测试方法 二、实验内容 1、测量 Y 型分路器的插入损耗 2、测量 Y 型分路器的附加损耗 3、测量波分复用器的光串扰 三、预备知识 1、光无源器件的种类,有哪些?重点学习几个特性。 四、实验仪器 1、 ZY12OFCom13BG3型光纤通信原理实验箱 1台 2、 FC 接口光功率计 1台 3、万用表 1台 4、 FC-FC 法兰盘 1个 5、 Y 型分路器 1个 6、波分复用器 2个 7、连接导线 20根 五、实验原理

光通信系统的构成, 除需要光源器件和光检测器件之外, 还需要一些不用电源的光通路元、部件,我们把它们统称为无源器件。它们是光纤传输系统的重要组成部分。 光无源器件包括光纤活动连接器 (平面对接 FC 型、直接接触 PC 型、矩形SC 型、光衰减器、光波分复用器、光波分去复用器、光方向耦合器(例如:Y 型分路器、星型耦合器、光隔离器、光开关、光调制器…… 本实验重点介绍 Y 型分路器和光波分复用器,下一实验重点讲光纤活动连接器。 在应用这些无源器件时必须考虑无源器件的各项指标,如 Y 型分路器 (1分 2的光耦合器的插入损耗, 分光比, 波分复用器的光串扰等。下面对 Y 型分路器插入损耗及附加损耗及其分光比、波分复用器的光串扰分别进行测试。 Y 型分路器的技术指标一般有插入损耗(Insertion Loss 、附加损耗(Excess Loss 、分光比和方向性、均匀性等, 在实验中主要测试 Y 型分路器的插入损耗, 附加损耗及分光比。 就 Y 型分路器而言, 插入损耗定义为指定输出端口的光功率相对全部输入光功率的减少值。插入损耗计算公式为 5-1式。 lg(10. IN outi P P Li I -= (5-1 其中, I.Li 为第 i 个输出端口的插入损耗, P outi 是第 i 个输出端口测到的光功率值, P IN 是输入端的光功率值。 Y 型分路器的附加损耗定义为所有输出端口的光功率总和相对于全部输入光功率的减小值。附加损耗计算公式为 9-2式。

典型临界腔设计

目录 典型临界腔设计 (2) F-P腔体结构 (2) 一、F-P腔的工作原理 (2) 二、F-P腔的结构 (3) 三、F-P腔的调节 (4) 四、F-P腔在光学实验中的应用 (5) 激光横膜 (9) 一.横模选择的原则。 (9) 二.横模选择的方法 (10) 激光纵膜 (11) 一.纵模选择的意义及原则。 (11) 二.纵模选择的方法。 (11)

典型临界腔设计 F-P 腔体结构 一、F-P 腔的工作原理 F-P 腔(Fabry-perot Cavity )是一种利用多光束干涉现象来工作的装置。 图1 多光束干涉示意图 如图1,一束光0入射到一上下表面平行的薄膜上,它将产生一系列的反射光束1,2,3,…,和一系列的透射光束1’,2’,3’,… 令r 和t 分别代表光从膜外到膜内的振幅反射率和透射率, r ’和t ’分别代表光从膜内到膜外的振幅反射率和透射率,用A 代表入射光0的振幅。在薄膜2两侧媒质的折射率n1和n2相等的条件下,由光的可逆性原理可得: r=-r 和r2+tt ’=1 (1) 反射光束和透射光束的复振幅表示: '1'22123 3'43''''''''i i i i U U Att U At Ar U A r t U t Atr t r t U Atr t e e e e δδδδ=-??=??=???=?=????=? ? (2) 反射光和透射光的总振幅和光强分别为: 11 j R R R R j T T T j T j U U I U U I U U U U ∞*=*∞ =? =??=? ??=??=?? ∑∑ (3) 式中0R T I I I +=,2 0I A =为入射光强。 计算可得透射光强为 : 22 22 00 224222 (')(1)4sin (/2)12cos (1)(1) 1(1)T T T i i I A tt I r I U U R r r r r R e e δδ δδ*--====-+--+ - (4) 利用(4)式可作出F-P 腔透射特性曲线如图2所示

电力电子器件特性和驱动实验一

实验三 常用电力电子器件的特性和驱动实验 一、实验目的 (1) 掌握常用电力电子器件的工作特性。 (2) 掌握常用器件对触发MOSFET 、信号的要求。 (3) 理解各种自关断器件对驱动电路的要求。 (4) 掌握各种自关断器件驱动电路的结构及特点。 (5) 掌握由自关断器件构成的PWM 直流斩波电路原理与方法。 二、预习内容 (1) 了解SCR 、GTO 、GTR 、MOSFET 、IGBT 的结构和工作原理。 (2) 了解SCR 、GTO 、GTR 、MOSFET 、IGBT 有哪些主要参数。 (3) 了解SCR 、GTO 、GTR 、MOSFET 、IGBT 的静态和动态特性。 (4)阅读实验指导书关于GTO 、GTR 、MOSFET 、IGBT 的驱动原理。 三、实验所需设备及挂件 四、实验电路原理图 1、SCR 、GTO 、MOSFET 、GTR 、IGBT 五种特性实验原理电路如下图X-1所示: 图 X-1特性实验原理电路图 X-2虚框中五种器件的1、2、3标号连接示意图 三相电网电压

2、GTO、MOSFET、GTR、IGBT四种驱动实验原理电路框图如下图X-3所示: 图X-3 GTO、MOSFET、GTR、IGBT四种驱动实验原理电路框图 3、GTO、MOSFET、GTR、IGBT四种驱动实验的流程框图如图X-4 图X-4 GTO、MOSFET、GTR、IGBT四种驱动实验的流程框图 五、实验内容 1、SCR、GTO、MOSFET、GTR、IGBT 五种器件特性的测试 2、GTO、MOSFET、GTR、IGBT驱动电路的研究。 六、注意事项 (1)注意示波器使用的共地问题。 (2)每种器件的实验开始前,必须先加上器件的控制电压,然后再加主回路的电源;实验结束时,必须先切断主回路电源,然后再切断控制电源。 (3)驱动实验中,连接驱动电路时必须注意各器件不同的接地方式。 (4)不同的器件驱动电路需接不同的控制电压,接线时应注意正确选择。 七、实验方法与步骤 1、SCR、GTO、MOSFET、GTR、IGBT 五种器件特性的测试 1)关闭总电源,按图X-5的框图接主电路 图X-5实验接线框图

相关文档
最新文档