北师版初一上数学总复习专题

合集下载

北师大版七年级上册数学总复习

北师大版七年级上册数学总复习

北师大版七年级上册数学总复习一、选择题1.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-<D .a b b a -<-<<2.下列各式中运算正确的是( ) A .2222a a a +=B .220a b ab -=C .2(1)21a a -=-D .33323a a a -=3.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块 4.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD>AD ,则下列结论正确的是( ). A .CD<AD - BDB .AB>2BDC .BD>ADD .BC>AD5.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |6.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5 B .6 C .7 D .8 7.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4B .5C .6D .78.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6 C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13x D .由1226x x -+-=2,得3x ﹣3﹣x +2=12 9.下列四个选项中,不是正方体展开图形的是( )A .B .C .D .10.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是( )A .这栋居民楼共有居民125人B .每周使用手机支付次数为28~35次的人数最多C .有25人每周使用手机支付的次数在35~42次D .每周使用手机支付不超过21次的有15人11.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .7612.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-2020二、填空题13.如图是一个运算程序,若输入x 的值为8,输出的结果是m ,若输入x 的值为3,输出的结果是n ,则m-2n=______.14.一个角的余角比这个角的12少30°,则这个角的度数是_____.15.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.16.计算:[(5)11](3)-+÷-=________.17.下列图案是我国古代窗格的一部分,其中“O”代表窗纸上所贴的剪纸,则第51个图中所贴剪纸“O”的个数为__________.18.当x=1时,ax+b+1=﹣3,则(a+b﹣1)(1﹣a﹣b)的值为_____.19.当n取正整数时,(1+x)n的展开式中每一项的系数可以表示成如下形式:(1)观察上面数表的规律,若(1+x)6=1+6x+15x2+ax3+15x4+6x5+x6,则a=_____;(2)(1+x)7的展开式中每一项的系数和为_____.20.大于1的正整数的三次方都可以分解为若干个连续奇数的和,如333235,37911,413151719=+=++=+++,按此规律,若3m分解后,其中有一个奇数为1799,则m的值为____________.21.如图所示,把一根绳子对折后得到的图形为线段AB,从点P处把绳子剪断,已知AP:BP=4:5,若剪断后的各段绳子中最长的一段为80cm,则绳子的原长为________ cm.22.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连按A2、B2、C2,得到△A2B2C2,记其面积为S2;按此规律继续下去,可得到△A2019B2019C2019,则其面积S2019=_____.三、解答题23.已知代数式A =x 2+3xy +x ﹣12,B =2x 2﹣xy +4y ﹣1 (1)当x =y =﹣2时,求2A ﹣B 的值; (2)若2A ﹣B 的值与y 的取值无关,求x 的值. 24.先化简,再求值:221222()2x y xy xy x y ⎡⎤---+⎢⎥⎣⎦,其中x=3,y=-13. 25.元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了200元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出100元之后,超出部分按原价9折优惠.设某位顾客在元旦这天预计累计购物x 元(其中200x >). (1)当350x =时,顾客到哪家超市购物优惠;(2)当x 为何值时,顾客到这两家超市购物实际支付的钱数相同.26.已知数轴上,点A 和点B 分别位于原点O 两侧,点A 对应的数为a ,点B 对应的数为b ,且|a-b|=15.(1)若b =-6,则a 的值为 ; (2)若OA =2OB ,求a 的值;(3)点C 为数轴上一点,对应的数为c ,若A 点在原点的左侧,O 为AC 的中点,OB =3BC ,请画出图形并求出满足条件的c 的值.27.如图①是一张长为18cm ,宽为12cm 的长方形硬纸板,把它的四个角都剪去一个边长为xcm 的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题:(1)折成的无盖长方体盒子的容积V = 3cm ;(用含x 的代数式表示即可,不需化简)(2)请完成下表,并根据表格回答,当x 取什么正整数时,长方体盒子的容积最大?/x cm 1 2 3 4 53/cm V 160 ________ 216 ________ 80(3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出x 的值;如果不是正方形,请说明理由.28.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可. 【详解】 解:0a >,0b <,0a b +>,||||a b ∴>,如图,,a b b a ∴-<<-<.故选:A . 【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.2.A解析:A 【解析】 【分析】各项计算得到结果,即可作出判断.A 、2222a a a +=,符合题意;B 、2a b 和2ab 不是同类项,不能合并,不符合题意;C 、2(1)22a a -=-,不符合题意;D 、33323a a a -=-,不符合题意, 故选:A . 【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.C解析:C 【解析】 【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解. 【详解】解:∵第1个图形有黑色瓷砖5116⨯+=块. 第2个图形有黑色瓷砖52111⨯+=块. 第3个图形有黑色瓷砖53116⨯+=块. …∴第9个图形中有黑色瓷砖59146⨯+=块. 故选:C . 【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.4.D解析:D 【解析】 【分析】根据点C 是线段AD 的中点,可得AD=2AC=2CD ,再根据2BD>AD ,可得BD> AC= CD , 再根据线段的和差,逐一进行判即可. 【详解】∵点C 是线段AD 的中点, ∴AD=2AC=2CD , ∵2BD>AD , ∴BD> AC= CD ,A. CD=AD-AC> AD - BD ,该选项错误;B. 由A 得AD - BD < CD ,则AD <BD+CD=BC,则AB=AD+BD < BC+ BD <2BD ,该选项错误;C.由B 得 AB <2BD ,则BD+AD <2BD,则AD <BD,该选项错误;D. 由A 得AD - BD < CD ,则AD <BD+CD=BC, 该选项正确 故选D .本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.5.D解析:D 【解析】分析:根据数轴上a 、b 的位置,判断出a 、b 的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a <﹣2,1<b <2, ∴|a|>|b|,a <﹣b ,b >a ,a <﹣2, 故选D .点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.6.B解析:B 【解析】 【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项. 【详解】 解:∵-2a m b 2与12a 5b n+1是同类项, ∴m=5,n+1=2, 解得:m=1, ∴m+n=6. 故选B . 【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.7.B解析:B 【解析】 【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】∵296234.655-==, ∴分成的组数是5组. 故答案选B . 【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.9.A解析:A【解析】【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体.【详解】正方体共有11种表面展开图,B、C、D能围成正方体;A、不能,折叠后有两个面重合,不能折成正方体.故选:A.【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.10.D解析:D【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【详解】解:A、这栋居民楼共有居民3+10+15+22+30+25+20=125(人),此结论正确;B、每周使用手机支付次数为28~35次的人数最多,这是因为从直方图上可以看出,每周使用手机支付次数为28~35次的小矩形的高度最高,所以每周使用手机支付次数为28~35次的人数最多,此结论正确,;C、有的人每周使用手机支付的次数在35~42次,此结论正确;D.每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.11.A解析:A【解析】【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可.【详解】第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5...,所以第n 个图形中小圆的个数为4+n (n+1)所以第9个图形有: 4 +9×10=94个小圆,故选: A【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n个图形的代数表达式将所求的代入.12.C解析:C【解析】【分析】依次计算1a、2a、3a、4a、…,得到规律性答案,即可得到2020a的值.【详解】11a=-,212a a=-+=-1,323a a=-+=-2,434a a=-+=-2,5453a a =-+=-, 6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n(n 为偶数), ∴202010102=, ∴2020a 的值为-1010, 故选:C. 【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.二、填空题 13.16 【解析】 【分析】 【详解】 ∵x=8是偶数,∴代入-x+6得:m=-x+6=-×8+6=2, ∵x=3是奇数,∴代入-4x+5得:n=-4x+5=-7, ∴m-2n=2-2×(-7)=1解析:16 【解析】 【分析】 【详解】 ∵x=8是偶数, ∴代入-12x+6得:m=-12x+6=-12×8+6=2, ∵x=3是奇数,∴代入-4x+5得:n=-4x+5=-7, ∴m-2n=2-2×(-7)=16, 故答案是:16. 【点睛】本题考查了求代数式的值,能根据程序求出m 、n 的值是解此题的关键.14.80°【解析】【分析】设这个角为x,则它的余角是90°-x,列方程求解即可.【详解】解:设这个角为x,则它的余角是90°﹣x,由题意,得:90°﹣x=x﹣30°,解得:x=80°.即解析:80°【解析】【分析】设这个角为x,则它的余角是90°-x,列方程求解即可.【详解】解:设这个角为x,则它的余角是90°﹣x,由题意,得:90°﹣x=12x﹣30°,解得:x=80°.即这个角的度数是80°.故答案为:80°.【点睛】本题考查了余角的知识,掌握互余的两角之和为90°是解题关键.15.100【解析】【分析】根据利润率(售价进价) 进价,先利用售价标价折数10求出售价,进而代入利润率公式列出关于进价的方程即得.【详解】商品每件标价为150元按标价打8折后售价为:(元/件解析:100【解析】【分析】根据利润率=(售价-进价) ÷进价100%⨯,先利用售价=标价⨯折数÷10求出售价,进而代入利润率公式列出关于进价的方程即得.【详解】商品每件标价为150元∴按标价打8折后售价为:1500.8120⨯=(元/件)∴设该商品每件的进价为x 元由题意得:()120100%20%-⨯=x x解得:100x =答:该商品每件的进价为100元.故答案为:100【点睛】本题考查一元一次方程应用中的销售问题,通常利润率计算公式为销售问题等量关系是解题关键点.16.-2【解析】【分析】先算小括号内的,再算中括号内的,最后算括号外的.【详解】解:原式=6÷(-3)=-2,故答案为:-2.【点睛】本题考查了有理数的混合运算,注意运算顺序和运算法则.解析:-2【解析】【分析】先算小括号内的,再算中括号内的,最后算括号外的.【详解】解:原式=6÷(-3)=-2,故答案为:-2.【点睛】本题考查了有理数的混合运算,注意运算顺序和运算法则.17.155【解析】【分析】观察图形发现,后一个图形比前一个图形多3个剪纸“○”,然后写出第n 个图形的剪纸“○”的表达式,再把n =51代入表达式进行计算即可得解.【详解】解:第1个图形有5个剪纸解析:155【解析】【分析】观察图形发现,后一个图形比前一个图形多3个剪纸“○”,然后写出第n 个图形的剪纸“○”的表达式,再把n=51代入表达式进行计算即可得解.【详解】解:第1个图形有5个剪纸“○”,第2个图形有8个剪纸“○”,第3个图形有11个剪纸“○”,……,依此类推,第n个图形有(3n+2)个剪纸“○”,当n=51时,3×51+2=155.故答案为:155.【点睛】本题是对图形变化规律的考查,属于常考题型,观察出后一个图形比前一个图形多3个剪纸“○”是解题的关键.18.-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a解析:-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.19.27【解析】【分析】(1)根据表中的规律,从而可以解答本题;(2)根据数学归纳法,写出前几项总结规律,从而可以解答本题.【详解】解:(1)由题意可得,(1+x)6=1+6x+1解析:27【解析】【分析】(1)根据表中的规律,从而可以解答本题;(2)根据数学归纳法,写出前几项总结规律,从而可以解答本题.【详解】解:(1)由题意可得,(1+x)6=1+6x+15x2+ax3+15x4+6x5+x6,则a=20;(2)∵当n=1时,多项式(1+x)1展开式的各项系数之和为:1+1=2=21,当n=2时,多项式(1+x)2展开式的各项系数之和为:1+2+1=4=22,当n=3时,多项式(1+x)3展开式的各项系数之和为:1+3+3+1=8=23,当n=4时,多项式(1+x)4展开式的各项系数之和为:1+4+6+4+1=16=24,…∴多项式(1+x)7展开式的各项系数之和=27.故答案为:20,27.【点睛】本题考查整式的运算,数字的变化规律,解题的关键是明确题意,利用数学归纳法解答本题.20.42【解析】【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数1799的是从3开始的第899个数,然后确定出899所在的范围即可得解.【详解】解析:42【解析】【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数1799的是从3开始的第899个数,然后确定出899所在的范围即可得解.【详解】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=(2)(1)2m m+-,∵1799=899×2+1,∴奇数1799是从3开始的第899个奇数,∵(412)(411)=8602+-,(422)(421)9022+-=,∴第899个奇数是底数为42的数的立方分裂的奇数的其中一个,即m=42,故答案为:42.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.21.绳子的原长为144cm或180cm.【解析】【分析】解:分两种情形讨论:(1)当点A是绳子的对折点时,(2)当点B是绳子的对折点时,分别求解即可.【详解】解:本题有两种情形:(1)当点A解析:绳子的原长为144cm或180cm.【解析】【分析】解:分两种情形讨论:(1)当点A是绳子的对折点时,(2)当点B是绳子的对折点时,分别求解即可.【详解】解:本题有两种情形:(1)当点A是绳子的对折点时,将绳子展开如图.∵AP:BP=4:5,剪断后的各段绳子中最长的一段为80cm,∴2AP=80cm,∴AP=40cm,∴PB=50cm,∴绳子的原长=2AB=2(AP+PB)=2×(40+50)=180(cm);(2)当点B是绳子的对折点时,将绳子展开如图.∵AP:BP=4:5,剪断后的各段绳子中最长的一段为80cm,∴2BP=80cm ,∴BP=40cm ,∴AP=32cm .∴绳子的原长=2AB=2(AP+BP )=2×(32+40)=144(cm ).综上,绳子的原长为144cm 或180cm .【点睛】本题主要考查了线段相关计算,和分类讨论的思想,懂得分类讨论,防止漏解是解决本题的关键.22.192019【解析】【分析】首先根据题意,求得=2,同理求得=19,则可求得面积S1的值;根据题意发现规律:Sn=19nS△ABC 即可求得答案.【详解】解:连接BC1,∵C1A=2CA ,解析:192019【解析】【分析】首先根据题意,求得1ABC S △=2ABC S,同理求得111A B C △S =19ABC S ,则可求得面积S 1的值;根据题意发现规律:S n =19n S △ABC 即可求得答案.【详解】解:连接BC 1,∵C 1A =2CA ,∴1ABC S △=2S △ABC ,同理:111A B C △S =21ABC S △=4S △ABC ,∴11A AC S △=6S △ABC ,同理:11A BB S △=11CB C S △=6S △ABC ,∴111A B C △S =19S △ABC ,即S 1=19S △ABC ,∵S △ABC =1,∴S 1=19;同理:S 2=19S 1=192S △ABC ,S 3=193S △ABC ,∴S 2019=192019S △ABC =192019.故答案是:192019.【点睛】此题考查了三角形面积之间的关系.注意找到规律:S n=19n S△ABC是解此题的关键.三、解答题23.(1)9;(2)x=4 7【解析】【分析】(1)先化简多项式,再代入求值;(2)合并含y的项,因为2A-B的值与y的取值无关,所以y的系数为0.【详解】(1)2A﹣B=2(x2+3xy+x﹣12)﹣(2x2﹣xy+4y﹣1)=2x2+6xy+2x﹣24﹣2x2+xy﹣4y+1=7xy+2x﹣4y﹣23当x=y=﹣2时,原式=7×(﹣2)×(﹣2)+2×(﹣2)﹣4×(﹣2)﹣23=9.(2)∵2A﹣B=7xy+2x﹣4y﹣23=(7x﹣4)y+2x﹣23.由于2A﹣B的值与y的取值无关,∴7x﹣4=0∴x=47.【点睛】本题主要考查整式的加减-化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.24.-x2y;3.【解析】【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【详解】原式=﹣2x2y﹣(2xy-2xy﹣x2y)= ﹣2x2y﹣2xy+2xy+x2y=﹣x2y.当x=3,y13=-时,原式=2133⎛⎫-⨯-⎪⎝⎭=3.【点睛】本题考查了整式的加减﹣化简求值,熟练掌握运算法则是解答本题的关键.25.(1)甲超市;(2)300【解析】【分析】(1)根据超市的销售方式先用x式表示在甲超市购物所付的费用和在乙超市购物所付的费用,然后将x=350代入确定到哪家超市购物优惠;(2)由(1)得到的购物所付的费用使其相等,求出x,使两家超市购物所花实际钱数相同.【详解】解:(1)在甲超市购物所付的费用是:200+0.8(x-200)=(0.8x+40)元,在乙超市购物所付的费用是:100+0.9(x-100)=(0.9x+10)元;当x=350时,在甲超市购物所付的费用是:0.8×350+40=320元,在乙超市购物所付的费用是:0.9×350+10=325,所以到甲超市购物优惠;(2)根据题意由(1)得:0.8x+40=0.9x+10,解得:x=300,答:当x=300时,两家超市所花实际钱数相同.【点睛】此题考查的是一元一次方程的应用,关键是用代数式列出在甲、乙两超市购物所需的费用.26.(1)9;(2)a的值为10或-10;(3)见解析,c的值为6或60 7【解析】【分析】(1)依据|a-b|=15,a,b异号,即可得到a的值;(2)分点A在原点左、右两侧两种情况讨论,依据OA=2OB,即可得到a的值;(3)分点C在点B左、右两侧两种情况进行讨论,依据O为AC的中点,OB=3BC,设未知数列方程即可得到所有满足条件的c的值.【详解】解:(1)∵b=-6,|a-b|=15,∴|a+6|=15,∴a+6=15或-15,∴a=9或-21,∵点A和点B分别位于原点O两侧,b=-6,∴a>0,∴a=9,故答案为:9;(2)当A 在原点左侧时,点A 表示的数为a ,又|a-b|=15,即A ,B 两点间的距离为15,则可知B 点对应的数为a+15,如图,由OA =2OB 得,2(a+15-0)=0-a ,解得a=-10;当A 在原点右侧时,可知B 点对应的数为a-15,如图,由OA =2OB 得,2[0-(a-15)]=a-0,解得,a=10.综上所得:a=10或-10;(3)满足条件的C 有两种情况:①当点C 在点B 左侧时,如图,设BC=x ,由O 为AC 的中点,OB =3BC ,则OC=OA=2x ,∴AB=x+2x+2x=15,解得x=3,∴OC=2x=6,故c=6;②当点C 在点B 右侧时,如图,设BC=x ,由O 为AC 的中点,OB =3BC ,则OB=3x ,OA=OC=4x ,∴AB=3x+4x=15,解得x=157, ∴OC=4x=607, 则c =607, 综上所述,c 的值为6或607. 【点睛】此题考查了线段长度的计算,一元一次方程的应用和数轴上两点间距离的计算,用到的知识点是线段的中点,关键是根据线段的和差关系求出线段的长度.27.(1)()()182122x x x --;(2)224,160;(3)不可能是正方形,理由见解析【解析】【分析】本题考查的是长方体的构造:(1) 根据题意,分别表示出来长方体的长、宽、高,即可写出其体积;(2) 根据给到的x 的值求得体积即可;(3) 列出方程求得x 的值后,即可确定能否为正方形.【详解】(1)182122x x x --()()(2)224,160当x 取2cm 时,长方体盒子的容积最大(3)从正面看长方体,形状是正方形时,有182x x =-解得6x =当6x =时,1220x -=所以,不可能是正方形【点睛】本题考查了简单的几何题的三视图的知识,解题的关键是根据题意确定长方体的长、宽、高,之后依次解答题目.28.(1)5cm ;(2)2a b +;(3)线段MN 的长度变化,2a b MN +=,2a b -,2b a -. 【解析】【分析】(1)根据点M 、N 分别是AC 、BC 的中点,先求出CM 、CN 的长度,则MN CM CN =+;(2)根据点M 、N 分别是AC 、BC 的中点,12CM AC =,12CN BC =,所以()122a b MN AC BC +=+=; (3)长度会发生变化,分点C 在线段AB 上,点B 在A 、C 之间和点A 在B 、C 之间三种情况讨论.【详解】(1)6AC cm =,M 是AC 的中点, ∴132CM AC ==(cm ), 4BC cm =,N 是CB 的中点, ∴122CN CB ==(cm ), ∴325MN CM CN =+=+=(cm );(2)由AC a =,M 是AC 的中点,得1122CM AC a ==, 由BC b =,N 是CB 的中点,得1122CN CB b ==, 由线段的和差,得222a b a b MN CM CN +=+=+=; (3)线段MN 的长度会变化. 当点C 在线段AB 上时,由(2)知2a b MN +=, 当点C 在线段AB 的延长线时,如图:则AC a BC b =>=,AC a =,点M 是AC 的中点,∴1122CM AC a ==, BC b =,点N 是CB 的中点,∴1122CN BC b ==, ∴222a b a b MN CM CN -=-=-= 当点C 在线段BA 的延长线时,如图:则AC a BC b =<= ,同理可得:1122CM AC a ==, 1122CN BC b ==, ∴222b a b a MN CN CM -=-=-=, ∴综上所述,线段MN 的长度变化,2a b MN +=,2a b -,2b a -. 【点睛】本题主要是线段中点的运用,分情况讨论是解题的难点,难度较大.。

北师大版七年级上册数学总复习doc

北师大版七年级上册数学总复习doc

北师大版七年级上册数学总复习doc一、选择题1.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( )A .a b b a -<<-<B .a b b a >->>-C .b a b a <-<-<D .a b b a -<-<< 2.下列说法错误的是( )A .25mn -的系数是25-,次数是2B .数字0是单项式C .14ab 是二次单项式D .23xy π的系数是13,次数是4 3.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 所有数记作[a ,b ],例如大于等于1且小于等于4的所有数记作[1,4] .如果m 在[5,15]内,n 在[20,30]内,那么n m 的一切值中属于整数的有( )A .1,2,3,4,5B .2,3,4,5,6C .2,3,4D .4,5,64.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >05.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n =( )A .9B .11C .13D .156.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( )A .()130%90%85x x +⋅=-B .()130%90%85x x +⋅=+C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+ 7.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+8.已知232-m a b 和45n a b 是同类项,则m n -的值是( ) A .-2B .1C .0D .-1 9.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5 B .6 C .7 D .810.下列方程为一元一次方程的是( )A .x+2y =3B .y+3=0C .x 2﹣2x =0D .1y+y =0 11.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .3212.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个A .1B .2C .3D .4二、填空题13.观察算式:1325+=;23211+=;33229+=;43283+=;532245+=;632731+=;…….则201932019+的个位数字是_____.14.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________15.关于x 的方程23x kx -=的解是整数,则整数k 可以取的值是_____________.16.如图,点D 为线段AB 上一点,C 为AB 的中点,且AB =8m ,BD =2cm ,则CD 的长度为_____cm .17.在班级联欢会上,数学老师和同学们做了一个游戏.她在A B C ,,三个盘子里分别放了一些小球,小球数依次为000,,a b c ,记为()0000,,G a b c =,游戏规则如下:三个盘子中的小球数000a b c ≠≠,则从小球最多的一个盘子中拿出两个,给另外两个盘子各放一个,记作一次操作;n 次操作后的小球数记为(),,n n n n G a b c =.若0(3,5,19)G =,则3G =________,2000G =________.18.如果单项式1b xy +-与23a xy -是同类项,那么()2019a b -=______. 19.已知236(3)0x y -++=,则23y x -的值是_________.20.一个角的余角为50°,则这个角的补角等于_____.21.一个角的补角是这个角的余角的3倍小20°,则这个角的度数是_______22.如图是一回形图,其回形通道的宽和OB 的长均为1,回形线与射线OA 交于1A ,2A ,3A ,…,若从点O 到点1A 的回形线为第1圈(长为7),从点1A 到点2A 的回形线为第2圈,…,依此类推,则第13圈的长为_______.三、解答题23.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面,如果我们要同时用两种不同的正多边形镶嵌平面.可能设计出几种不同的组合方案?猜想1:是否可以同时用正方形.正八边形两种正多边形组合进行平面镶嵌?验证l:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:()82180903608x y -⨯+=,整理得: 238,x y += 我们可以找到方程的正整数解为12x y =⎧⎨=⎩ 结论1:镶嵌平面时.在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.24.(2+3+3分)阅读材料:我们知道,4x ﹣2x+x=(4﹣2+1)x=3x ,类似地,我们把(a+b )看成一个整体,则4(a+b )﹣2(a+b )+(a+b )=(4﹣2+1)(a+b )=3(a+b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把()2a b -看成一个整体,合并()()()222362a b a b a b ---+-.(2)已知224x y -=,求23621x y --的值; (3)已知a ﹣2b=3,2b ﹣c=﹣5,c ﹣d=10,求(a ﹣c )+(2b ﹣d )﹣(2b ﹣c )的值.25.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.26.如图,已知A 、B 、C 三点,请完成下列问题:(1)作直线BC ,射线CA ;(2)作线段AB ,并延长BA ;(3)点M 是线段BC 的中点,点N 是直线BC 上的一点,若BC=6,NB=23BC ,求MN 的长.27.(阅读材料)数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示.这样能够运用数形结合的方法解决一些问题,例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示;在数轴上,有理数3与1对应的两点之间的距离为|31|2-=;在数轴上,有理数5与2-对应的两点之间的距离为|5(2)|7--=;在数轴上,有理数2-与3对应的两点之间的距离为|23|5--=;在数轴上,有理数8-与5-对应的两点之间的距离为|8(5)|3---=;……如图1,在数轴上有理数a 对应的点为点A ,有理数b 对应的点为点,,B A B 两点之间的距离表为||-a b 或||b a -,记为||||||AB a b b a =-=-.(解决问题)(1)数轴上有理数10-与5-对应的两点之间的距离等于______,数轴上有理数x 与5-对应的两点之间的距离用含x 的式子表示为______,若数轴上有理数x 与5-对应的两点,A B 之间的距离||2AB =,则x 等于_______.(拓展探究)(2)如图2,点,,M N P 是数轴上的三点,点M 表示的数为4,点N 表示的数为点2-,动点P 表示的数为x .①若点P 在点,M N 两点之间,则||||PM PN +=______;②若||2||PM PN =,即点P 到点M 的距离等于点P 到点N 的距离的2倍,求x 的值.28.如图,C 是线段AB 上一点,5AC cm =,点P 从点A 出发沿AB 以3/cm s 的速度匀速向点B 运动,点Q 从点C 出发沿CB 以1/cm s 的速度匀速向点B 运动,两点同时出发,结果点P 比点Q 先到3s .()1求AB 的长;()2设点P Q 、出发时间为ts ,①求点P 与点Q 重合时(未到达点B ), t 的值;②直接写出点P 与点Q 相距2cm 时,t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.2.D解析:D【解析】【分析】根据单项式系数、次数的定义逐一判断即可得答案.【详解】A.25mn-的系数是25-,次数是2,正确,故该选项不符合题意,B.数字0是单项式,正确,故该选项不符合题意,C.14ab是二次单项式,正确,故该选项不符合题意,D.23xyπ的系数是3π,次数是3,故该选项说法错误,符合题意,故选:D.【点睛】本题考查单项式系数、次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.熟练掌握定义是解题关键.3.B解析:B【解析】【分析】根据m在[5,15]内,n在[20,30]内,可得nm的一切值中属于整数的有2010,248,205,25 5,305,依此即可求解.【详解】∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴nm的一切值中属于整数的有20210=,2438=,2045=,2555=,3065=,综上,那么nm的一切值中属于整数的有2,3,4,5,6.故选:B.【点睛】本题考查了有理数、整数,关键是得到5≤m≤15,20≤n≤30.4.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.5.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.6.B解析:B【解析】【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x元,则提高30%后的标价为+,列出方程即可.x(130%)x+元;打9折出售,则售价为(130%)90%【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x元,则提高30%后的标价为+元;(130%)x打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+故选B【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.7.D解析:D【解析】【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.8.D解析:D【解析】【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案.【详解】∵232-m a b 和45n a b 是同类项∴2m=4,n=3∴m=2,n=3∴=231m n --=-故选D .【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.9.B解析:B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.10.B解析:B【解析】【分析】根据一元一次方程的定义即可求出答案.【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y=3,两个未知数;B. y+3=0,符合;C. x2﹣2x=0,指数是2;D. 1y+y=0,不是整式方程.故选:B.【点睛】考核知识点:一元一次方程.理解定义是关键.11.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,所以最大正方形面积为:122412416++++++=.故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.12.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.二、填空题13.【解析】【分析】首先找出31,32,33,34,35,36⋯32019的末位数字的规律,再求出32019+2019的末位数字即可.【详解】∵31=3,32=9,33=27,34=81,35解析:【解析】【分析】首先找出31,32,33,34,35,36⋯32019的末位数字的规律,再求出32019+2019的末位数字即可.【详解】∵31=3,32=9,33=27,34=81,35=243,36=729⋯∴末位数字分别是3,9,7,1,每四组一个循环,∵2019÷4=504⋯3,∴32019的末位数字是7,因此,32019+2019的末位数字是6.故答案为6.【点睛】本题考查了数学的变化规律,知道末位数字每四组一循环是解题的关键.14.32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x ,根据圆心角度数的计算公式求解.【详解】设该组频数为x ,,x=32,故答案为:32.解析:32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x ,根据圆心角度数的计算公式求解.【详解】设该组频数为x ,36072160x ⨯=, x=32,故答案为:32.【点睛】此题考查圆心角度数的计算公式,正确掌握计算公式是解题的关键.15.【解析】【分析】先求出含有参数k 的方程的解,并列举出它是整数的所有可能性,再求出k 的整数值.【详解】解:先解方程,,,,要使方程的解是整数,则必须是整数,∴可以取的整数有:、,则整数解析:1,3,5±【解析】【分析】先求出含有参数k 的方程的解,并列举出它是整数的所有可能性,再求出k 的整数值.【详解】解:先解方程,23x kx -=,()23k x -=,32x k =-, 要使方程的解是整数,则32k-必须是整数, ∴2k -可以取的整数有:±1、3±,则整数k 可以取的值有:±1、3、5.故答案是:±1、3、5.【点睛】本题考查方程的整数解,解题的关键是理解方程解的定义.16.【解析】【分析】先根据点C 是线段AB 的中点,AB =8cm 求出BC 的长,再根据CD =BC ﹣BD 即可得出结论.【详解】解:∵点C 是线段AB 的中点,AB =8cm ,∴BC=AB =×8=4cm ,解析:【解析】【分析】先根据点C 是线段AB 的中点,AB =8cm 求出BC 的长,再根据CD =BC ﹣BD 即可得出结论.【详解】解:∵点C是线段AB的中点,AB=8cm,∴BC=12AB=12×8=4cm,∵BD=2cm,∴CD=BC﹣BD=4﹣2=2cm.故答案为2.【点睛】本题考查的是线段,比较简单,需要熟练掌握线段的基本性质.17.(6,8,13),(8,10,9),【解析】【分析】根据题意先列出前10个数列,得出从G5开始每3次为一个周期循环的规律,据此可得答案.【详解】解:∵G0=(3,5,19)解析:(6,8,13),(8,10,9),【解析】【分析】根据题意先列出前10个数列,得出从G5开始每3次为一个周期循环的规律,据此可得答案.【详解】解:∵G0=(3,5,19),∴G1=(4,6,17),G2=(5,7,15),G3=(6,8,13),G4=(7,9,11),G5=(8,10,9),G6=(9,8,10),G7=(10,9,8),G8=(8,10,9),G9=(9,8,10),G10=(10,9,8),……∴从G5开始每3次为一个周期循环,∵(2000-4)÷3=665…1,∴G2000=G5=(8,10,9),故答案为:(6,8,13),(8,10,9),.【点睛】本题考查了列代数式,数字的规律,解题的关键是弄清题意得出从G5开始每3次为一个周期循环的规律.18.1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a、b,再代入计算即可.由题意得:a-2=1,b+1=3,∴a=3,b=2,解析:1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a 、b ,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,∴()2019a b -=1, 故答案为:1.【点睛】此题考查同类项的定义,正确理解同类项的定义并熟练解题是关键. 19.-12【解析】【分析】利用非负数的性质求出x 与y 的值,代入所求式子计算即可得到结果.【详解】解:∵|3x-6|+(y+3)2=0,∴3x-6=0,y+3=0,即x=2,y=-3,则2解析:-12【解析】【分析】利用非负数的性质求出x 与y 的值,代入所求式子计算即可得到结果.【详解】解:∵|3x-6|+(y+3)2=0,∴3x-6=0,y+3=0,即x=2,y=-3,则2y-3x=-6-6=-12.故答案为:-12.【点睛】此题考查了代数式求值以及非负数的性质,根据“几个非负数的和为0时,每个非负数都为0”进行求解是解本题的关键.20.140°【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【详解】解:根据余角的定义,这个角的度数=90°﹣50°=40°,根据补角的定义,这个角的补角度数=解析:140°【解析】【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【详解】解:根据余角的定义,这个角的度数=90°﹣50°=40°,根据补角的定义,这个角的补角度数=180°﹣40°=140°.故答案为:140°.【点睛】考核知识点:余角和补角.理解定义是关键.21.【解析】【分析】设这个角的度数为x,分别表示出这个角的补角和余角,即可列出方程解答. 【详解】设这个角的度数为x,,.故答案为: .【点睛】此题考查角的余角和补角定义及计算,设出所解析:35︒【解析】【分析】设这个角的度数为x,分别表示出这个角的补角和余角,即可列出方程解答.【详解】设这个角的度数为x,︒-=︒--︒,x x1803(90)20x=︒.35故答案为:35︒.【点睛】此题考查角的余角和补角定义及计算,设出所求的角,表示出其补角和余角,才好列式进行计算.22.103【解析】【分析】将第一、二、三圈的式子依次列出得到规律即可得到答案.【详解】第1圈:1+1+2+2+1=7,第2圈:2+3+4+4+2=15,第3圈:3+5+6+6+3=23,解析:103【解析】【分析】将第一、二、三圈的式子依次列出得到规律即可得到答案.【详解】第1圈:1+1+2+2+1=7,第2圈:2+3+4+4+2=15,第3圈:3+5+6+6+3=23,∴第13圈:13+25+26+26+13=103,故答案为:103.【点睛】此题考查图形类规律的探究,正确观察图形得到图形的变化规律是解题的关键.三、解答题23.可以,验证与方案见解析.【解析】【分析】在镶嵌平面时,设围绕某一点有x 个正三角形和y 个正六边形的内角可以拼成一个周角,根据平面镶嵌的体积可得方程:60x+120y=360.整理得:x+2y=6,求出正整数解即可.【详解】解:可以;验证:在镶嵌平面时,设围绕某一点有x 个正三角形和y 个正六边形的内角可以拼成一个周角,正三角形的每个内角的度数为60︒,正六边形的每个内角的度数为()621801206︒︒-•=根据题意,可得方程:60120360x y +=整理得26x y +=方程的正整数解为22x y =⎧⎨=⎩或41x y =⎧⎨=⎩所以可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌,在一个顶点周围围绕2个正三角形和2个正六边形或者围绕着4个正三角形和1个正六边形.【点睛】本题考查了平面镶嵌,正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.也考查了二元一次方程的应用.24.(1)2()a b --;(2)-9;(3)8【解析】【分析】(1)利用整体思想,把2()a b -看成一个整体,进行合并即可得到结果;(2)原式可化为3(x 2-2y )-21,把x 2-2y=4整体代入即可;(3)依据a-2b=3,2b-c=-5,c-d=10,即可得到a-c=-2,2b-d=5,整体代入进行计算即可.【详解】(1)∵()()()()2222236236((2))a b a b a a b a b b ---+-=---=-+; 故答案为:2()a b --;(2)∵224x y -=, ∴原式=3(x 2-2y )-21=12-21= -9;(3)∵a-2b=3,2b-c=-5,c-d=10,∴()()222a b b c a c -+-=-=-,()()225c d b c b d -+-=-=∴原式=-2+5-(-5)=8.故答案为(1)2()a b --;(2)-9;(3)8.【点睛】本题主要考查了整式的加减,解决问题的关键是运用整体思想;给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.25.(1)6;6;(2)不发生改变,MN 为定值6,过程见解析【解析】【分析】(1)由点P 表示的有理数可得出AP 、BP 的长度,根据三等分点的定义可得出MP 、NP 的长度,再由MN=MP+NP (或MN=MP-NP ),即可求出MN 的长度;(2)分-6<a <3及a >3两种情况考虑,由点P 表示的有理数可得出AP 、BP 的长度(用含字母a 的代数式表示),根据三等分点的定义可得出MP 、NP 的长度(用含字母a 的代数式表示),再由MN=MP+NP (或MN=MP-NP ),即可求出MN=6为固定值.【详解】解:(1)若点P 表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=4,NP=23BP=2,∴MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=8,NP=23BP=2,∴MN=MP-NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>-6且a≠3).当-6<a<3时(如图1),AP=a+6,BP=3-a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a),∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a-3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3),∴MN=MP-NP=6.综上所述:点P在射线AB上运动(不与点A,B重合)的过程中,MN的长为定值6.【点睛】本题考查了两点间的距离,解题的关键是:(1)根据三点分点的定义找出MP、NP的长度;(2)分-6<a<3及a>3两种情况找出MP、NP的长度(用含字母a的代数式表示).26.(1)图见解析;(2)图见解析;(3)MN的长是1或7.【解析】【分析】(1)根据直线是向两方无限延长的,射线是向一方无限延长的画图即可;(2)根据线段的性质画图即可;(3)此题要分两种情况进行讨论:①当点N在直线BC上,且在点B的上方时;②当点N 在直线BC上,且在点B的下方时分别进行计算.【详解】解:(1)(2)如图所示:(3)∵BC=6,23NB BC =,点M 平分线段BC , ∴BN=4,MB=3, ①当点N 在直线BC 上,且在点B 的上方时,MN=BN-BM=4-3=1,②当点N 在直线BC 上,且在点B 的下方时,MN=BN+BM=4+3=7,所以MN 的长是1或7.【点睛】本题考查画线段、射线、直线,线段的和差.(1)(2)中解题关键是掌握射线、线段、直线的性质;(3)中能分类讨论是解题关键.27.(1)5,5x +,3x =-或7x =-(2)①6②8x =-或0x =【解析】【分析】(1)根据数轴上A 、B 两点之间的距离||||||AB a b b a =-=-,代入数值运用绝对值可求数轴上任意两点间的距离;由||2AB =可列出关于x 的方程,解方程即可得解; (2)点P 在点M 、N 两点之间时,||||PM PN +即为M 、N 两点之间的距离;由动点P 的位置不同分情况进行讨论求解.【详解】解:(1)由阅读材料可知:①数轴上有理数10-与5-对应的两点之间的距离为()1055---=②数轴上有理数x 与5-对应的两点之间的距离用含x 的式子表示为()55x x --=+ ③∵||2AB = ∴52x +=∴52x +=,52x +=-∴3x =-或7x =-;(2)①∵点M 、N 、P 是数轴上的三点,点M 表示的数为4,点N 表示的数为点2-,动点P 表示的数为x ,点P 在点M 、N 两点之间∴()||||426PM PN MN +==--=;②∵||2||PM PN =∴422x x -=+I .当点P 在点N 左侧时,如图:∴()422x x -=--∴8x =-II .当点P 在点M 、N 之间时,如图:∴()422x x -=+∴0x =III .当点P 在点M 右侧时∴()422x x -=+∴8x =-(不合题意舍去)∴综上所述,8x =-或0x =.故答案是:(1)5,5x +,3x =-或7x =-(2)①6②8x =-或0x =【点睛】本题考查了数轴与绝对值的概念的应用,读懂题目信息,理解绝对值的几何意义是解题的关键.28.(1)AB 的长为12cm ;(2)①52t =;②32t =或72t = 【解析】【分析】(1)设AB 的长,根据题意列出方程,求解即得;(2)①当P ,Q 重合时,P 的路程=Q 的路程+5,列出方程式即得; ②点P 与点Q 相距2cm 时,分P 追上Q 前,和追上Q 后两种情况,分别列出方程式求解即得.【详解】解:()1设AB xcm =,由题意得()533x x --= 解得12x =AB ∴的长为12cm ,()2①由题意得35=+t t解得52 t= 5 2t∴=时点P与点Q重合,故答案为:52;②P追上Q前,3t+2=t+5,解得32t=,P追上Q后,3t-2=t+5,解得72t=,综上:32t=或72t=.【点睛】考查一元一次方程的应用,利用路程=速度⨯时间的关系式,找到变量之间的等量关系列出方程,求解,注意追及问题分情况讨论的情况.。

北师大版七年级数学上册总复习要点

北师大版七年级数学上册总复习要点

北师大版七年级数学上册总复习要点七年级的时候学习数学难免有点不适应,毕竟刚从小学升到初中。

平时如果没有听明白的,那考试前就要整理一份复习资料了,下面是店铺分享给大家的北师大版七年级数学上册总复习要点的资料,希望大家喜欢!北师大版七年级数学上册总复习要点一第一章有理数一、知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

基础知识:1、正数(position number):大于0的数叫做正数。

2、负数(negation number):在正数前面加上负号“-”的数叫做负数。

3、0既不是正数也不是负数。

4、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。

数轴满足以下要求:在直线上任取一个点表示数0,这个点叫做原点(origin);通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度。

6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。

7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

记做|a|。

由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

8、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

七年级数学上册(北师大版2024)第一章综合复习

七年级数学上册(北师大版2024)第一章综合复习

解: 若按这个几何体是柱体、锥体和球体划分: (2)(4)(5)(6)为一类,它们都是柱体; (3)为一类,它是锥体; (1)为一类,它是球体.
若按围成这个几何体的表面是平面还是曲面来分: (2)(5)(6)为一类,围成它们的表面都是平面; (1)(3)(4)为一类,围成它们的表面中至少有一个曲面.
【归纳总结】我们知道,每一个正方体都是由 三对相对的面围成的.在平面展开图中找相对的 面是探索正方体展开图的关键.
针对训练
4.下图中是正方体的展开图的有( B )个 A.2个 B.3个 C.4个 D.5个
5.如图所示,将图沿虚线折起来, 1 2
得到一个正方体,那么“3”的对面 3 5 6
是___6___.
由一个底面(圆)和一个侧面(曲面)围成

由一个曲面围成,没有底面,没有侧面,没有顶点
②.常见几何体的分类
圆柱体、
③.棱柱的顶点、棱、面的数量关系
柱体
三棱柱
棱柱 四棱柱(长方体、正方体)
棱柱
面的 顶点 棱的 个数 个数 条数
五棱柱 六棱柱......
三棱柱 5 四棱柱 6
69 8 12
锥体: 圆锥、棱锥(三棱锥......)
球体
五棱柱 7 10 15 n棱柱 n+2 2n 3n
④.点、线、面的关系
(1)图形是由__点____、线____面__、______构成的. (2)面与面相交得到__线____ ,线与线相交得到__点_____. (3)面有平面,也有_曲__面___;线有_直__线____,也有_曲_线_____.
4
考点三 截一个几何体 例4 用一个平面去截一个几何体,截面的形状为三角形, 则这个几何体不可能是( A )

七年级数学上册-总复习-北师大版

七年级数学上册-总复习-北师大版

第一章丰富的图形世界1、复习目标:2、能在具体情境中, 认识圆柱、圆锥、正方体、长方体、棱柱、球等几何体, 并能用自己的语言描述他们的特征。

3、了解棱柱、圆柱、圆锥的侧面展开图, 能根据展开图判断和制作简单的立体图形。

4、亲身经历切截正方体的过程, 体会面与体的转换, 提高动手操作的能力。

会从不同方向观察同一个物体, 能识别简单物体的三种视图。

会画正方体及简单组合的三种视图, 并在小正方体内填上表示该位置小立方块的个数。

能在具体情境中认识多边形, 拓展思维空间。

二、知识结构网络三、重点知识点点拨1.常见的几何体及其特点长方体: 有8个顶点, 12条棱, 6个面, 且各面都是长方形(正方形是特殊的长方形)正方体是特殊的长方体。

棱柱: 上下两个面称为棱柱的底面, 其它各面称为侧面, 长方体是四棱柱。

圆柱:有上下两个底面和一个侧面, 两个底面是半径相等的圆。

圆锥:有一个底面和一个顶点, 且侧面展开图是扇形。

球: 由一个面围成的几何体。

2.展开与折叠(1)棱柱:如图1所示的棱柱, 上底面是五边形A'B'C'D'E', 下底面是五边形ABCDE, 这两个五边形的大小形状都相同, 这个棱柱有5个侧面, 当它为直棱柱时, 5个侧面都是长方形, 当它为斜棱柱时, 5个侧面都是平行四边形, 在棱柱中任何相邻的两个面的交线都叫做棱桂的棱, 其中相邻的两个侧面的交线都叫做棱柱的侧棱, 图1中的棱柱有15条侧棱, 其中有5条侧棱, 这5条侧棱的长相等, 将这个棱柱展开定一个长方形(图2是图1中棱柱的侧面展开图)反过来可以将一个长方形折叠成一个棱桂的侧面。

当一个棱柱的地面是三角形时, 称为三棱柱, 当一个棱柱的底面是四边形时, 称为四棱柱, (长方体正方体都是四棱柱)当一个棱柱的底面是五边形时, 称为五棱柱(图1就是五棱柱)………当一个棱柱的底面是n边形时, 称为n棱柱它有2n个顶点, 3n条棱, n十2个面(其中2个底面, n个侧面。

北师大版七年级上册数学总复习

北师大版七年级上册数学总复习

北师大版七年级上册数学总复习一、选择题1.长方形ABCD 中,将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示.设图1中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则C 1 -C 2的值为( )A .0B .a -bC .2a -2bD .2b -2a2.方程114xx --=-去分母正确的是( ). A .x-1-x=-1 B .4x-1-x=-4 C .4x-1+x=-4 D .4x-1+x=-1 3.“比a 的3倍大5的数”用代数式表示为( )A .35a +B .3(5)a +C .35a -D .3(5)a -4.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .45.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 所有数记作[a ,b ],例如大于等于1且小于等于4的所有数记作[1,4] .如果m 在[5,15]内,n 在[20,30]内,那么n m的一切值中属于整数的有( ) A .1,2,3,4,5B .2,3,4,5,6C .2,3,4D .4,5,66.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A.36块B.41块C.46块D.51块7.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.68.若x=1是关于x的方程3x﹣m=5的解,则m的值为()A.2 B.﹣2 C.8 D.﹣89.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t可以取()个不同的值.A.2 B.3 C.4 D.510.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为()A.4B.5C.6D.711.如图,点O在直线AB上且OC⊥OD,若∠COA=36°则∠DOB的大小为()A.36°B.54°C.64°D.72°12.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n个图中黑色正方形纸片的张数为()….A .4n+1B .3n+1C .3nD .2n+1二、填空题13.如图是一个运算程序,若输入x 的值为8,输出的结果是m ,若输入x 的值为3,输出的结果是n ,则m-2n=______.14.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为_____.15.某商场2019年1~4月份的投资总额一共是2005万元,商场2019年第一季度每月利润统计图和2019年1~4月份利润率统计图如下(利润率=利润÷投资金额).则商场2019年4月份利润是______万元.16.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________17.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.18.对于有理数,m n ,定义一种新运算""⊗,规定m n m n m n ⊗=---.请计算23-⊗的值是__________.19.若自然数n 使得三个数的竖式加减法运算“(1)(2)n n n ++++”产生进位现象,则称n 为连加进位数,例如10不是“连加进位数”因为10+11+12=33不产生进位现象;14是连加进位数,因为14+15+16=45产生进位现象,如果从10,11,12,。

北师大版七年级上册数学总复习

北师大版七年级上册数学总复习

北师大版七年级上册数学总复习一、选择题1.已知a ,b 是有理数,若表示它们的点在数轴上的位置如图所示,则|a |–|b |的值为( )A .零B .非负数C .正数D .负数2.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-20203.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式:第1行 1 第2行 -2,3 第3行 -4,5,-6 第4行 7,-8,9,-10 第5行 11,-12,13,-14,15 ……按照上述规律排列下去,那么第10行从左边数第5个数是( ) A .-50B .50C .-55D .554.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个 A .1 B .2C .3D .45.计算22221111 (11223320152015)++++++++的结果为( ) A .1B .20142015C .20152016D .201620156.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y - 7.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( ) A .30B .35︒C .40D .458.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .49.下列运算正确的是( ) A .()a b c a b c -+=-+ B .2(1)21x y x y --=-+ C .22223m n nm m n -=-D .532x x -=10.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .811.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .312.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .13.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .9414.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l )所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )A .1B .2C .3D .415.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >016.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×22 17.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( )A .2B .﹣2C .8D .﹣818.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米 B .30千米 C .32千米 D .36千米 19.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD>AD ,则下列结论正确的是( ). A .CD<AD - BDB .AB>2BDC .BD>ADD .BC>AD20.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( ) A .()130%90%85x x +⋅=- B .()130%90%85x x +⋅=+ C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+21.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n =( )A .9B .11C .13D .1522.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m 元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%; 方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多( ) A .方案一B .方案二C .方案三D .不能确定23.如图所示,OB 是一条河流,OC 是一片菜田,张大伯每天从家(A 点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是( )A .B .C .D .24.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .24025.下列运算中正确的是( )A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -=26.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 所有数记作[a ,b ],例如大于等于1且小于等于4的所有数记作[1,4] .如果m 在[5,15]内,n 在[20,30]内,那么n m的一切值中属于整数的有( ) A .1,2,3,4,5B .2,3,4,5,6C .2,3,4D .4,5,627.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 28.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .429.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快30.已知线段AB=m ,BC=n ,且m 2﹣mn=28,mn ﹣n 2=12,则m 2﹣2mn+n 2等于( ) A .49B .40C .16D .9【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】本题根据a 、b 在数轴上的位置判定其绝对值大小,继而作差可直接得出答案. 【详解】由已知得:a 离数轴原点的距离相对于b 更近,可知a <b , 故:0a b -<,即其差值为负数; 故选:D . 【点睛】本题考查根据数轴上点的位置判别式子正负,解题关键在于对数轴相关概念与性质的理解,比较大小注意细心即可.2.C解析:C 【解析】 【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值. 【详解】11a =-,212a a =-+=-1, 323a a =-+=-2, 434a a =-+=-2, 5453a a =-+=-, 6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n(n 为偶数), ∴202010102=, ∴2020a 的值为-1010, 故选:C. 【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.3.A解析:A【解析】【分析】分析可得,第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负,依此即可得出第10行从左边数第5个数.【详解】解:第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负.所以第10行第5个数的绝对值为:109550 2⨯+=,50为偶数,故这个数为:-50.故选:A.【点睛】本题考查探索与表达规律,能依据已给数据分析得出每行第一个数与行数之间的规律是解决此题的关键.4.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n +1是合数,则n 是“好数”.5.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++=111111112233420152016-+-+-++-= 112016-=20152016 故选:C . 【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.6.A解析:A 【解析】 【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律. 【详解】多项式的第一项依次是x ,x 2,x 3,x 4,…,x n , 第二项依次是y ,-y 3,y 5,-y 7,…,(-1)n+1y 2n-1, 所以第10个式子即当n=10时, 代入到得到x n +(-1)n+1y 2n-1=x 10-y 19. 故选:A . 【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.7.B解析:B 【解析】 【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x )°,余角的度数为(90-x )°,代入等量关系即可求解. 【详解】设:这个角的度数是x ,则补角的度数为180-x ,余角的度数为90-x ,由题意得:()()39018020x x ---=解得35x = 故选B . 【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.8.C解析:C 【解析】 【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补. 【详解】根据角的和差关系可得第一个图形∠α=∠β=45°, 根据等角的补角相等可得第二个图形∠α=∠β, 第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β, 因此∠α=∠β的图形个数共有3个, 故选:C . 【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.9.C解析:C 【解析】 【分析】分别判断各选项是否正确. 【详解】A 中,a b +c a b c -=--(),错误;B 中,2(1)22x y x y --=-+,错误;C 中,22223m n nm m n -=-,正确;D 中,532x x x -=,错误 故选:C . 【点睛】本题考查整式的加减法,需要注意合并同类项时,仅是系数的加减.10.D解析:D 【解析】 【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8. 【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环, ∵2019÷4=504…3, ∴22019的末位数字是8. 故选:D 【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.11.D解析:D 【解析】 【分析】直接利用已知代入得出b 的值,进而求出输入﹣3时,得出y 的值. 【详解】∵当输入x 的值是﹣3,输出y 的值是﹣1, ∴﹣1=32b-+, 解得:b =1,故输入x 的值是3时,y =2331⨯-=3. 故选:D . 【点睛】本题主要考查了代数式求值,正确得出b 的值是解题关键.12.C解析:C 【解析】 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;B、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.13.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx2-2x+8-(3x2-nx)的值与x无关,∴2m-3=0,-2+n=0,解得:m=32,n=2,故m n=(32)2= 94.故选D.【点睛】此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.14.B解析:B【解析】【分析】设第1列第3行的数字为x,P处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p,可得P处数字.【详解】解:设第1列第3行的数字为x,P处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p ,解得p=2,故选:B .【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.15.D解析:D【解析】【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.16.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A 、-22=-4,(-2)2=4,不相等,故A 错误;B 、23=8,32=9,不相等,故B 错误;C 、-33=(-3)3=-27,相等,故C 正确;D 、(-3×2)2=36,-32×22=-36,不相等,故D 错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.17.B解析:B【解析】【分析】把x =1代入方程3x ﹣m =5得出3﹣m =5,求出方程的解即可.把x=1代入方程3x﹣m=5得:3﹣m=5,解得:m=﹣2,故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m的一元一次方程是解此题的关键.18.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.19.D解析:D【解析】【分析】根据点C是线段AD的中点,可得AD=2AC=2CD,再根据2BD>AD,可得BD> AC= CD,再根据线段的和差,逐一进行判即可.【详解】∵点C是线段AD的中点,∴AD=2AC=2CD,∵2BD>AD,∴BD> AC= CD,A. CD=AD-AC> AD- BD,该选项错误;B. 由A得AD- BD< CD,则AD<BD+CD=BC,则AB=AD+BD< BC+ BD<2BD,该选项错误;C.由B得 AB<2BD ,则BD+AD<2BD,则AD<BD,该选项错误;D. 由A得AD- BD< CD,则AD<BD+CD=BC, 该选项正确故选D.本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.20.B解析:B【解析】【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +,列出方程即可.【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+故选B【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.21.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n =1,n =2和n =3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n =1时,游戏结束需要移动的最少次数为1;当盘子数量n =2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n =3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n =2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n =2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11, 故选B .【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.22.A【解析】【分析】先用代数式分别表示出三种方案降价前后的价格,然后进行比较即可.【详解】解:由题意可得:方案一降价0.1m+m(1-10%)30%=0.37m;方案二降价0.2m+m(1-20%)15%=0.32m;方案三降价0.2m+m(1-20%)20%=0.36m;故答案为A.【点睛】本题考查列代数式,解答本题的关键是明确题意、列出相应的代数式并进行比较.. 23.D解析:D【解析】【分析】做出点A关于OB和OC的对称点A′和A″,连接A′A″,与OB、OC分别交与点M,N,则沿AM-MN-NA的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A点的对称点A',连接A'N与河流相交于M点,再连接AM,则张大伯可沿着AM走一条直线去河边M点挑水,然后再沿MN走一条直线到菜园去,同理,画出回家的路线图如下:故选D.【点睛】本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.24.D解析:D【解析】【分析】先分别讨论x和y的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.【详解】①若x>y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.25.B解析:B【解析】【分析】根据同类项的定义和合并同类项的法则解答.【详解】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=0,故本选项正确;C、a3与3a2不是同类项,不能合并,故本选项错误;D、原式=a2,故本选项错误.故选B.【点睛】此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.26.B解析:B【解析】【分析】根据m在[5,15]内,n在[20,30]内,可得nm的一切值中属于整数的有2010,248,205,25 5,305,依此即可求解.【详解】∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴nm的一切值中属于整数的有20210=,2438=,2045=,2555=,3065=,综上,那么nm的一切值中属于整数的有2,3,4,5,6.故选:B.【点睛】本题考查了有理数、整数,关键是得到5≤m≤15,20≤n≤30.27.A解析:A【解析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.28.D解析:D【解析】【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y.【详解】解:由已知计算程序可得到代数式:2x2﹣4,当x=1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x=﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y=4,故选D.【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.29.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.30.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..。

北师大版七年级上册数学总复习doc

北师大版七年级上册数学总复习doc
北师大版七年级上册数学总复习doc
一、选择题
1.若式子 的值与x无关, 是( )
A. B. C. D.
2.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为()
A.94B.85C.84D.76
A.1B.2C.3D.4
5.将正整数 至 按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是()
A. B. C. D.
6.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是()
A.这栋居民楼共有居民 人
B.每周使用手机支付次数为 次的人数最多
C.有 人每周使用手机支付的次数在 次
D.每周使用手机支付不超过 次的有 人
7.下列说法中正确的是( )
A.0不是单项式B. 的系数为
C. 的次数为2D. 不是多项式
8.如图,点O在直线AB上且OC⊥OD,若∠COA=36°则∠DOB的大小为()
A.36°B.54°C.64°D.72°
9.若3x-2y-7=0,则4y-6x+12的值为()
C.2a4+4a2=6a6D.﹣2a2b+5a2b=3a2b
13.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家( )
A.亏损8元B.赚了12元C.亏损了12元D.不亏不损
14.已知整数 、 、 、 、…满足下列条件: , , , ,…, ( 为正整数)依此类推,则 的值为()
A.-1009B.-2019C.-1010D.-2020

北师大版七年级数学上册总复习要点

北师大版七年级数学上册总复习要点

北师大版七年级数学上册总复习要点北师大版七年级数学上册总复习要点一第一章有理数一、知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点.在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

基础知识:1、正数(position number):大于0的数叫做正数。

2、负数(negation number):在正数前面加上负号“—”的数叫做负数.3、0既不是正数也不是负数.4、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。

数轴满足以下要求:在直线上任取一个点表示数0,这个点叫做原点(origin);通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。

7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值.记做|a|.由绝对值的定义可得:|a—b|表示数轴上a点到b点的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

8、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数.加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变.表达式:a+b=b+a.加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。

北师大版七年级上册数学期末总复习

北师大版七年级上册数学期末总复习

北师大版七年级上册数学期末总复习一、重点:1. 能在数轴上表示有理数,并借助数轴理解相反数和绝对值的意义。

2. 掌握有理数的加、减、乘、除和乘方的运算法则。

能进行有理数的加、减、乘、除、乘方运算和简单的混合运算。

3. 了解单项式、多项式、整式的概念,弄清它们之间的联系和区别,并会把一个多项式按某个字母升幂排列或降幂排列。

4. 能准确地进行去括号与添括号,能熟练地进行整式的加减运算。

5. 了解同位角、内错角和同旁内角的概念,并学会识别。

6. 会根据图形中的已知条件,通过简单说理,得出欲求结果。

—7. 理解频数和频率的概念,借助频率或考虑实验能够观察到的结果,区分不可能发生、可能发生、必然发生这三个概念。

二、难点:1.懂得数学的价值,形成用数学的意识。

2.绝对值概念与代数式、方程等知识的综合应用。

3.较为复杂的整式运算。

4.几何基本图形的识别,及在变式图形的应用。

5.分析所给数据表现出来的信息及可靠性。

三、例题及分析:|例1. 已知|a-2|与(b-3)2互为相反数,求a+2b的值。

分析:由|a-2|与(b-3)2互为相反数可知:|a-2|+(b-3)2=0故a-2=0且b-3=0故a=2且b=3答案:8例2. 若|x|=2,|y|=3,求xy的值。

分析:由|x|=2,应得出:x=2或者x=-2,注意是两个(同理,由|y|=3,应得出:y=3或者y=-3然后分情况讨论答案:6,或者-6例3. 计算:5-3×{-2+4×[-3×(-2)2-(-4)÷(-1)3]-7}分析:注意运算顺序和去括号时的符号问题。

5-3×{-2+4×[-3×(-2)2-(-4)÷(-1)3]-7}=5-3×{-2+4×[-3×4-4]-7}=5-3×{-2+4×[-16]-7}<=5-3×{-2-64-7}=5+3×73=224例4. 已知a2+a=1,求:a3+2a2+2002的值。

北师大版_七年级数学上_总复习课件

北师大版_七年级数学上_总复习课件

C. 3
D. 1或3
3、小亮利用星期天搞社会调查活动 ,早晨8:00出发,中午12:30到家 ,问小亮出发时和到家时时针和分针 的夹角各为________________度.
4、在线段AB上任取D、C、E 三 个点,那么这个图中共有10 ______条 线段.
5、直线l上有两点A、B,使AB=10cm ,在线段AB上取一点C,使AC=2cm.求 BC的长.
6、直线l上有两点A、B,使AB=10cm ,在直线l上取一点C,使AC=2cm,求 BC的长.
7、如图线段AC=8cm,BC=6cm,M 为AC中点,N为BC的中点,求线 段MN的长.
8、已知如图∠AOB=50°, ∠AOC=20°, OA为两角 的公共边,求∠BOC的度 数。 9、平面内有两个角 ∠AOB=50°, ∠AOC=20° ,OA为两角的公共边,求 ∠BOC的度数。
常见几何体的展开图
圆柱的展开图
圆柱
长方形和圆
圆锥的展开图
圆锥
扇形和圆
如图所示的三个图形中,经过 (2)(4) 折叠可以围成棱柱的是_______
做一做
下列图形是某些几何体的平面展开图 ,说出这些几何体的名称:
四棱柱
五棱锥
三棱柱
如图所示,把一个正方形三次对折后沿虚 线剪下,则所得的图形( C )
思考: 棱柱的侧棱、底面、侧面 分别有什么特点?
侧棱长都相等。
底面是相同的多边形。 侧面是平行四边形。
三棱柱 1. 图中的几何体是_____ , 5 个面围成的,有___ 9 由____ 6 个顶点,底 条棱,有____ 面是___ 3 个侧 三 边形,有___ 面,侧面的个数与底面多 相等 边形的边数的关系是___ , 如果一条侧棱长为2厘米, 那么所有侧棱的长度之和 6 厘米。 为___

北师大版七年级上册数学总复习

北师大版七年级上册数学总复习

北师大版七年级上册数学总复习一、选择题1.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .272.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n =( )A .9B .11C .13D .153.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = ) A .3B .23C .12-D .无法确定4.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是( )A .183B .157C .133D .915.若m 5=,n 3=,且m n 0+<,则m n -的值是( ) A .8-或2- B .8±或2± C .8- 或2 D .8或2 6.已知线段AB=m ,BC=n ,且m 2﹣mn=28,mn ﹣n 2=12,则m 2﹣2mn+n 2等于( ) A .49B .40C .16D .97.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( )A .49B .32C .54D .948.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A .3mnB .5mnC .7mnD .9mn 9.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( ) A .30 B .35︒ C .40 D .45 10.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( )A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b ><11.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .3212.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-2020二、填空题13.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是-16、9,现以点C 为折点,将数轴向右对折,若点A 对应的点A ’落在点B 的右边,并且A ’B =3,则C 点表示的数是_______.14.按下面程序计算,若开始输入x 的值为正整数,最后输出的结果为506,则满足条件的所有x 的值是___________.15.若|21(3)0x x y ++-=,则22x y +=_______.16.已知线段8cm AB =,在直线AB 上画线段5cm AC =,则BC 的长是______cm . 17.观察下列等式: ① 32 - 12 = 2 × 4 ② 52 - 32 = 2 × 8 ③ 72 - 52 = 2 × 12 ......那么第n (n 为正整数)个等式为___________ 18.如果单项式1b xy+-与23a xy -是同类项,那么()2019a b -=______.19.我们知道,一个两位数的十位数字为a ,个位数字为b ,其中09a <≤,09b ≤≤,且a ,b 都为整数,这个两位数可以表示为10a b +.观察下列各式:2323÷101=23,4545÷101=45,5151÷101=51,7979÷101=79,……,根据以上等式,猜想:()()101010110a b a b +÷+=______.20.如图,已知∠AOB =40°,自O 点引射线OC ,若∠AOC :∠COB =2:3,OC 与∠AOB 的平分线所成的角的度数为_____.21.如图,用大小相等的小正方形拼成有规律的图形,第1个图中有1个正方形,第2个图中含有5个正方形,第3个图中含有14个正方形…,按此规律拼下去,第6个图中含正方形的个数是___________个.22.如图所示,一动点从半径为2的O 上的0A 点出发,沿着射线0A O 方向运动到O上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O 上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O 上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O 上的点4A 处.……按此规律运动到点2020A 处,则点2020A 与点0A 间的距离是___________.三、解答题23.(1)计算:()13564734-++- (2)计算:()320201342-⨯+÷- (3)x 22x 1146+--= 24.化简,再求值:4x 2y ﹣[6xy ﹣2(4xy ﹣2﹣x 2y )]+1,其中x =﹣2,y =1 25.先化简再求值:222226(35)2(53)a b a b ab a b ab --+--其中12,2a b =-=26.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?27.如图,数轴上点A 表示的数为6,点B 位于A 点的左侧,10AB =,动点P 从点A 出发,以每秒3个单位长度的速度沿数轴向左运动,动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右运动. (1)点B 表示的数是多少? (2)若点P ,Q 同时出发,求:①当点P 与Q 相遇时,它们运动了多少秒?相遇点对应的数是多少? ②当8PQ =个单位长度时,它们运动了多少秒?28.如图,已知A 、B 、C 三点,请完成下列问题: (1)作直线BC ,射线CA ; (2)作线段AB ,并延长BA ;(3)点M是线段BC的中点,点N是直线BC上的一点,若BC=6,NB=23BC,求MN的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】将x=-m代入方程,解出m的值即可.【详解】将x=-m代入方程可得:-4m-3m=2,解得:m=-27.故选:C.【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键.2.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.3.B解析:B【解析】【分析】根据规则计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a=,211 132a==--,31213 1()2a==--,413213a==-,⋯,由上可得,每三个数一个循环,2019÷3=673,20192 3a∴=,故选:B.【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.4.B解析:B【解析】【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论.【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.5.A解析:A【解析】【分析】根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.【详解】解:∵|m|=5,|n|=3,且m+n<0,∴m=−5,n=3或m=−5,n=−3,∴m−n=−8或m-n=-2故选A.【点睛】本题考查了有理数的加减法和绝对值的代数意义.6.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..7.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案. 【详解】解:∵式子2mx 2-2x+8-(3x 2-nx )的值与x 无关, ∴2m-3=0,-2+n=0, 解得:m=32,n=2, 故m n =(32)2= 94. 故选D . 【点睛】此题主要考查了合并同类项,去括号,正确得出m ,n 的值是解题关键.8.B解析:B 【解析】 【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案. 【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=, 1()2ECH GAF S S m m n mn ∆∆==+=, 又矩形ABCD 的面积为mn , 所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B . 【点睛】此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.9.B解析:B 【解析】 【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x)°,余角的度数为(90-x)°,代入等量关系即可求解.【详解】设:这个角的度数是x,则补角的度数为180-x,余角的度数为90-x,由题意得:()()---=39018020x xx=解得35故选B.【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.10.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b<0,∴a<0,b<0.故选:C.【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.11.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,++++++=.所以最大正方形面积为:122412416故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.12.C解析:C 【解析】 【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值. 【详解】11a =-,212a a =-+=-1,323a a =-+=-2, 434a a =-+=-2,5453a a =-+=-, 6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n(n 为偶数), ∴202010102=, ∴2020a 的值为-1010, 故选:C. 【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.二、填空题 13.-2 【解析】【分析】将数轴向右对折后,则AC=A´B+BC ,设点C 表示的数为x ,根据等量关系列方程解答即可.【详解】设点C 表示的数为x ,根据题意可得,,解得x=-2.【点睛】本题考查解析:-2【解析】【分析】将数轴向右对折后,则AC=A ´B+BC ,设点C 表示的数为x ,根据等量关系列方程解答即可.【详解】设点C 表示的数为x ,根据题意可得,(16)39x x --=+-,解得x=-2.【点睛】本题考查一元一次方程的应用,解题的关键是根据数轴表示的距离得到AC=A ´B+BC. 14.101或20【解析】【分析】利用逆向思维来做,分析第一个数就是直接输出506,可得方程,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】∵最后输出的解析:101或20【解析】【分析】利用逆向思维来做,分析第一个数就是直接输出506,可得方程51506x +=,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】∵最后输出的结果为506,∴第一个数就是直接输出其结果时:51506x +=,则101x =>0;第二个数就是直接输出其结果时:51101x +=,则20x =>0;第三个数就是直接输出其结果时:5120x +=,则 3.8x =,不是正整数,不符合题意; 故x 的值可取101、20这2个.故答案为:101或20.【点睛】本题主要考查了代数式的求值和解方程的能力,注意理解题意与逆向思维的应用是解题的关键.15.【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】∵,∴,,∴,,∴.故答案为:.【点睛】本题考查了非负数的性质以及代数式的求值.解题解析:5-【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】 ∵21(3)0x x y ++-=,∴10x +=,30x y -=,∴1x =-,3y =-,∴222(1)2(3)165x y +=-+⨯-=-=-.故答案为:5-.【点睛】本题考查了非负数的性质以及代数式的求值.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0. 16.13或3【解析】【分析】根据线段的和与差运算法则,若点在延长线上时,即得;若点在之间,即得.【详解】当点在延长线上线段,当点在之间线段,综上所述:或故答案为:13或3【点解析:13或3【解析】【分析】根据线段的和与差运算法则,若点C 在BA 延长线上时,=+BC AB AC 即得;若点C 在AB 之间,=BC AB AC -即得.【详解】当点C 在BA 延长线上线段8cm AB =,5cm AC =∴==8+5=13cm +BC AB AC当点C 在AB 之间线段8cm AB =,5cm AC =∴==853cm --=BC AB AC综上所述:=13cm BC 或=3cm BC故答案为:13或3【点睛】本题考查线段的和与差,分类讨论确定点C 的位置是易错点,正确理解线段的无方向的性质是正确进行分类讨论的关键.17.【解析】【分析】通过观察可发现等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,进而求出第n 个等式.【详解】通过观察发现:等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,解析:()()22212124n n n +--=⨯【解析】【分析】通过观察可发现等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,进而求出第n 个等式.【详解】通过观察发现:等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍, ()()()2221212212124n n n n n +--=++-=⨯.故答案为:()()22212124n n n +--=⨯.【点睛】本题考查了数字类的变化规律,通过观察,分析、归纳并发现其中的规律,本题的关键规律是左边是两个连续奇数的平方差,右边是这两个奇数和的2倍. 18.1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a 、b ,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,解析:1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a 、b ,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,∴()2019a b -=1, 故答案为:1.【点睛】此题考查同类项的定义,正确理解同类项的定义并熟练解题是关键. 19.101【解析】【分析】观察算式可知,一个两位数十位数字的1010倍与个位数字的101倍的和除以这个两位数,商是101,依此即可求解.【详解】解:由分析可知:(1010a+101b)÷(10解析:101【解析】【分析】观察算式可知,一个两位数十位数字的1010倍与个位数字的101倍的和除以这个两位数,商是101,依此即可求解.【详解】解:由分析可知:(1010a+101b)÷(10a+b)=101.故答案为:101.【点睛】本题考查了规律型:数字的变化类,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.20.4°或100°.【解析】【分析】由题意∠AOC:∠COB=2:3,∠AOB=40°,可以求得∠AOC的度数,OD是角平分线,可以求得∠AOD的度数,∠COD=∠AOD-∠AOC.【详解】解解析:4°或100°.【解析】【分析】由题意∠AOC:∠COB=2:3,∠AOB=40°,可以求得∠AOC的度数,OD是角平分线,可以求得∠AOD的度数,∠COD=∠AOD-∠AOC.【详解】解:若OC在∠AOB内部,∵∠AOC:∠COB=2:3,∴设∠AOC=2x,∠COB=3x,∵∠AOB=40°,∴2x+3x=40°,得x=8°,∴∠AOC=2x=2×8°=16°,∠COB=3x=3×8°=24°,∵OD平分∠AOB,∴∠AOD=20°,∴∠COD=∠AOD﹣∠AOC=20°﹣16°=4°.若OC在∠AOB外部,∵∠AOC:∠COB=2:3,∴设∠AOC=2x,∠COB=3x,∵∠AOB=40°,∴3x﹣2x=40°,得x=40°,∴∠AOC=2x=2×40°=80°,∠COB=3x=3×40°=120°,∵OD平分∠AOB,∴∠AOD=20°,∴∠COD=∠AOC+∠AOD=80°+20°=100°.∴OC与∠AOB的平分线所成的角的度数为4°或100°.【点睛】本题考查角的计算,结合角平分线的性质分析,当涉及到角的倍分关系时,一般通过设未知数,建立方程进行解决.21.91【解析】【分析】根据题意分析可得出规律即是后一个图在前一个图的基础上添加这个图的序号的平方即可得出.【详解】解:第1个图中有1个正方形;第2个图中共有2×2+1=5个正方形;第3个解析:91【解析】【分析】根据题意分析可得出规律即是后一个图在前一个图的基础上添加这个图的序号的平方即可得出.【详解】解:第1个图中有1个正方形;第2个图中共有2×2+1=5个正方形;第3个图中共有3×3+5=14个正方形;第4个图形共有4×4+14=30个正方形;按照这种规律下去的第5个图形共有5×5+30=55个正方形.∴第6个图形共有6×6+55=91个正方形.故第6个图形共有91个正方形.故答案为:91.【点睛】此题主要考查了图形的变化类,此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.22.【解析】【分析】连接A4A5、A0A5,,,分别求出,,,,,,,根据图形的运动得到按此规律6次一循环,即可求出点与点间的距离.【详解】如图,连接A4A5、A0A5,,,∵的半径为2, 解析:23 【解析】 【分析】 连接A 4A 5、A 0A 5,04A A ,02A A ,分别求出014A A =,0223A A =,032A A =,0423A A =,052A A =,060A A =,,根据图形的运动得到按此规律6次一循环,即可求出点2020A 与点0A 间的距离.【详解】如图,连接A 4A 5、A 0A 5,04A A ,02A A ,∵O 的半径为2,∴014A A =,0223A A =,032A A =,0423A A =,052A A =,060A A =,按此规律6次一循环,∵202063364÷=,∴0202023A A =.故答案为:23.【点睛】此题考查图形类规律的探究,根据图形的变化得到运动的规律是解题的关键.三、解答题23.(1)-30;(2)-3.5;(3)-4【解析】【分析】(1)根据加法结合律和交换律即可得到结果;(2)根据含乘方的有理数的混合运算即可得到结果;(3)根据解一元一次方程的步骤即可得到结果.【详解】解:(1)原式=13+47-(56+34)=60-90=-30;(2)原式=-1×3+4÷(-8)=-3-0.5=-3.5; (3)x 22x 1146+--= ()()3222112x x +--=364212x x +-+=4x -=4x =-【点睛】本题主要考查的是含乘方的有理数的混合运算以及解一元一次方程,掌握以上知识点是解题的关键.24.2223x y xy +-,1【解析】【分析】先去括号,然后合并同类项,最后代入计算即可.【详解】原式=4x 2y ﹣6xy +8xy ﹣4﹣2x 2y +1=2x 2y +2xy ﹣3,当 x =﹣2,y =1时, 原式=8﹣4﹣3=1.【点睛】此题考查了整式的化简求值,去括号法则,以及合并同类项.其中去括号法则为:括号前面是正号,去掉括号和正号,括号里各项不变号;括号前面是负号,去掉括号和负号,括号里各项都要变号,此外注意括号外边有数字因式,先把数字因式乘到括号里再计算.合并同类项法则为:只把系数相加减,字母和字母的指数不变.解答此类题时注意把原式化到最简后再代值.25.22a b ab -+,52- 【解析】 【分析】 先去括号,再合并同类项得到化简结果,再将a 和b 的值代入即可.【详解】解:原式22222635106a b a b ab a b ab =+--+22a b ab =-+,把12,2a b =-=代入得: 22a b ab -+2211(2)(2)()22=--⨯+-⨯ 122=-- 52=-. 【点睛】本题考查整式的化简求值,熟练运用去括号及合并同类项法则是解题的关键.26.(1)A 、B 位置见解析,A 、B 之间距离为30;(2)2或-6;(3)第20次P 与A 重合;点P 与点B 不重合.【解析】【分析】(1)点B 距离原点10个单位长度,且位于原点左侧,得到点B 表示的数,再根据平移的过程得到点A 表示的数,在数轴上表示出A 、B 的位置,根据数轴上两点间的距离公式,求出A 、B 之间的距离即可;(2)设P 点对应的数为x ,当P 点满足PB=2PC 时,得到方程,求解即可;(3)根据第一次点P 表示-1,第二次点P 表示2,点P 表示的数依次为-3,4,-5,6…,找出规律即可得出结论.【详解】解:(1)∵点B 距离原点10个单位长度,且位于原点左侧,∴点B 表示的数为-10,∵将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,∴点A 表示的数为20,∴数轴上表示如下:AB 之间的距离为:20-(-10)=30;(2)∵线段OB 上有点C 且6BC =,∴点C 表示的数为-4,∵2PB PC =,设点P 表示的数为x , 则1024x x +=+,解得:x=2或-6,∴点P 表示的数为2或-6;(3)由题意可知:点P 第一次移动后表示的数为:-1,点P 第二次移动后表示的数为:-1+3=2,点P 第三次移动后表示的数为:-1+3-5=-3,…,∴点P 第n 次移动后表示的数为(-1)n •n ,∵点A 表示20,点B 表示-10,当n=20时,(-1)n •n=20;当n=10时,(-1)n •n=10≠-10,∴第20次P 与A 重合;点P 与点B 不重合.【点睛】本题考查的是数轴,绝对值,数轴上两点之间的距离的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系.27.(1)点B 表示的数为4;- (2)①点P 与点Q 相遇,它们运动了2秒,相遇时对应的有理数是0.②当点P 运动25秒或185秒时,8PQ =个单位长度. 【解析】【分析】(1)由点B 表示的数=点A 表示的数-线段AB 的长,可求出点B 表示的数;(2)设运动的时间为t 秒,则此时点P 表示的数为6-3t ,点Q 表示的数为2t-4. ①由点P ,Q 重合,可得出关于t 的一元一次方程,解之即可得出结论;②分点P ,Q 相遇前及相遇后两种情况,由PQ=8,可得出关于t 的一元一次方程,解之即可得出结论.【详解】解:(1)点A 表示的数为6,10AB =,且点B 在点A 的左侧, ∴点B 表示的数为6104-=-.(2)设运动的时间为t 秒,则此时点P 表示的数为63t -,点Q 表示的数为24t -.①依题意,得:6324t t -=-,解得:2t =,240t ∴-=,答:点P 与点Q 相遇,它们运动了2秒,相遇时对应的有理数是0.②点P ,Q 相遇前,63(24)8t t ---=, 解得:25t =; 当P ,Q 相遇后,24(63)8t t ---=,解得:185t =. 答:当点P 运动25秒或185秒时,8PQ =个单位长度. 【点睛】本题考查了一元一次方程的应用以及数轴,找准等量关系,正确列出一元一次方程是解题的关键.28.(1)图见解析;(2)图见解析;(3)MN 的长是1或7.【解析】【分析】(1)根据直线是向两方无限延长的,射线是向一方无限延长的画图即可;(2)根据线段的性质画图即可;(3)此题要分两种情况进行讨论:①当点N 在直线BC 上,且在点B 的上方时;②当点N 在直线BC 上,且在点B 的下方时分别进行计算.【详解】解:(1)(2)如图所示:(3)∵BC=6,23NB BC =,点M 平分线段BC , ∴BN=4,MB=3, ①当点N 在直线BC 上,且在点B 的上方时,MN=BN-BM=4-3=1,②当点N 在直线BC 上,且在点B 的下方时,MN=BN+BM=4+3=7,所以MN 的长是1或7.【点睛】本题考查画线段、射线、直线,线段的和差.(1)(2)中解题关键是掌握射线、线段、直线的性质;(3)中能分类讨论是解题关键.。

北师大版七年级数学上册总复习

北师大版七年级数学上册总复习

七年级上册知识点总结与复习第一章丰富的图形世界1、生活中的立体图形①圆柱:两个底面是大小相等的,侧面是一个面柱体②棱柱:棱柱的底面是多边形,侧面是.球体:只有一个面生活中的立体图形(按名称分) ①圆锥:由两个面围成,一个顶点,底面是,侧面是__面椎体.②棱锥:底面是多边形,侧面是_2、棱柱及其有关概念:n棱柱有个底面,个侧面,共个面;条棱,条侧棱;个顶点。

多边形:从n边形的一个顶点出发,有________条对角线,将n边形分成了_________个三角形.3、点动成,线动成,面动成。

4、正方体的平面展开图:11种第一类,1-4-1型,共六种。

第二类,2-3-1型,共三种。

第三类,2-2-2型,只有一种。

第四类,3-3型,只有一种。

圆柱的侧面展开图是,圆锥的侧面展开图是。

5、截一个几何体:用一个平面去截一个正方体,截出的面可能是,,,,,。

6、从三个方向看物体的形状三个方向分别是:正面(主视图)、左面(左视图)和上面(俯视图)。

( )第二章有理数及其运算1、有理数的分类正有理数整数有理数零有理数负有理数分数2.数轴(1)数轴的概念:规定了、和的直线,叫做数轴;(2)数轴上的点与有理数的关系:所有的有理数都可以用数轴上的点表示,零用表示,正有理数用的点表示,负有理数用的点表示.3.相反数(1)概念:如果两个数只有不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是 .(2)几何意义:在数轴上,表示互为相反数的两个点,位于原点,并且与原点的距离_______. 4.绝对值(1)概念:在数轴上,一个数所对应的点与______的距离叫做这个数的绝对值;(2)绝对值的求法:正数的绝对值是它_____,负数的绝对值是它的 ,0的相反数是_____. 5.有理数的加法(1)法则:同号两数相加,取_____的符号,并把绝对值_____;异号两数相加,绝对值相等时和为_____,绝对值不相等时,取绝对值较_____的数的符号,并用较大的绝对值减去较小的绝对值;一个数同____相加,仍得这个数.(2)运算律:①交换律:a+b=________;②结合律:(a+b )+c=____________.6.有理数的减法(1)法则:减去一个数等于加上这个数的________;(2)字母表示:a-b=a+_____.7.有理数的乘法(1)法则:两数相乘,同号得_____,异号得____,并把绝对值_____;任何数与0相乘仍得_____;(2)推广:几个不为0的有理数相乘,积的符号由______的个数决定,当_______有奇数个时,积为_____,当_______有偶数个时,积为;(奇偶)(3)倒数:乘积为 1 的两个有理数互为倒数,如-2与、与_____;(4)运算律:①交换律:a·b=_____;②结合律:(a·b)·c=_______;③乘法对加法的分配律:a(b+c)=_________.8.有理数的除法(1)法则一:两数相除,同号得____,异号得____,并把绝对值______;0除以任何不等于0的数都得____;(2)法则二:除以一个数等于乘这个数的 . 9.有理数的乘方(1)意义:一般地,求n 个相同因数a 的_____的运算叫做乘方;即(na a a a n a ⨯⨯⨯=…个相乘),其中乘方的结果叫做 ,a 叫做 ,n 叫做_______;(2)乘方运算的符号法则:正数的任何次幂都是_______,负数的奇数次幂是______,负数的偶数次幂是_____.10.有理数的混合运算的运算顺序先算 ,再算______,最后算_______;如果有括号,就先算____________. 11.科学记数法一般地,一个大于10的数可以表示成a ×10n的形式,其中___≤a <_____,n 是_______,这种记数方法叫做科学记数法.1.-22×34÷13-23; 2.()()()()643283⨯÷------ 3. -81(-9)÷⨯÷23324.21115(2)12()5234⨯-+÷-- 5.141(81)2(16)()494-÷⨯÷-÷-3.21-4(-)8+8(-4)8÷⨯÷ 4.32×229÷12-23 5.32-5×(-1)3+(-1)4驶里程按照先后顺序记录如下(单位:km):+9,-3,-5,+4,-8,+6.(1)最后出租车离开钟楼多远?在钟楼的什么方向?(2)若每千米的收费价格是2.4元,该出租车周日下午的营业额是多少?1.计算(-1)2+(-1)3=( ) 2. A .-2 B .-1 C .0 D .2 3.计算-(-1)2012的结果是( )4. A .1 B .-1 C .2012 D .-20125.如果用“*”定义一种新运算:a *b =a 2+b ,那么(-8)*7=____________.6.已知a 、b 互为相反数,c 、d 互为倒数,且3=m ,求20052)(242cd b m a -+-第三章 整式及其加减1.代数式用运算符号把数和_____连接而成的式子,叫做代数式.关于代数式,要注意把握两点:一是单独的一个数或__ ____也是代数式;二是只要不含有 关系符号 的式子就是代数式.2.代数式书写格式(1)数与字母相乘,应将_______写在前面;(2)数与字母相乘、字母与字母相乘,“×”应写作 ______或者__________;如a ×10应写作____或者____,m ×n 应写作______或______;(3)有除法运算时,要写成分数的形式,如6÷(y -3)应写成_______. 3.求代数式的值的步骤第一步,用 数值 代替代数式里的字母,简称 代入 ;第二步,按照代数式指明的运算计算出结果,简称 计算 .4.同类项所含字母_____,并且相同字母的 也_____的项,叫做同类项. 5.合并同类项(1)法则:合并同类项时,把同类项的系数_____,所得的结果作为系数,字母和字母的指数__ ___;(2)步骤:第一步,找出__ ___ __;第二步,利用法则,把同类项的__ _ __ _加在一起,字母和字母的指数__ __ _;第三步,利用有理数的加法法则计算出各项系数的和,写出合并后的结果.6.去括号法则(1)括号前是“+”号,把括号和它前面的“+”号去掉,原括号里各项的符号都____ ___;(2)括号前是“-”号,把括号和它前面的“-”号去掉,原括号里各项的符号都要__ _ ___.如图3-2是一个简单的数值运算程序,当输入的x的值为-1时,则输出的值为( )A.1 B.-5 C.-1 D.52.老师利用假期带学生外出游览,已知每张车票50元,甲车主说,如果乘我的车,师生全部享受8折优惠;乙车主说,如果乘我的车,学生9折优惠,老师免费.(1)如果一个老师带了x名学生,分别写出乘甲、乙两车所需的车费;(2)如果这个老师带了6名学生,乘哪一辆车合算?如果带了10名学生呢?第四章基本平面图形2.直线的基本性质经过两点有且只有____条直线.3.线段的基本性质两点之间,_____最短.4.两点之间的距离两点之间线段的______,叫做这两点之间的距离.距离是指线段的______,是一个______,而不是指线段本身.5.比较两条线段长短的方法(1)叠合法:把它们放在同一条直线上比较;(2)度量法:用刻度尺量出两条线段的长度进行比较.6.线段的中点若点M把线段AB分成______的两条线段AM、BM,则点M叫做线段AB的中点.这时有AM =_____ =12_____,AB=_______=_______.7.角(1)概念:角由两条具有公共__ _ ___的射线组成,两条射线的公共_______是这个角的_______,这两条射线叫做角的__ ___;从动态观点看,角是一条射线绕______从起始位置旋转到终止位置所组成的图形.(2)表示方法:①三个大写英文字母表示,中间的字母表示______,其他两个字母分别表示两条边上的任意一点;②用一个数字或小写_____字母表示;③用一个大写_____字母表示,前提是以这个点为顶点的角只有一个.(3)单位及换算:把周角平均分成360份,每一份就是1°的角,1°的160就是1′,1′的160就是1″,即1°=_____,1′=______.(4)分类:小于平角的角可按大小分成三类:当一个角等于平角的一半时,这个角叫做_____;大于0°角小于直角的角叫做_____;大于直角而小于平角的角叫做______.8.角的平分线从一个角的______引出的一条射线,把这个角分成两个_______的角,这条射线叫做这个角的平分线.从九边形的一个顶点出发,能引出________条对角线,它们将九边形分成________个三角形,九边形一共有________条对角线.如图。

北师大版七年级上册数学总复习

北师大版七年级上册数学总复习

北师大版七年级上册数学总复习一、选择题1.下列各组数中,数值相等的是( )A .﹣22和(﹣2)2B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×222.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >03.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( )A .a b b a -<<-<B .a b b a >->>-C .b a b a <-<-<D .a b b a -<-<<4.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .240 5.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >0 6.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5B .6C .7D .8 7.下列计算正确的是( ) A .b ﹣3b =﹣2B .3m +n =4mnC .2a 4+4a 2=6a 6D .﹣2a 2b +5a 2b =3a 2b 8.下列方程为一元一次方程的是( )A .x+2y =3B .y+3=0C .x 2﹣2x =0D .1y+y =0 9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是( )A .美B .丽C .琼D .海10.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是()A.2019B.2018C.2016D.201311.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式:第1行 1第2行 -2,3第3行 -4,5,-6第4行 7,-8,9,-10第5行 11,-12,13,-14,15……按照上述规律排列下去,那么第10行从左边数第5个数是()A.-50 B.50 C.-55 D.5512.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为()A.94 B.85 C.84 D.76二、填空题13.观察下列等式:12-3×1=1×(1-3);22-3×2=2×(2-3);32-3×3=3×(3-3);42-3×4=4×(4-3);…,则第n个等式可表示为_____.14.若将正整数按如图所示的规律排列.若用有序数对(a,b)表示第a排,从左至右第b 个数.例如(4,3)表示的数是9,则(31,5)表示的数是 _________.15.已知一个角的补角是它余角的10倍,则这个角的度数是_______________,,三个盘子里分别16.在班级联欢会上,数学老师和同学们做了一个游戏.她在A B C放了一些小球,小球数依次为000,,a b c ,记为()0000,,G a b c =,游戏规则如下:三个盘子中的小球数000a b c ≠≠,则从小球最多的一个盘子中拿出两个,给另外两个盘子各放一个,记作一次操作;n 次操作后的小球数记为(),,n n n n G a b c =.若0(3,5,19)G =,则3G =________,2000G =________.17.如图,将ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为h 1,还原纸片后,再将ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2,按上述方法不断操作下去…经过第2020次操作后得到的折痕D 2020E 2020到BC 的距离记为h 2020,若h 1=1,则h 2020的值为_____.18.关于x 的方程2x+m=1﹣x 的解是x=﹣2,则m 的值为__.19.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.20.如图,将一个正方形纸片分割成四个面积相等的小正方形纸片,然后将其中一个小正方形纸片再分割成四个面积相等的小正方形纸片.如此分割下去,第n 次分割后,正方形纸片共有_________个.21.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由5个圆组成,第3个图由11个圆组成,…按照这样的规律排列下去,则第20个图形由_____个圆组成.22.中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.同物几何? 即:一个整数除以3余2,除以5余3,除以7余2,则这个整数为__________________.(写出符合题意且不超过300的3个正整数)三、解答题23.计算:(1)(12)(7)(5)(30)+--+--+(2)32201913(2)(2)2(1)184-⨯-÷--⨯-⨯+24.计算及解方程(1)8+(–10)+(–2)–(–5);(2)()100215434-⨯--⨯--.(3)6363(5)x x -+=--;(4)2123148y y ---=. 25.先化简,再求值:2222()3()3a ab a ab ---,其中3a =-, 4b =26.如图,已知A 、B 、C 三点,请完成下列问题:(1)作直线BC ,射线CA ;(2)作线段AB ,并延长BA ;(3)点M 是线段BC 的中点,点N 是直线BC 上的一点,若BC=6,NB=23BC ,求MN 的长.27.如图,点P 是定长线段AB 上一点,C 、D 两点分别从点P 、B 出发以1厘米/秒,2厘米/秒的速度沿直线AB 向左运动(点C 在线段AP 上,点D 在线段BP 上). (1)若点C 、D 运动到任一时刻时,总有2PD AC =,请说明点P 在线段AB 上的位置;(2)在(1)的条件下,点Q 是直线AB 上一点,且AQ BQ PQ -=,求PQ AB 的值; (3)在(1)的条件下,若点C 、D 运动5秒后,恰好有12CD AB =,此时点C 停止运动,点D 继续运动(点D 在线段PB 上),点M 、N 分别是CD 、PD 的中点,下列结论:①PM PN -的值不变;②MN AB的值不变.可以说明,只有一个结论是正确的,请你找出正确的结论并求值.28.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|;(应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 .(2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 .(拓展):我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)已知E(2,0),若F(﹣1,﹣2),求d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,求t的值;(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,求d(P,Q).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A、-22=-4,(-2)2=4,不相等,故A错误;B、23=8,32=9,不相等,故B错误;C、-33=(-3)3=-27,相等,故C正确;D、(-3×2)2=36,-32×22=-36,不相等,故D错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.2.B解析:B【解析】【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.3.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.4.D解析:D【解析】【分析】先分别讨论x 和y 的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.【详解】①若x>y ,则代数式中绝对值符号可直接去掉,∴代数式等于x ,②若y >x 则绝对值内符号相反,∴代数式等于y ,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.5.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.6.B解析:B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.7.D解析:D【解析】【分析】根据合并同类项的法则即可求出答案.A. b﹣3b=﹣2b,故原选项计算错误;B. 3m+n不能计算,故原选项错误;C. 2a4+4a2不能计算,故原选项错误;D.﹣2a2b+5a2b=3a2b计算正确.故选D.【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.8.B解析:B【解析】【分析】根据一元一次方程的定义即可求出答案.【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y=3,两个未知数;B. y+3=0,符合;C. x2﹣2x=0,指数是2;D. 1y+y=0,不是整式方程.故选:B.【点睛】考核知识点:一元一次方程.理解定义是关键.9.B解析:B【解析】【分析】利用正方体及其表面展开图的特点解题即可.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“爱”与面“琼”相对,面“海”与面“美”相对,面“我”与面“丽”相对;故选:B.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.10.D解析:D【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解.【详解】解:设中间数为x ,则另外两个数分别为11x x -+、,∴三个数之和为()()113x x x x -+++=.当32019x =时,解得:673x =,∵673=84×8+1,∴2019不合题意,故A 不合题意;当32018x =时, 解得:26723x =,故B 不合题意; 当32016x =时,解得:672x =,∵672=84×8,∴2016不合题意,故C 不合题意;当32013x =时,解得:671x =,∵671=83×8+7,∴三个数之和为2013,故D 符合题意.故选:D .【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.11.A解析:A【解析】【分析】分析可得,第n 行有n 个数,此行第一个数的绝对值为(1)12n n -+,且式子的奇偶,决定它的正负,奇数为正,偶数为负,依此即可得出第10行从左边数第5个数.【详解】解:第n 行有n 个数,此行第一个数的绝对值为(1)12n n -+,且式子的奇偶,决定它的正负,奇数为正,偶数为负.所以第10行第5个数的绝对值为:1095502⨯+=, 50为偶数,故这个数为:-50.故选:A .【点睛】 本题考查探索与表达规律,能依据已给数据分析得出每行第一个数与行数之间的规律是解决此题的关键.12.A解析:A【解析】【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可.【详解】第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5...,所以第n 个图形中小圆的个数为4+n (n+1)所以第9个图形有: 4 +9×10=94个小圆,故选: A【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n 个图形的代数表达式将所求的代入.二、填空题13.【解析】【分析】由于每个等式第一个数值由1的平方到2的平方逐渐增加,接着减去的是3×1、3×2等,等式右边是前面数字的一种组合,由此即可得到第n 个等式.【详解】解:∵12-3×1=1×(1解析:23(3)n n n n -=-【解析】【分析】由于每个等式第一个数值由1的平方到2的平方逐渐增加,接着减去的是3×1、3×2等,等式右边是前面数字的一种组合,由此即可得到第n 个等式.【详解】解:∵12-3×1=1×(1-3);22-3×2=2×(2-3);32-3×3=3×(3-3);42-3×4=4×(4-3);……∴第n 个等式可表示为n 2-3n=n (n-3).故答案为:23(3)n n n n -=-.【点睛】此题主要考查了因式分解的应用,首先通过观察得到等式隐含的规律,然后利用规律即可解决问题.14.470【解析】【分析】先列出前4排第一个数的式子,再根据规律即可得出第31排第一个数,即可得出结论.【详解】解:通过观察可知每排的第1个数存在规律,第一排为1,第2排的第1个数为1+1解析:470【解析】【分析】先列出前4排第一个数的式子,再根据规律即可得出第31排第一个数,即可得出结论.【详解】解:通过观察可知每排的第1个数存在规律,第一排为1,第2排的第1个数为1+1=2,第3排的第1个数为1+1+2=4,第4排的第1个数为1+1+2+3=7……所以第31排的第1个数为1+1+2+3+4+5+6+…+30=466,从而得第31排的第5个数为470.故答案为:470.【点睛】本题主要考查了学生读图找规律的能力,能理解题意,从数列中找到数据排列的规律是解题的关键.15.【解析】【分析】设这个角的度数为x ,则其补角为,余角为,根据“一个角的补角是它余角的10倍”列方程求解即可.【详解】解:设这个角的度数为x ,则其补角为,余角为,根据题意可得:,解得,解析:80︒【解析】【分析】设这个角的度数为x ,则其补角为()180x -︒,余角为()90x -︒,根据“一个角的补角是它余角的10倍”列方程求解即可.【详解】解:设这个角的度数为x ,则其补角为()180x -︒,余角为()90x -︒,根据题意可得:()1801090x x -=-,解得80x =,故答案为:80︒.【点睛】本题考查余角和补角,用方程思想解决问题是解题的关键.16.(6,8,13), (8,10,9),【解析】【分析】根据题意先列出前10个数列,得出从G5开始每3次为一个周期循环的规律,据此可得答案.【详解】解:∵G0=(3,5,19)解析:(6,8,13), (8,10,9),【解析】【分析】根据题意先列出前10个数列,得出从G 5开始每3次为一个周期循环的规律,据此可得答案.【详解】解:∵G 0=(3,5,19),∴G 1=(4,6,17),G 2=(5,7,15),G 3=(6,8,13),G 4=(7,9,11), G 5=(8,10,9),G 6=(9,8,10),G 7=(10,9,8),G 8=(8,10,9),G 9=(9,8,10),G 10=(10,9,8),……∴从G5开始每3次为一个周期循环,∵(2000-4)÷3=665…1,∴G2000=G5=(8,10,9),故答案为:(6,8,13),(8,10,9),.【点睛】本题考查了列代数式,数字的规律,解题的关键是弄清题意得出从G5开始每3次为一个周期循环的规律.17.2﹣()2019【解析】【分析】根据题意和图形,可以写出前几次操作后h对应的值,从而可以发现变化特点,从而可以写出h2020的值.【详解】解:由题意可知,h1=2﹣1=1,h2=2﹣=解析:2﹣(12)2019【解析】【分析】根据题意和图形,可以写出前几次操作后h对应的值,从而可以发现变化特点,从而可以写出h2020的值.【详解】解:由题意可知,h1=2﹣1=1,h2=2﹣12=32,h3=2﹣(12)2,…,则h2020=2﹣(12)2019,故答案为:2﹣(12)2019.【点睛】此题主要考查图形的规律探索,解题的关键是根据题意先求出前几次变换的距离,再发现规律进行求解.18.7【解析】由题意得:2×(-2)+m=1-(-2),解得:m=7,故答案为7.解析:7【解析】由题意得:2×(-2)+m=1-(-2),解得:m=7,故答案为7.19.-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a解析:-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.20.3n+1【解析】【分析】观察图形规律,第一次有4个,第二次有7个,第三次有10个,依此类推可以得到第n次的计算结果.【详解】解:第一次有4个,第二次有7=3+4,第三次有10=3×2+4,解析:3n+1【解析】【分析】观察图形规律,第一次有4个,第二次有7个,第三次有10个,依此类推可以得到第n 次的计算结果.【详解】解:第一次有4个,第二次有7=3+4,第三次有10=3×2+4,第四次有13=3(4-1)+4,…以此类推,第n次有3(n-1)+4=3n+1.故答案为:3n+1.【点睛】本题考查了规律性的题目,首先至少正确计算三个特殊数据,然后进一步发现数据之间的规律,进行计算即可,本题可看到第一次有4个,第二次有7=3+4,第三次有10=3×2+4,从而得到第n次的规律.21.【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】解:根据图形的变化,发现第n个图形的最上边的一排是1个圆,第二排是2个圆,第三排是3个圆,…,第n排是n个圆;则第n个解析:【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】解:根据图形的变化,发现第n个图形的最上边的一排是1个圆,第二排是2个圆,第三排是3个圆,…,第n排是n个圆;则第n个图形的圆的个数是:2(1+2+…n﹣1)+(2n﹣1)=n2+n﹣1.当n=20时,202+20﹣1=419,故答案为:419.【点睛】本题考查图形的变化类问题,重点考查了学生通过观察、归纳、抽象出数列的规律的能力,难度不大.22.23,128,233.【解析】【分析】根据“一个整数除以3余2,除以5余3,除以7余2”找到三个数,第一个数能同时被3、5整除,第二个数能同时被3、7整除,第三个数能同时被5、7整除等,然后再解析:23,128,233.【解析】【分析】根据“一个整数除以3余2,除以5余3,除以7余2”找到三个数,第一个数能同时被3、5整除,第二个数能同时被3、7整除,第三个数能同时被5、7整除等,然后再将这三个数乘以被7、5、3除的余数再相加,据此进一步求解即可.【详解】根据题意,我们首先求出三个数:第一个数能同时被3、5整除,即15,第二个数能同时被3、7整除,即21,第三个数能同时被5、7整除,但除以3余1,即70,然后将这三个数分别乘以被7、5、3除的余数再相加,即:152213702233⨯+⨯+⨯=,最后再进一步减去3、5、7的最小公倍数的若干倍即可:233105223-⨯=, 综上所述,该数可用10523k +表示,当0k =时,1052323k +=,当1k =时,10523128k +=,当2k =时,10523233k +=,故答案为:23,128,233.【点睛】本题主要考查了有理数与代数式的综合运用,准确找出相应规律是解题关键.三、解答题23.(1)16-;(2)14-【解析】【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)()()()()127530+--+--+()()127530=++-+- 1935=-16=-;(2)32201913(2)(2)2(1)184-⨯-÷--⨯-⨯+13(8)421184=-⨯-÷-⨯-⨯+ 13(8)42184=-⨯-÷-⨯-+ 14142=-⨯ 14=-. 【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.24.(1)1;(2)-9;(3)x=-6;(4)y=72 【解析】【分析】(1)根据有理数的减法法则进行变形,再运用加法法则进行计算即可得到答案;(2)先进行乘方运算和去绝对值,然后再进行乘法运算,最后进行加减运算即可得到答案;(3)先去括号,然后移项,化系数为1,从而得到方程的解;(4)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【详解】(1)解:8+(–10)+(–2)–(–5)=8-10-2+5=1;(2)()100215434-⨯--⨯--=-1×5-(-12)-16=-5+12-16=-9;(3)6363(5)x x -+=--去括号,得-6x+3=6-3x+15移项,得-6x+3x=6+15-3合并同类项,得-3x=18系数化为1,得x=-6(4)2123148y y ---= 去分母,得2(2y-1)-(2y-3)=8去括号,得4y-2-2y+3=8移项,得4y-2y=8+2-3合并同类项,得2y=7系数化为1,得y=72【点睛】 本题考查了有理数的混合运算以及解一元一次方程,熟练掌握运算法则是解答此题的关键. 25.ab ,-12.【解析】【分析】先去括号,然后合并同类项,最后把a 、b 的数值代入进行计算即可得.【详解】2222()3()3a ab a ab --- =222322a ab a ab --+=ab ,当3a =-, 4b =时,原式=-3×4=-12.【点睛】本题考查了整式的加减——化简求值,熟练掌握去括号法则与合并同类项法则是解此类问题的关键.26.(1)图见解析;(2)图见解析;(3)MN 的长是1或7.【解析】【分析】(1)根据直线是向两方无限延长的,射线是向一方无限延长的画图即可;(2)根据线段的性质画图即可;(3)此题要分两种情况进行讨论:①当点N 在直线BC 上,且在点B 的上方时;②当点N 在直线BC 上,且在点B 的下方时分别进行计算.【详解】解:(1)(2)如图所示:(3)∵BC=6,23NB BC =,点M 平分线段BC , ∴BN=4,MB=3,①当点N 在直线BC 上,且在点B 的上方时,MN=BN-BM=4-3=1,②当点N 在直线BC 上,且在点B 的下方时,MN=BN+BM=4+3=7,所以MN 的长是1或7.【点睛】本题考查画线段、射线、直线,线段的和差.(1)(2)中解题关键是掌握射线、线段、直线的性质;(3)中能分类讨论是解题关键.27.(1)点P 在线段AB 的13处;(2)13或1;(3)结论②MN AB的值不变正确,112MN AB =. 【解析】【分析】(1)设运动时间为t 秒,用含t 的代数式可表示出线段PD 、AC 长,根据2PD AC =,可知点P 在线段AB 上的位置;(2)由AQ BQ PQ -=可知AQ PQ BQ =+,当点Q 在线段AB 上时,等量代换可得AP BQ =,再结合13AP AB =可得PQ AB的值;当点Q 在线段AB 的延长线上时,可得AQ BQ AB PQ -==,易得PQ AB 的值. (3)点C 停止运动时,12CD AB =,可求得CM 与AB 的数量关系,则PM 与PN 的值可以含AB 的式子来表示,可得MN 与AB 的数量关系,易知MN AB 的值. 【详解】解:(1)设运动时间为t 秒,则2,PD PB t PC AP t =-=-,由2PD AC =得22()PB t AP t -=-,即2PB AP =AP PB AB +=,2AP AP AB ∴+=,3AP AB ∴=,即13AP AB = 所以点P 在线段AB 的13处; (2)①如图,当点Q 在线段AB 上时,由AQ BQ PQ -=可知AQ PQ BQ =+,AQ AP PQ =+13PQ AP AB ∴==13PQ AB ∴=②如图,当点Q在线段AB的延长线上时,AQ BQ AB-=,AQ BQ PQ-=AB PQ∴=1PQAB ∴=综合上述,PQAB的值为13或1;(3)②MNAB的值不变.由点C、D运动5秒可得5,5210CP BD==⨯=,如图,当点M、N在点P同侧时,点C停止运动时,12CD AB=,点M、N分别是CD、PD的中点,11,22CM CD PN PD∴==14CM AB∴=154PM CM CP AB∴=-=-2103PD PB BD AB=-=-121(10)5233PN AB AB∴=-=-112MN PN PM AB∴=-=当点C停止运动,点D继续运动时,MN的值不变,所以111212ABMNAB AB==;如图,当点M、N在点P异侧时,点C停止运动时,12CD AB=,点M、N分别是CD、PD的中点,11,22CM CD PN PD∴==14CM AB ∴= 154PM CP CM AB ∴=-=-2103PD PB BD AB =-=- 121(10)5233PN AB AB ∴=-=- 112MN PN PM AB ∴=+= 当点C 停止运动,点D 继续运动时,MN 的值不变,所以111212AB MN AB AB ==; 所以②MN AB 的值不变正确,112MN AB =. 【点睛】本题考查了线段的相关计算,利用线段中点性质转化线段之间的和差倍分关系是解题的关键.28.【应用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)5;(2)t =±2;(3)d (P ,Q )的值为4或8.【解析】【分析】(1)根据若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1-x 2|,代入数据即可得出结论; (2)由CD ∥y 轴,可设点D 的坐标为(1,m ),根据CD=2即可得出|0-m|=2,解之即可得出结论;【拓展】:(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d (E ,H )=3,即可得出关于t 的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0),根据三角形的面积公式结合三角形OPQ 的面积为3即可求出x 的值,再利用两点之间的折线距离公式即可得出结论.【详解】解:【应用】:(1)AB 的长度为|﹣1﹣2|=3.故答案为:3.(2)由CD ∥y 轴,可设点D 的坐标为(1,m ),∵CD=2,∴|0﹣m|=2,解得:m=±2, ∴点D 的坐标为(1,2)或(1,﹣2).【拓展】:(1)d(E,F)=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案为:5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.(3)由点Q在x轴上,可设点Q的坐标为(x,0),∵三角形OPQ的面积为3,∴1|x|×3=3,解得:x=±2.2当点Q的坐标为(2,0)时,d(P,Q)=|3﹣2|+|3﹣0|=4;当点Q的坐标为(﹣2,0)时,d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8综上所述,d(P,Q)的值为4或8.【点睛】本题考查了两点间的距离公式,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.。

北师大版初一数学上册知识点汇总[通用]

北师大版初一数学上册知识点汇总[通用]

北师大版初一数学上册知识点汇总[通用]北师大版初一数学上册知识点汇总1第一章有理数1.正数和负数2.有理数3.有理数的加减4.有理数的乘除5.有理数的乘方重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字难点:绝对值易错点:绝对值、有理数计算中考必考:科学计数法、相反数(选择题)第二章整式的加减1.整式2.整式的加减重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减难点:单项式与多项式的系数和次数的确定、合并同类项易错点:合并同类项、计算失误、整数次数的.确定中考必考:同类项、整数系数次数的确定、整式加减第三章一元一次方程1.从算式到方程2.解一元一次方程----合并同类项与移项3.解一元一次方程----去括号去分母4.实际问题与一元一次方程重点:一元一次方程(定义、解法、应用)难点:一元一次方程的解法(步骤)易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系第四章图形认识实步1.多姿多彩的图形2.直线、射线、线段3.角4.课题实习----设计制作长方形形状的包装纸盒重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等难点:中点和角平分线的相关计算、余角和补角的应用易错点:等量关系不会转化、审题不清北师大版初一数学上册知识点汇总2知识要点:1.有理数加法的意义(1)在小学我们学过,把两个数合并成一个数的运算叫加法,数的范围扩大到有理数后,有理数的加法所表示的意义仍然是这种运算.(2)两个有理数相加有以下几种情况:①两个正数相加;②两个负数相加;③异号两数相加;④正数或负数或零与零相加.(3)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加.异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.一个数同0相加,仍得这个数.注意:①有理数的加法和小学学过的加法有很大的区别,小学学习的加法都是非负数,不考虑符号,而有理数的加法涉及运算结果的符号;②有理数的加法在进行运算时,首先要判断两个加数的符号,是同号还是异号?是否有零?接下来确定用法则中的哪一条;③法则中,都是先强调符号,后计算绝对值,在应用法则的过程中一定要“先算符号”,“再算绝对值”.2.有理数加法的运算律(1)加法交换律:a+b=b+a;(2)加法结合律:(a+b)+c=a+(b+c).根据有理数加法的运算律,进行有理数的'运算时,可以任意交换加数的位置,也可以先把其中的几个数加起来,利用有理数的加法运算律,可使运算简便.3.有理数减法的意义(1)有理数的减法的意义与小学学过的减法的意义相同.已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法.减法是加法的逆运算.(2)有理数的减法法则:减去一个数等于加上这个数的相反数.4.有理数的加减混合运算对于加减混合运算,可以根据有理数的减法法则,将加减混合运算转化为有理数的加法运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学总复习专题(一)
专题一:丰富的图形世界
1.右图是一个由6块相同的小立方体搭成的几何体,那么这个几
何体的俯视图是( )。

2..一个几何体被任意一个平面所截,若截面的形状都是圆,
则原几何体一定是 。

3.把右边的平面图形沿虚线折成一个正方体后,其中必有
三个点能够重合在一起,它们是 。

4.右图是可以沿线折叠成一个带数字的立方体,每三个带 数字的面交于立方体的一个顶
点,那么相交于一个顶点的三个面上的数字之和最小的 是 。

5.右图中的图1、图2、图3是由棱长为a 的小立方块摆放
而成
的几何体,按照这样的方法继续摆放,自上而下分别叫
做第一层、第二层、……、第n 层当摆至第n 层时,构
成这个几何体的小立方块的总个数记为n k ,它的表面积
记为n s 试求
(1) 2k 2和s
(2)3k 3和s
(3)10k 10和s
专题二:有理数及其运算 1.下列算式的结果负数的是 ( ) (A)()3-- (B)3-- (C)()23- (D)()3
3--
2.a 与3-互为相反数,则3+a 等于 ( )
3.下列运算中,错误的个数有: ( ) (1)49
1)71(2=
-; (2)1642=-; (3)52)3(-=-+-; (4)36)21(=⨯-; (5)412141=+-; (6)1)1(3=--。

个 个 个 个
4.已知02)1(4=++-b a ,则1999)(b a +的值为
_____________.
5.有理数a 、b 、c 在数轴上对应点的位置如图所示,
化简:|||2||||2|a b b a c c +------= 。

6.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是倒数等于本
身的有理数,那么2222a b ab d c --+-= 。

7.计算下列各题:
(1)411113)2131(512÷⨯
-⨯ (3)5)12(25.04
1)4(42-+-⨯-⨯-÷-
(2)])2(122[36
11
332010-+-⨯-- (4)20083)1()21()41(31)12(-⨯-÷-+-⨯-
8.已知xy y x ,4,32==>0,试求: ++++++)3)(3(1)2)(2(1y x y x ……+ )2002)(2002(1)2001)(2001(1+++++y x y x
专题三:字母表示数
1.下列每组中的两个代数式,属于同类项的是
(A)
212x y 与223xy (B)20.5a b 与20.5a c (C)3abc 与3ab (D)312
m n 与38nm - 2. 现规定一种新的运算“*”:a * b =b a ,如3 * 2=23=9,那么(12-) * 3=( )。

(A) 18- (B) 8 (C ) 18 (D )32- 3.如果a,b 互为相反数,下列结论不一定成立的是( )
A. 0=+b a
B.
1-=b
a C. 2a a
b -= D. b a = 4. 4)11()11()11(,0++++++=++b a
c c a b c b a c b a 的值是( )
5.减去5x -等于2
451x x --的代数式是 。

6.如果
3231y x a +与1233--b y x 是同类项,则a=______,b=________. 7. 94522+-++xy y kxy x 不含xy 项,则k=____________.
8.已知5322-+x x 的值为10,则15962
---x x 为__________.
9.已知代数式835-++cx bx ax ,当3-=x 时835-++cx bx ax 的值为6,那么当3=x
时,代数式835-++cx bx ax 的值为____________.
10.若a,b 互为相反数,m,n 互为倒数,x 的绝对值为5,试求代数式 mn b a mn b a x ++-++-+-34)()(
11.已知22
22221,262y xy x N y xy x M -+-=--=,求(1) ;22
1N M - (2)012)2(222=++-+xy y x ,求N M 221-的值。

专题四:平面图形及其位置关系
1.平面上有三个点,若过两点画直线,则可以画出直线的条数是( )
(A)1条 (B)2条 (C) 3条 (D)1条或3条
2.上午10点15分时,钟表的时针和分针的夹角α(00<α<0
180)是 度。

3. 如图,直线MN ⊥直线AB ,垂足为O ,直线CD 过点O ,
已知∠COA = 29°, 那么 ∠DON = ( )。

(A) 29° (B) 51° (C) 61° (D) 71°
4. 如图,已知M 是长度为12cm 的线段AB 的中点,如果点C 将线 段MB 的长度分成1:2两部分,那么线段AC 的长度为 cm 。

5.如图,C 、D 、E 将线段AB 分成四部分,且AC:CD:DE:EB=2:3:4:5,M 、P 、Q 、N 分别是AC 、
CD 、DE 、EB 的中点,MN=42,求PQ 的长。

6. (1)如图,已知100,30AOB BOC ∠=∠=,OE 平分AOC ∠,OF 平分BOC ∠,求EOF ∠ 的
度数;
(2)若(1)中,()AOB α∠=单位为度,∠AOB+∠BOC <180°,其它条件不变,求EOF ∠的度数;
(3)若(1)中()BOC β∠=单位为度,∠AOB+∠BOC <180°其它条件不变,求EOF ∠的度数;
(4)从(1)、(2)、(3)的计算结果,你能发现什么规律
专题五:一元一次方程
1. 已知2x =是方程()231x x a -+=+的解,则a 的值是( )
(A)-3 ( B)-2 (C) 3 (D)2
2. 已知一件标价为600元的上衣,按八折销售,仍可获利20元,设这件上衣成本价为x A
B E
C
D M Q P N
元,根据题意,那么下面所列方程正确的是( )。

(A)600×8-x=20 (B)600×=20
(C)600×8 +x=20 (D)600×+x=20
3.若2的相反数是关于042=-+m x 的解,那么m 的值是( )
4.若关于x 的方程03)1(=--m x
m 是一元一次方程,则m 的值为________. 5.解方程:
(1)()()()2253322x x x -+-=+ (2)
1.60.310.20.5
x x --=
6.某工厂生产一种产品,每件出厂价为50元,其成本为25元,在生产过程中,每生产1件产品就有立方米的污水排出,为了不污染环境,工厂设计了两种处理污水的方案: 方案1:工厂将污水净化处理后再排出,每立方米污水所用原料费2元,并且每月排污
设备损耗费为3万元;
方案2:工厂在生产过程中产生的污水统一由污水处理厂处理,每处理1立方米的污水
需付处理费用1 4元。

(1)设该工厂每月生产x 件产品,每月利润为y 元,
依据方案1,则有 1___________y =元(用含x 的代数式表示);
依据方案2,则有 2________y =元(用含x 的代数式表示);
(2)若该工厂每月生产6000件产品,在不污染环境的前提下,你建议厂长选用哪种处理污
水的方案利润更大,请通过计算说明你的理由。

7.芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷
段为22:00~次日8:00,10小时,平段用电价格在原销售电价基础上每千瓦时上浮元,谷段电价在原销售电价基础上每千瓦时下浮元。

小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费元。

(1)问小明家该月支付的平段、谷段电价每千瓦时各为多少元
(2)如不使用分时电价结算,5月份小明家将多支付电费多少元
8.某地产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;若经粗加工后销售,每吨利润可达4500元;若经精加工后销售,每吨利润涨至7500元。

当地一家公司收获这种蔬菜140吨,其加工的生产能力是:如果最蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须用15天的时间将这批蔬菜全部销售或加工完毕,为此,公司制定了三种可行性方案。

方案一:将蔬菜全部进行粗加工;
方案二:尽可能多地对蔬菜进行精加工,没有来得及加工的蔬菜,在市场上直接出售;。

相关文档
最新文档