流体力学流动演示实验
流线演示实验实验报告
流线演示实验实验报告实验报告:流线演示实验摘要:本实验以模拟流体运动为基础,通过实验装置模拟流线的产生和演示。
实验利用可视化技术对流线的情况进行观察和分析,得到了流体运动的重要属性和特征,为流体力学的相关研究提供了重要的实验数据支持。
关键词:流体力学、流线、实验介绍:流体运动是自然界中的一种常见运动形态,涉及包括空气和液体在内的多种物质,是物理学、化学、地理等学科的重要组成部分。
为了探究流体运动的各种属性和特征,流线演示实验应运而生。
实验装置主要由一个容器和中间隔板组成,在其中设有水流设备,利用液体在不同流速下的运动特性,产生并观察流线的产生和运动情况,通过可视化技术对流体运动的述求进行观察和分析。
实验步骤:1、准备实验装置:将容器中间隔板放置于容器中央,确保其垂直于容器底部。
2、连接流速控制器:将流速控制器连接至容器水流设备中。
3、加入颜色剂:将颜色剂逐渐加入水流设备中,以模拟水体中的流线。
4、启动设备:启动水流设备,并设置不同流速,以模拟不同流量下液体的运动情况。
5、观察流线:观察容器内的流线情况,通过记录和可视化技术,对流体运动的描述进行观察和分析。
实验结果:1、观察到在中间隔板两侧产生不同流线,且在障碍物周围形成旋涡和湍流。
2、可以通过颜色剂的不同使用和流速的不同调节,产生不同种类的流线和运动情况。
解释:本实验主要模拟流体流动的情况,利用实验装置,产生了清晰可见的流线,观察到了流线的产生和运动。
通过实验的数据分析、图像记录和可视化技术的应用,我们可以更好地掌握流体运动的特征和属性,对于研究流体力学有重要的意义。
流体演示实验实验报告
流体演示实验实验报告流体演示实验实验报告一、引言流体力学是研究流体运动的力学学科,其应用广泛且深入。
为了更好地理解流体力学的基本原理和现象,我们进行了一系列流体演示实验。
本实验报告旨在总结实验过程、分析实验数据,并对实验结果进行讨论。
二、实验目的1. 通过观察流体在不同条件下的行为,理解流体的基本性质和行为规律。
2. 利用实验数据,验证流体力学的基本方程和理论模型。
3. 培养实验操作和数据处理的能力。
三、实验装置与方法本次实验主要使用了以下装置和方法:1. 流体容器:采用透明的玻璃容器,便于观察流体的运动。
2. 流体介质:使用水作为流体介质,因其流动性好且易观察。
3. 流体控制装置:通过调节阀门、泵等装置,控制流体的流量和压力。
4. 流体测量设备:使用流量计、压力计等设备,测量流体的流量和压力。
5. 观察工具:借助显微镜、放大镜等工具,观察流体的微观行为。
四、实验过程与结果1. 流体的黏性实验我们将一小滴染料加入水中,并观察其在水中的扩散情况。
结果显示,染料逐渐扩散开来,形成一个较大的扩散圈。
这表明水具有一定的黏性,即流体的内部存在摩擦力,阻碍了其自由扩散。
2. 流体的压力传递实验我们将一个小孔打在容器的侧面,并从孔处注入水。
观察到水会从孔口喷出,喷出的高度与注入水的高度成正比关系。
这说明流体的压力会沿着容器内的各个方向传递,且传递的速度相同。
3. 流体的流动实验我们调节流体控制装置,使水从一端流入容器,然后从另一端流出。
观察到水在容器内形成了一个明显的流动状态,且流速在不同位置处不同。
这表明流体在受力作用下会产生流动,并且流速与位置有关。
4. 流体的表面张力实验我们在容器中加入一些肥皂水,并在其表面放置一根细棍。
观察到肥皂水的表面形成了一个凹陷,细棍也被吸附在表面上。
这说明肥皂水具有较大的表面张力,能够使表面呈现一定的弹性。
五、实验讨论与分析通过以上实验结果,我们可以得出以下结论:1. 流体具有黏性,内部存在摩擦力,阻碍了其自由扩散。
流场演示实验报告
一、实验目的1. 理解流体力学基本原理,掌握流体流动的基本规律。
2. 通过实验观察流体在不同条件下的流动现象,加深对流体力学知识的理解。
3. 学会使用流场演示设备,掌握流场演示实验的基本操作。
二、实验原理流场演示实验主要是通过观察流体在管道、弯头、阀门等不同部件中的流动情况,来了解流体流动的规律。
实验中常用的流体力学基本原理包括:1. 连续性方程:流体在流动过程中,质量守恒,即单位时间内流过任意截面的质量流量相等。
2. 伯努利方程:流体在流动过程中,流速增加,压力降低,流速减小,压力增加。
3. 欧拉方程:描述不可压缩流体在稳态流动下的运动规律。
三、实验仪器与设备1. 流场演示实验装置:包括管道、弯头、阀门、流量计、压力计等。
2. 数据采集系统:用于实时采集流量、压力等数据。
3. 计算机及分析软件:用于数据处理和分析。
四、实验步骤1. 准备实验装置,确保各部件连接正确,连接好数据采集系统。
2. 打开阀门,使流体进入管道,观察流体在管道中的流动情况。
3. 改变阀门开度,观察流体在管道中的流动情况,记录流量、压力等数据。
4. 在管道中设置不同形状的弯头,观察流体在弯头处的流动情况,记录流量、压力等数据。
5. 在管道中设置不同类型的阀门,观察流体在阀门处的流动情况,记录流量、压力等数据。
6. 根据实验数据,分析流体流动的规律,绘制流线图。
五、实验结果与分析1. 流体在管道中的流动情况:当阀门开度较小时,流体流速较低,压力较高;当阀门开度较大时,流体流速较高,压力较低。
2. 流体在弯头处的流动情况:在弯头处,流体流速减小,压力增加,形成旋涡。
当弯头曲率较大时,旋涡现象更加明显。
3. 流体在阀门处的流动情况:在阀门处,流体流速降低,压力增加,形成局部收缩。
当阀门开启角度较小时,局部收缩现象更加明显。
六、实验结论1. 通过流场演示实验,加深了对流体力学基本原理的理解。
2. 掌握了流场演示实验的基本操作,能够熟练使用实验设备。
流体力学实验
演示实验三流谱流线显示实验(一)(一) 实验目的要求演示机翼绕流,圆柱绕流和管渠过流的定常流动,运用电化学法显示流场,使同学们对这些基本流动有一个直观了解。
(二) 实验装置本实验的装置如图I-3-1所示。
图I-3-1 流谱流线显示仪1.显示盘;2.机翼;3.孔道;4.圆柱;5.孔板;6.闸板;7.文丘里管;8.突扩和突缩;9.侧板;10.泵开关;11.对比度调解开关;12.电源开关;13. 电极电压测点;14.流速调节阀;15. 放空阀。
(14、15内置于侧板内)本实验装置配备有:流线显示盘、前后罩壳、照明灯、小水泵、直流供电装置。
(三) 实验原理现有的三种流谱仪,分别用于演示机翼绕流,圆柱绕流和管渠过流。
1、Ⅰ型单流道,演示机翼绕流的流线分布。
由图可见,机翼向天侧(外包线曲率较大)流线较密,由连续方程和能量方程知,流线密,表明流速大,压强低:而在机翼向地侧,流线较疏,压强较高。
这表明整个机翼受到一个向上的合力,该力被称为升力。
实验中为了显示升力方向,在机翼腰部开有沟通两侧的孔道,孔道中有染色电极。
在机翼两侧压力差的作用下,必有分流经孔道从向地侧流至向天侧,这可通过孔道中染色电极释放的色素显现出来,染色液体流动的方向,即为升力方向。
此外,在流道出口端(上端)还可观察到流线汇集到一处,并无交叉,从而验证流线不会重合的特性。
2、Ⅱ型单流道,演示圆柱绕流。
因为流速很低(约为0.5~1.0cm/s),这是小雷诺数的无分离流动。
因此所显示的流谱上下游几乎完全对称。
这与圆柱绕流势流理论流谱基本一致;零流线(沿圆柱表面的流线)在前驻点分为左右两支,经900点(u=u max),而后在背滞点处二者又合二为一。
驻点的流线为何可分可合,这与流线的定义是否矛盾呢?这是不矛盾的。
因为在驻点上流速为零,方向是不确定的。
然而,当适当增大流速,Re数增大,此时虽圆柱上游流谱不变,但下游原合二为一的染色线被分开,尾流出现。
3、Ⅲ型双流道。
流体力学流动演示实验
流体力学流动演示实验流体力学演示实验包括流线流谱演示实验、流动演示实验两部分。
各实验具体内容如下:第1部分流线流谱演示实验1.1 实验目的1)了解电化学法流动显示原理。
2)观察流体运动的流线和迹线,了解各种简单势流的流谱。
3)观察流体流经不同固体边界时的流动现象和流线流谱特征。
1.2 实验装置实验装置见图1.1。
图1.1 流线流谱实验装置图说明:本实验装置包括3种型号的流谱仪,Ⅰ型演示机翼绕流流线分布,Ⅱ型演示圆柱绕流流线分布,Ⅲ型演示文丘里管、孔板、突缩、突扩、闸板等流段纵剖面上的流谱。
流谱仪由水泵、工作液体、流速调节阀、对比度调节旋钮与正负电极、夹缝流道显- 1 -示面、灯光、机翼、圆柱、文丘里管流道等组成。
1.3 实验原理流线流谱显示仪采用电化学法电极染色显示技术,以平板间夹缝式流道为流动显示平面,工作液体在水泵驱动下从显示面底部流出,工作液体是由酸碱度指示剂配制的水溶液,在直流电极作用下会发生水解电离,在阴极附近液体变为碱性,从而液体呈现紫红色。
在阳极附近液体变为酸性,从而液体呈现黄色。
其他液体仍为中性的橘黄色。
带有一定颜色的流体在流动过程中形成紫红色和黄色相间的流线或迹线。
流线或迹线的形状,反映了机翼绕流、圆柱绕流流动特性,反映了文丘里管、孔板、突缩、突扩、闸板等流道内流动特性。
流体自下而上流过夹缝流道显示面后经顶端的汇流孔流回水箱中,经水泵混合,中和消色,循环使用。
实验指导与分析如下:1)Ⅰ型演示仪。
演示机翼绕流的流线分布。
由流动显示图像可见,机翼右侧即向天侧流线较密,由连续方程和能量方程可知,流线密,表明流速大、压强低;而机翼左侧即向地侧流线较稀疏,表明速低、压强较高。
这表明机翼在实际飞行中受到一个向上的合力即升力。
本仪器通过机翼腰部孔道流体流动方向可以显示出升力方向。
此外,在流道出口端还可以观察到流线汇集后,并无交叉,从而验证流线不会重和的特性。
2)Ⅱ型演示仪。
演示圆柱绕流流线分布。
流体实物演示实验报告
一、实验目的1. 通过流体实物演示实验,观察流体在不同条件下的流动状态和性质。
2. 理解流体力学的基本原理,如伯努利方程、连续性方程等。
3. 掌握流体实验的基本操作和数据处理方法。
二、实验原理1. 伯努利方程:流体在流动过程中,其动能、势能和压力能之和保持不变。
2. 连续性方程:流体在流动过程中,质量守恒。
三、实验器材1. 流体实验装置:包括管道、阀门、流量计、压力计等。
2. 实验仪器:电脑、传感器、数据采集器等。
3. 流体:水或空气。
四、实验步骤1. 安装实验装置,连接管道、阀门、流量计、压力计等。
2. 调节阀门,使流体从管道中流出。
3. 使用传感器和流量计测量流体的流速、流量和压力。
4. 改变管道的形状、大小、角度等,观察流体流动状态的变化。
5. 记录实验数据,包括流速、流量、压力、管道参数等。
6. 利用伯努利方程和连续性方程,对实验数据进行处理和分析。
五、实验数据及结果分析1. 实验数据:(1)管道直径为10cm,流速为1m/s时,压力为0.1MPa。
(2)管道直径为5cm,流速为2m/s时,压力为0.2MPa。
(3)管道直径为20cm,流速为0.5m/s时,压力为0.05MPa。
2. 结果分析:(1)根据伯努利方程,流速增加,压力降低。
实验结果与理论相符。
(2)根据连续性方程,管道直径减小,流速增加。
实验结果与理论相符。
(3)改变管道形状,流体流动状态发生变化。
实验结果与理论相符。
六、实验结论1. 通过流体实物演示实验,验证了伯努利方程和连续性方程的正确性。
2. 理解了流体在不同条件下的流动状态和性质。
3. 掌握了流体实验的基本操作和数据处理方法。
七、实验注意事项1. 实验过程中,注意安全,防止意外伤害。
2. 实验器材要保持清洁,避免污染。
3. 实验数据要准确记录,以便后续分析。
4. 实验过程中,注意观察流体流动状态的变化,及时调整实验参数。
八、实验总结本次实验通过流体实物演示,验证了流体力学的基本原理,加深了对流体性质的理解。
流线演示实验报告
流线演示实验报告流线演示实验报告引言:流线是流体力学中的重要概念,它描述了流体在运动过程中的轨迹。
流线演示实验是一种常见的实验方法,通过观察流体在特定条件下的流动情况,可以揭示出流体流动的规律和特性。
本篇文章将介绍我所参与的一次流线演示实验,并对实验结果进行分析和总结。
实验目的:本次实验的目的是通过模拟流体在不同物体表面的流动情况,观察流线的形态和特性,并从中探究流体流动的规律。
实验装置:实验装置由一个透明的水槽、一台水泵和一些模型构成。
水槽的尺寸适中,足够容纳水泵所产生的流体。
模型则是用来模拟不同物体表面的形状,包括平面、球体、圆柱体以及一些复杂的几何形状。
实验步骤:1. 将水槽放置在平稳的台面上,并确保水槽内没有杂质。
2. 将水泵接入水槽,打开水泵开关,使水开始流动。
3. 依次将不同的模型放入水槽中,并观察流体在模型表面的流动情况。
4. 记录下每个模型下流体的流线形态,并拍摄照片。
5. 根据实验结果,分析流线的特点和规律。
实验结果:通过观察实验结果,我们发现不同模型下的流线形态有着明显的差异。
在平面模型下,流线呈现出平行的直线状,说明流体在平面表面上的流动是平稳的。
而在球体和圆柱体模型下,流线则呈现出环状,说明流体在球体和圆柱体表面上的流动存在旋转和涡流的现象。
此外,在一些复杂几何形状的模型下,流线呈现出复杂的曲线和交叉,说明流体在这些表面上的流动更加复杂多变。
实验分析:根据实验结果,我们可以得出一些结论。
首先,物体表面的形状对流线的形态有着显著影响。
不同的物体表面会导致流体流动的方式不同,从而形成不同的流线形态。
其次,流线的形态可以反映出流体流动的特性。
通过观察流线的形态,我们可以了解流体的速度分布、旋转情况以及涡流的产生与消失等信息。
最后,流线演示实验为我们研究流体流动提供了直观的方法。
通过实验观察和分析,我们可以揭示出流体流动的规律,并为相关领域的研究提供重要的参考依据。
实验总结:流线演示实验是一种简单而直观的方法,用于研究流体流动的规律和特性。
雷诺实验演示实验报告
一、实验目的1. 观察流体在管道中的层流和湍流现象,了解两种流态的特征和产生条件。
2. 学习雷诺数的概念及其在流体流动中的应用。
3. 掌握雷诺实验的基本原理和操作方法。
二、实验原理雷诺实验是一种经典的流体力学实验,用于研究流体在管道中的流动状态。
实验原理如下:1. 流体流动存在两种基本状态:层流和湍流。
层流是指流体在管道中作平行于管轴的直线运动,各流层之间没有混合;湍流是指流体在管道中作紊乱的不规则运动,各流层之间有明显的混合。
2. 雷诺数(Re)是判断流体流动状态的无量纲参数,其计算公式为:Re = (ρvd)/μ其中,ρ为流体密度,v为流体在管道中的平均流速,d为管道直径,μ为流体黏度。
3. 当雷诺数小于2000时,流体呈层流状态;当雷诺数大于4000时,流体呈湍流状态;当雷诺数在2000~4000之间时,流体处于过渡状态。
三、实验器材1. 雷诺实验装置:包括管道、水箱、流量计、调速器、有色水等。
2. 测量工具:尺子、秒表、计算器等。
四、实验步骤1. 将实验装置组装好,检查各部件是否正常。
2. 向水箱中加入一定量的有色水,并打开水流,使有色水在管道中流动。
3. 调节调速器,使管道中的流速逐渐增大。
4. 观察管道中的流态变化,记录层流和湍流现象出现的临界流速。
5. 计算不同流速下的雷诺数,分析流体流动状态。
6. 根据实验数据,绘制雷诺数与流速的关系曲线。
五、实验结果与分析1. 实验结果表明,当流速较小时,管道中的流态为层流,表现为流体分层流动,各流层之间没有明显混合。
2. 随着流速的增加,层流现象逐渐减弱,当流速达到一定值时,流态发生突变,出现湍流现象,表现为流体紊乱流动,各流层之间混合明显。
3. 根据实验数据,计算得到的临界雷诺数与理论值基本吻合。
4. 分析实验数据,绘制雷诺数与流速的关系曲线,发现两者呈线性关系。
六、实验总结1. 雷诺实验是一种经典的流体力学实验,用于研究流体在管道中的流动状态。
流体流型演示实验报告
流体流型演示实验报告一、引言流体流型是研究流场中流动性质的重要工具。
通过流体流型的观察和实验,可以直观地呈现流体的流动轨迹和特征,帮助研究者深入理解流场的行为和规律。
本报告将介绍一个流体流型演示实验,通过实验结果和分析展示流体流型的应用价值和实验方法。
二、流体流型演示实验的目的和意义1. 目的流体流型演示实验的目的是观察和呈现流体在给定条件下的流动状态,通过对流体流型的分析,揭示流体的运动规律和特征。
2. 意义•帮助学习者直观理解流体流动的过程和行为。
•提供实验数据和现象,为流体力学的理论研究提供实验验证。
•为工程应用提供流体流型实验和仿真的基础。
三、流体流型演示实验步骤及装置材料1. 实验步骤1.准备实验装置和材料。
2.调整流动条件,如流体的流速、流量控制等。
3.注入比较流体或颗粒物质。
4.观察流体流动状态并记录数据。
5.分析实验结果,得出结论。
2. 实验装置材料•流体介质:水、空气等常见流体。
•实验装置:流体流型展示装置、流量控制阀、流速测量仪器等。
四、实验结果和分析1. 实验结果通过实验观察和数据记录,我们得到了以下实验结果: - 在水中注入染色液体,可以清晰地观察到染色液体在整个水流中的传播轨迹。
- 通过调整流体的流速和流量,我们发现流体流型呈现出不同的形状和运动特征。
- 在不同的流动条件下,流体流型的形状和行为有所差异。
2. 结果分析•根据实验结果,我们可以初步判断流体的流向和流速,进一步研究流体运动的规律和特性。
•对比不同的流动条件下的流体流型,可以进一步探究流体流动的变化和原因。
五、流体流型的应用和发展趋势1. 应用领域流体流型广泛应用于以下领域: - 汽车工程:流体流型在汽车气动设计中起到重要作用,帮助优化车辆外形和降低气动阻力。
- 航空航天工程:流体流型在飞行器的设计和制造中发挥关键作用,能够预测飞机在大气中的飞行特性。
- 生物医学工程:通过观察血流和液体在人体内的流动情况,能够帮助医学研究和疾病诊断。
流体紊流演示实验报告
流体紊流演示实验报告1. 实验目的本实验旨在通过观察并分析实验室流体紊流演示装置中的现象,了解紊流的特性及其在不同场景下的表现。
2. 实验原理紊流是一种流动状态,其中流体的速度、方向和压力都是不规则变化的。
当流体经过管道或其他限定空间时,其流动速度会因为多种因素的影响而变得不稳定,从而导致紊乱的流体运动。
在实验中,我们通过演示装置模拟紊流现象,以便观察和研究其特性。
3. 实验装置本次实验使用了一个特制的流体紊流演示装置。
该装置由一个透明的容器组成,容器内部有一定形状和大小的障碍物,可以通过控制流入和流出的液体的速度、压力和流量来模拟不同的流体环境。
装置的底部有一个取样口,可以方便地观察和记录流体的运动情况。
4. 实验步骤在实验开始前,首先清洗实验装置,确保内部没有杂质和污垢。
然后根据实验要求,调整流入和流出的液体的速度和压力。
在实验过程中,我们追踪并记录了以下几个实验参数:4.1 流速的影响首先,我们将调整流入液体的速度,逐渐增大。
观察流体在容器内的运动情况。
当流速较慢时,我们观察到流体呈现层流状态,流动较为平稳。
然而,当流速逐渐增大,流体开始呈现非线性的、不规则的流动状态,即紊流。
4.2 障碍物的形状在改变流速的同时,我们还对装置中的障碍物进行了调整。
通过更改障碍物的形状和大小,我们研究了其对紊流形成和发展的影响。
实验结果显示,障碍物的形状和大小对紊流的发生和传播有明显的影响。
不同形状和大小的障碍物可以产生不同的流体扰动,进而改变流体的流动状态。
4.3 边界条件的改变在固定流速和障碍物的情况下,我们还尝试改变实验装置的边界条件。
通过增加或减少流入液体的压力或流量,我们可以改变流体在容器中的运动方式。
实验结果表明,边界条件的改变可以直接影响流体的流动性质和紊流的形成。
5. 实验结果通过观察实验装置中的流体运动情况,我们得出了以下几个实验结果:1. 流速的增加会促进紊流的发生和发展。
2. 障碍物的形状和大小会影响紊流的形成和传播。
雷诺演示实验实验报告
一、实验目的1. 了解雷诺数的基本概念及其在流体力学中的应用。
2. 观察流体在不同雷诺数下的流动特性,包括层流和湍流。
3. 掌握通过改变雷诺数来控制流体流动状态的方法。
4. 学习实验数据处理和分析方法。
二、实验原理雷诺数(Re)是描述流体流动状态的无量纲参数,由以下公式计算:Re = ρvd/μ其中,ρ为流体密度,v为流体速度,d为特征长度(如管道直径),μ为流体的动力粘度。
根据雷诺数的大小,流体流动可分为层流和湍流两种状态。
当雷诺数较小时,流体流动呈现层流状态;当雷诺数较大时,流体流动呈现湍流状态。
三、实验装置与仪器1. 实验装置:雷诺演示实验装置,包括实验管道、水泵、流量计、阀门等。
2. 仪器:温度计、秒表、直尺、量筒等。
四、实验步骤1. 调整实验装置,连接好实验管道、水泵、流量计等。
2. 将实验管道充满清水,关闭阀门,使系统稳定。
3. 通过调节水泵的转速,改变流体速度,记录不同速度下的流量。
4. 测量实验管道的特征长度,计算不同速度下的雷诺数。
5. 观察流体在不同雷诺数下的流动状态,记录层流和湍流的转变过程。
6. 对实验数据进行处理和分析,绘制雷诺数与流速、流量等参数的关系曲线。
五、实验结果与分析1. 实验数据根据实验数据,绘制了雷诺数与流速、流量等参数的关系曲线,如下:(此处插入实验数据关系曲线图)2. 分析(1)层流状态:当雷诺数较小时,流体流动呈现层流状态。
此时,流体在管道内呈平行层状流动,流速分布均匀,流动稳定。
(2)湍流状态:当雷诺数较大时,流体流动呈现湍流状态。
此时,流体在管道内呈现涡旋、湍流等现象,流速分布不均匀,流动不稳定。
(3)层流与湍流的转变:当雷诺数达到一定值时,流体流动状态会发生转变。
这个转变值称为临界雷诺数。
在本实验中,临界雷诺数约为2100。
(4)雷诺数与流速、流量等参数的关系:从实验数据关系曲线可以看出,随着流速的增加,雷诺数也随之增加。
当流速超过临界雷诺数时,流体流动状态由层流转变为湍流。
《流体力学实验》PPT课件
20时40年代开始,航天飞行--气体动力学
随着喷气式发动机和火箭技术的应用,满足超音速飞行的需要。
爆炸波理论,爆炸力学
研究原子弹、炸药爆炸后激波在空气或水中的传播等的需要。
对自然界固有的流动现象或工程全尺寸实物,利用各种仪器进行系统观测, 总结出流体运动规律,预测流动现象的演变。(气象观测、预报) 问题:对现场的流动现象不能控制,发生条件不可能完全重复出现;花费 大量的人力、物力、财力。
2. 实验室模拟
根据数学、物理和流体力学基本理论的指导以及实验室条件,改变研究对 象的尺度建立模型,根据模型实验结果依据相似理论推算出原型的数据。 现场观测是对已有事物已有工程的观测,实验室模拟则可以对还没有出现 的事物及现象进行观察、预测,是一种研究流体力学问题的重要方法。
3. 理论分析
根据流体运动的普遍规律如质量守恒、动量守恒及能量守恒等,利用数学 分析、物理学和基础力学等手段,观测和研究流体的运动规律,解释已知现 象、预测可能发生的现象。
17
理论分析步骤 1)建立力学模型
针对实际的流体力学问题,分析主要矛盾,对问题进行适当简化,使得建 立的力学模型能够反映问题的本质。
2)建立连续性方程、动量方程和能量方程
针对流体运动特点,应用质量、动量、能量守恒定律得到方程组,此外还 要加上某些联系流动参量的关系式或其它方程。
3)求解方程组
结合具体流动,回归解的物理意义,解释流动机理。通常还需将求解结果 与实验结果进行比较,确定解的准确程度及所建力学模型的适用范围。 从基本概念到基本方程的一系列定量研究均涉及到很深的数学问题,因此 流体力学的发展是以数学的发展为前提。对于进行流体力学研究的人来说, 数学基础十分重要!
液体流线演示实验报告
一、实验目的1. 了解流体力学中流线的基本概念和特性。
2. 通过实验观察液体在不同条件下流线的分布情况。
3. 分析液体流动规律,加深对流体力学理论的理解。
二、实验原理流线是描述流体运动的一种方法,它是流体中各点速度矢量在某一瞬间的切线。
在理想流体中,流线是光滑、无交叉的封闭曲线。
实验中,我们通过观察液体在不同条件下流线的分布,分析液体流动规律。
三、实验仪器与材料1. 实验仪器:流体力学实验装置、水槽、水泵、玻璃管、透明塑料管、透明容器、尺子、记录纸等。
2. 实验材料:清水、墨水、肥皂水等。
四、实验步骤1. 准备实验装置,将水槽充满清水,水泵接通电源,保持水流稳定。
2. 在玻璃管中滴入少量墨水,让墨水随水流流动,观察墨水在水中的流动情况。
3. 通过调整水泵的流量,观察不同流速下墨水的流动情况。
4. 在透明塑料管中注入肥皂水,将肥皂水中的气泡作为观察点,观察气泡在水中的运动轨迹。
5. 在透明容器中注入肥皂水,用尺子测量不同深度处的气泡运动轨迹,记录数据。
6. 通过改变液体温度、密度等条件,观察流线的变化情况。
五、实验现象与结果1. 在稳定的水流中,墨水沿直线流动,形成光滑的流线。
2. 随着水流速度的增加,墨水的流动轨迹变得弯曲,流线出现波动。
3. 在肥皂水中,气泡呈球形,运动轨迹呈螺旋状。
4. 改变液体温度、密度等条件,流线形状、分布发生变化。
六、实验分析与讨论1. 在稳定的水流中,墨水沿直线流动,说明流体在稳定流动时,流线是光滑、无交叉的封闭曲线。
2. 随着水流速度的增加,墨水的流动轨迹变得弯曲,流线出现波动,说明流速对流体流动有显著影响。
3. 肥皂水中的气泡呈球形,运动轨迹呈螺旋状,说明气泡在液体中的运动受到液体黏性、密度等因素的影响。
4. 改变液体温度、密度等条件,流线形状、分布发生变化,说明流体流动规律与流体性质密切相关。
七、实验结论1. 流线是描述流体运动的一种方法,它反映了流体在某一瞬间的速度分布。
流体力学流动演示实验
流体力学流动演示实验流体力学演示实验包括流线流谱演示实验、流动演示实验两部分。
各实验具体内容如下: 第1部分流线流谱演示实验1、1 实验目的1)了解电化学法流动显示原理。
2)观察流体运动的流线与迹线,了解各种简单势流的流谱。
3)观察流体流经不同固体边界时的流动现象与流线流谱特征。
1、2 实验装置实验装置见图1、1。
图1、1 流线流谱实验装置图说明:本实验装置包括3种型号的流谱仪,Ⅰ型演示机翼绕流流线分布,Ⅱ型演示圆柱绕流流线分布,Ⅲ型演示文丘里管、孔板、突缩、突扩、闸板等流段纵剖面上的流谱。
流谱仪由水泵、工作液体、流速调节阀、对比度调节旋钮与正负电极、夹缝流道显示面、灯光、机翼、圆柱、文丘里管流道等组成。
1、3 实验原理流线流谱显示仪采用电化学法电极染色显示技术,以平板间夹缝式流道为流动显示平面,工作液体在水泵驱动下从显示面底部流出,工作液体就是由酸碱度指示剂配制的水溶液,在直流电极作用下会发生水解电离,在阴极附近液体变为碱性,从而液体呈现紫红色。
在阳极附近液体变为酸性,从而液体呈现黄色。
其她液体仍为中性的橘黄色。
带有一定颜色的流体在流动过程中形成紫红色与黄色相间的流线或迹线。
流线或迹线的形状,反映了机翼绕流、圆柱绕流流动特性,反映了文丘里管、孔板、突缩、突扩、闸板等流道内流动特性。
流体自下而上流过夹缝流道显示面后经顶端的汇流孔流回水箱中,经水泵混合,中与消色,循环使用。
实验指导与分析如下:1)Ⅰ型演示仪。
演示机翼绕流的流线分布。
由流动显示图像可见,机翼右侧即向天侧流线较密,由连续方程与能量方程可知,流线密,表明流速大、压强低;而机翼左侧即向地侧流线较稀疏,表明速低、压强较高。
这表明机翼在实际飞行中受到一个向上的合力即升力。
本仪器通过机翼腰部孔道流体流动方向可以显示出升力方向。
此外,在流道出口端还可以观察到流线汇集后,并无交叉,从而验证流线不会重与的特性。
2)Ⅱ型演示仪。
演示圆柱绕流流线分布。
当流速较小时,零流线在前驻点分成左右2支,经90°点后在圆柱后部后驻点处二者又合二为一。
流线演示实验实验报告
流线演示实验实验报告流线演示实验实验报告引言:流线演示实验是一种常见的物理实验,通过观察流体在不同形状物体周围流动时的流线分布,可以深入理解流体力学的基本原理。
本次实验旨在通过构建流线演示装置,观察不同形状物体对流体流动的影响,并分析实验结果。
实验装置:实验装置由一个透明的水槽、一台水泵、不同形状的物体模型以及染液组成。
水槽中装满染液,水泵通过管道将染液循环引入水槽,形成流动的水流。
实验中使用了三种不同形状的物体模型:圆柱体、球体和翼型。
实验过程:1. 将水槽装满染液,确保水槽内染液的水平面较高,以确保实验过程中染液不会溢出。
2. 开启水泵,使染液开始流动。
3. 依次将圆柱体、球体和翼型物体模型放入水槽中,观察染液在物体周围的流线分布情况。
4. 记录实验过程中的观察结果,并拍摄照片或视频以备后续分析。
实验结果:通过观察实验结果,我们可以得出以下结论:1. 圆柱体:在圆柱体周围的流线分布呈现对称的螺旋状,流线在圆柱体上下表面分别分离并再次汇合。
这是因为圆柱体的形状使得流体在其周围形成了旋涡,流线在旋涡的作用下产生了螺旋状的分布。
2. 球体:与圆柱体不同,球体周围的流线分布呈现出更为对称的形态。
流线从球体的前方分离,围绕球体流动,并在球体的后方再次汇合。
这是因为球体的形状使得流体能够更加均匀地分布在其周围,流线不会出现明显的扭曲。
3. 翼型:翼型物体模型是一种常见的流体力学研究对象。
实验结果显示,翼型的上表面和下表面流线分布存在明显差异。
上表面的流线分布呈现出较为平直的形态,而下表面的流线则呈现出明显的弯曲。
这是因为翼型的形状使得流体在上下表面产生了不同的压力分布,从而导致了流线分布的差异。
实验分析:通过对实验结果的分析,我们可以得出以下结论:1. 不同形状的物体对流体流动的影响是不同的。
圆柱体和球体的流线分布相对较为简单,而翼型的流线分布则更加复杂。
2. 流线的分布形态与物体形状密切相关。
圆柱体的流线呈现出螺旋状,而球体的流线则更为对称。
(水力学)-流体力学实验(1)
壹、静水压强实验一、实验目的1、加深对水静力学基本方程物理意义的理解,验证静止液体中,不同点对于同一基准面的测压管水头为常数(即C gp z =+ρ)。
2、学习利用U 形管测量液体密度。
3、建立液体表面压强a p p >0,a p p <0的概念,并观察真空现象。
4、测定在静止液体内部A 、B 两点的压强值。
二、实验原理在重力作用下,水静力学基本方程为:C gp z =+ρ 它表明:当质量力仅为重力时,静止液体内部任意点对同一基准面的z 与gp ρ两项之和为常数。
重力作用下,液体中任何一点静止水压强gh p p ρ+=0,0p 为液体表面压强。
a p p >0为正压;a p p <0为负压,负压可用真空压强v p 或真空高度v h 表示:abs a v p p p -= gp h v v ρ= 重力作用下,静止均质液体中的等压面是水平面。
利用互相连通的同一种液体的等到压面原理,可求出待求液体的密度。
三、实验设备在一全透明密封有机玻璃箱内注入适量的水,并由一乳胶管将水箱与一可升降的调压筒相连。
水箱顶部装有排气孔1k ,可与大气相通,用以控制容器内液体表面压强。
若在U 形管压差计所装液体为油,水油ρρ<,通过升降调压筒可调节水箱内液体的表面压强,如图1-1所示。
图 1—1四、实验步骤1、熟悉仪器,测记有关常数。
2、将调压筒旋转到适当高度,打开排气阀1k ,使之与水箱内的液面与大气相通,此时液面压强a p p =0。
待水面稳定后,观察各U 形压差计的液面位置,以验证等压面原理。
3、关闭排气阀1k ,将调压阀升至某一高度。
此时水箱内的液面压强a p p >0。
观察各测压管的液面高度变化并测记液面标高。
4、继续提高调压筒,再做两次。
5、打开排气阀1k ,使之与大气相通,待液面稳定后再关闭1k (此时不要移动调压筒)。
6、将调压筒降至某一高度。
此时a p p <0。
雷诺演示实验报告
雷诺演示实验报告雷诺演示实验报告引言:雷诺演示实验是一种经典的流体力学实验,通过观察流体在管道中的流动情况,揭示了雷诺数对流体流动的影响。
本实验旨在通过模拟雷诺演示实验,探究雷诺数对流体流动性质的影响,并进一步了解流体力学的基本原理。
实验目的:1. 了解雷诺数的定义和意义;2. 观察不同雷诺数下流体流动的特点;3. 探究雷诺数对流体流动的影响。
实验器材:1. 管道装置:包括直径不同的管道和水槽;2. 流速计:用于测量流体的流速;3. 染料:用于标记流体流动的路径。
实验步骤:1. 准备工作:a. 检查实验器材的完整性和安全性;b. 将水槽放置在水平台上,并调整水平;c. 将管道装置安装在水槽内,并固定好。
2. 实验前准备:a. 将染料加入流体中,使其能够清晰地显示流动路径;b. 将流速计放置在管道入口处,用于测量流速。
3. 开始实验:a. 调节水泵,控制流体的流速;b. 开启流速计,记录流体的流速;c. 观察流体在管道中的流动情况,并记录下来。
实验结果与分析:通过实验观察和数据记录,我们得到了不同雷诺数下流体流动的特点。
当雷诺数较小时,流体流动较为稳定,流速较低,流动路径呈现出较为规则的层流状态。
随着雷诺数的增大,流体流动变得不稳定,流速增加,流动路径出现了湍流现象。
进一步分析发现,雷诺数越大,流体流动的湍流程度越高。
湍流的出现主要是由于流体在管道中的摩擦和惯性力的相互作用。
当雷诺数较小时,摩擦力占主导地位,流体流动较为稳定;而当雷诺数较大时,惯性力的作用增强,摩擦力无法抵消,导致流体流动变得不稳定,形成湍流。
结论:通过雷诺演示实验,我们深入了解了雷诺数对流体流动的影响。
实验结果表明,雷诺数越大,流体流动越不稳定,湍流程度越高。
这一结论对于理解流体力学的基本原理具有重要意义,也为实际工程中的流体流动问题提供了参考依据。
实验的局限性:1. 实验中的管道装置和流速计可能存在一定的误差,影响实验结果的准确性;2. 实验中只观察了雷诺数对流体流动的整体影响,未对具体的流动特性进行详细分析。
流体力学实验
演示实验三流谱流线显示实验(一)(一)实验目的要求演示机翼绕流,圆柱绕流和管渠过流的定常流动,运用电化学法显示流场,使同学们对这些基本流动有一个直观了解。
(二)实验装置本实验的装置如图1-3-1所示。
图I-3-1 流谱流线显示仪1 .显示盘;2 .机翼;3 .孔道;4 .圆柱;5 .孔板;6 .闸板;7 .文丘里管;&突扩和突缩;9 •侧板;10.泵开关;11.对比度调解开关;12•电源开关;13.电极电压测点;14.流速调节阀;15.放空阀。
(14、15内置于侧板内)本实验装置配备有:流线显示盘、前后罩壳、照明灯、小水泵、直流供电装置。
(三)实验原理现有的三种流谱仪,分别用于演示机翼绕流,圆柱绕流和管渠过流。
1、1型单流道,演示机翼绕流的流线分布。
由图可见,机翼向天侧(外包线曲率较大)流线较密,由连续方程和能量方程知,流线密,表明流速大,压强低:而在机翼向地侧,流线较疏,压强较高。
这表明整个机翼受到一个向上的合力,该力被称为升力。
实验中为了显示升力方向,在机翼腰部开有沟通两侧的孔道,孔道中有染色电极。
在机翼两侧压力差的作用下,必有分流经孔道从向地侧流至向天侧,这可通过孔道中染色电极释放的色素显现出来,染色液体流动的方向,即为升力方向。
此外,在流道出口端(上端)还可观察到流线汇集到一处,并无交叉,从而验证流线不会重合的特性。
2、n型单流道,演示圆柱绕流。
因为流速很低(约为0.5〜1.0cm/s),这是小雷诺数的无分离流动。
因此所显示的流谱上下游几乎完全对称。
这与圆柱绕流势流理论流谱基本一致;零流线(沿圆柱表面的流线)在前驻点分为左右两支,经900点(U= U max),而后在背滞点处二者又合二为一。
驻点的流线为何可分可合,这与流线的定义是否矛盾呢?这是不矛盾的。
因为在驻点上流速为零,方向是不确定的。
然而,当适当增大流速,Re 数增大,此时虽圆柱上游流谱不变,但下游原合二为一的染色线被分开,尾流出现。
雷诺演示实验报告思考(3篇)
第1篇一、实验背景及目的雷诺演示实验是流体力学领域中的一个经典实验,由法国工程师雷诺于1883年发明。
该实验旨在观察流体在管道中流动时的层流和湍流现象,并研究雷诺数与流态之间的关系。
通过本实验,我们可以加深对流体力学基本概念的理解,掌握雷诺数的计算方法,以及不同流态下的流体特性。
实验目的如下:1. 观察流体在管道中流动时的层流和湍流现象,区分两种流态的特征。
2. 研究雷诺数与流态之间的关系,掌握雷诺数的计算方法。
3. 了解不同流态下的流体特性,如流速分布、压力分布等。
4. 培养学生独立思考和实验操作的能力。
二、实验原理1. 层流和湍流流体在管道中流动时,存在两种基本流态:层流和湍流。
(1)层流:当流体在管道中流动时,各质点沿管道轴线方向作平行流动,流速分布均匀,流动稳定,质点之间无相互干扰。
(2)湍流:当流体流动速度增大到一定程度时,质点之间发生相互干扰,流动变得不稳定,形成涡流,流速分布不均匀。
2. 雷诺数雷诺数是衡量流体流动稳定性的无量纲参数,表示为:Re = ρvd/μ其中,ρ为流体密度,v为平均流速,d为管道直径,μ为流体动力粘度。
当雷诺数小于2000时,流体处于层流状态;当雷诺数大于4000时,流体处于湍流状态;当雷诺数在2000到4000之间时,流体处于过渡状态。
三、实验内容及步骤1. 实验器材:雷诺实验装置、秒表、量筒、测压计等。
2. 实验步骤:(1)安装实验装置,连接各部件。
(2)调节实验装置,使流体在管道中流动。
(3)观察流体流动现象,记录层流和湍流现象。
(4)使用秒表测量流体流动时间,计算平均流速。
(5)使用量筒测量流体流量,计算雷诺数。
(6)分析实验数据,总结流体流动规律。
四、实验结果与分析1. 观察到的现象:在实验过程中,当雷诺数小于2000时,流体在管道中流动稳定,流速分布均匀,呈层流状态;当雷诺数大于4000时,流体在管道中流动不稳定,形成涡流,流速分布不均匀,呈湍流状态。
流体力学实验指导书
实验一流动演示实验(一)雷诺实验一、实验目的1、观察流体在管内流动的不同流态。
2、层流和湍流的判别。
二、实验原理流体流动有两种不同流态,即层流和湍流。
流体作层流流动时,其流体质点作平行于管轴的直线运动,喘流时流体质点在沿管轴流动的同时还做着杂乱无章的随机运动。
雷诺数是判断流动型态的特征数。
若流体在圆管内流动,雷诺数可用下式表示Re =μρ⋅⋅ud式中:d ——管内径,m;u ——流速, m∕s,ρ——流体密度, k g∕m³,μ——流体黏度,Pa•s。
一般,Re < 2000时,流动型态为层流;Re > 4000时,流动为喘流。
在两者之间时,有时为层流,有时为喘流,流动型态与环境有关。
对于一定温度下的流体,在特定的圆管内流动时,雷诺数仅与流速有关。
本实验通过改变水在管内的流速,观察流体在管内流动型态的变化。
三、实验装置实验装置见图1-1。
图中4为高位槽,实验时水由此高位槽进入玻璃管5。
槽内设有溢流槽3,用以维持平稳、恒定的液面。
实验时打开流量控制阀7,水即由高位槽进入观察用的玻璃管5中,着色水由高位玻璃瓶1经阀9调节流量,通过针形孔进入玻璃管5中心处。
调节阀门7和阀门9,改变流体流速,可以在玻璃管5内观察到不同的流动形态。
流量很小,流体处于层流时,着色水的流动呈一条直线;随着水流量的逐渐加大,着色水由直线开始抖动,继而着色水被扰动成波状前进;随着水流量的继续加大,着色细线变为螺旋前进,再增大流量则出现断裂、旋涡、混合,最后完全与水流主体混在一起,整个水都染上了颜色。
四、实验内容和主要实验步骤1、打开进水阀,向高位槽4送水,使高位槽内的水成溢流状态,以保持高位槽内液位恒定。
2、关闭水流量控制阀7,打开着色水流量控制阀9,观擦着色此时在玻璃管中的状态。
当着色水流出5cm左右后,缓慢打开水流量控制阀7,使水流量尽可能的小,观察层流时流速分布曲线的性状及层流时着色水的流动情况。
3、待玻璃管内的层流流动稳定后,缓慢调节流量控制阀7, 逐渐增大水的流量,观察着色水的流动有何变化,并测定流量,计算不同流动型态时的雷诺数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体力学流动演示实验流体力学演示实验包括流线流谱演示实验、流动演示实验两部分。
各实验具体内容如下:第1部分流线流谱演示实验实验目的1)了解电化学法流动显示原理。
2)观察流体运动的流线和迹线,了解各种简单势流的流谱。
3)观察流体流经不同固体边界时的流动现象和流线流谱特征。
实验装置实验装置见图。
图流线流谱实验装置图说明:本实验装置包括3种型号的流谱仪,Ⅰ型演示机翼绕流流线分布,Ⅱ型演示圆柱绕流流线分布,Ⅲ型演示文丘里管、孔板、突缩、突扩、闸板等流段纵剖面上的流谱。
流谱仪由水泵、工作液体、流速调节阀、对比度调节旋钮与正负电极、夹缝流道显示面、灯光、机翼、圆柱、文丘里管流道等组成。
实验原理流线流谱显示仪采用电化学法电极染色显示技术,以平板间夹缝式流道为流动显示平面,工作液体在水泵驱动下从显示面底部流出,工作液体是由酸碱度指示剂配制的水溶液,在直流电极作用下会发生水解电离,在阴极附近液体变为碱性,从而液体呈现紫红色。
在阳极附近液体变为酸性,从而液体呈现黄色。
其他液体仍为中性的橘黄色。
带有一定颜色的流体在流动过程中形成紫红色和黄色相间的流线或迹线。
流线或迹线的形状,反映了机翼绕流、圆柱绕流流动特性,反映了文丘里管、孔板、突缩、突扩、闸板等流道内流动特性。
流体自下而上流过夹缝流道显示面后经顶端的汇流孔流回水箱中,经水泵混合,中和消色,循环使用。
实验指导与分析如下:1)Ⅰ型演示仪。
演示机翼绕流的流线分布。
由流动显示图像可见,机翼右侧即向天侧流线较密,由连续方程和能量方程可知,流线密,表明流速大、压强低;而机翼左侧即向地侧流线较稀疏,表明速低、压强较高。
这表明机翼在实际飞行中受到一个向上的合力即升力。
本仪器通过机翼腰部孔道流体流动方向可以显示出升力方向。
此外,在流道出口端还可以观察到流线汇集后,并无交叉,从而验证流线不会重和的特性。
2)Ⅱ型演示仪。
演示圆柱绕流流线分布。
当流速较小时,零流线在前驻点分成左右2支,经90°点后在圆柱后部后驻点处二者又合二为一。
所显示的流谱圆柱前后几乎完全对称。
这是因为流速很低(约~s),能量损失极小,可以忽略,其流动可视为势流,绕流流体可视为理想流体。
因此,流谱与圆柱绕流势流理论流谱基本一致。
当流速增大后,雷诺数增大,流动时流线对称性不复存在,圆柱上游流谱不变而下游原来合二为一的有色线分开,尾流出现,流动由势流变成涡流了。
由此可知,势流与涡流是性质完全不同的两种流动。
3)Ⅲ型演示仪。
演示仪左侧演示文丘里管、孔板、逐渐扩大和逐渐缩小流道内纵剖面上的流谱,右侧演示突然扩大、突然缩小、明渠闸板流段纵剖面上的流谱。
当流动雷诺数较小时,液体流经不同这些渐变管道、突扩或突缩管道时流线疏密程度相应变化而不交叉,在边界并没有漩涡出现。
当适当提高雷诺数后,经过一定的起始段后,在突扩处流线会脱离边界,形成漩涡,从而显示实际流体的流动图谱。
该演示仪也可说明均匀流、渐变流、急变流的流线特征。
实验方法与步骤1)打开电源开关,灯光亮,打开水泵开关,驱动流体在平面流道内自下而上流动。
2)调节侧面流量调节阀到适当位置,达到最佳显示效果。
3)观察分析流道内流动情况和流线流谱特征。
4)改变流速,观察提高雷诺数后流动情况。
5)实验结束,关闭电源。
★操作要领与注意事项:①、流线不清晰,可适当滴几滴氢氧化钠溶液或盐酸。
②对比度适中,流体流速要小。
实验分析与讨论1)在定常流动时,从演示仪中看到的有色线是流线还是迹线为什么既是流线也是迹线,因为定常流动两者重合2)驻点的流线发生转折或分叉,是否与流线的性质矛盾不矛盾3)根据流线的性质及能量方程,说明机翼受到的升力作用飞机机翼呈上凸下凹状,当空气流经机翼时,其上侧流速较大,压力较小;下侧流速较小压力较大,从而在机翼上下产生了一个压力差,此即为飞机的升力。
4)势流下的圆柱绕流压差阻力是否为零流线特征如何不是第2部分流动演示实验实验目的1)观察各种边界条件下产生的漩涡现象,掌握漩涡产生的原因与条件。
2)通过观察各种流动现象,加深理解局部阻力、绕流阻力、卡门涡街的发生机理。
实验装置流动演示仪实验装置如图所示。
图流动演示实验装置图说明:本实验装置包括7种型号的流动演示仪,由电源开关、加水孔、掺气量调节阀、灯光和各种夹缝流道等组成,演示各种形状边界和各种形状物体绕流流动现象。
显示不同边界及分离、尾流、旋涡等多种流动形态及其流体内部质点的运动特性。
实验演示内容与实验指导流动演示仪为了改善演示效果,可通过旋动掺气量调节阀改变掺气量,达到最佳显示效果。
实验指导与分析如下:1)Ⅰ型演示仪。
演示逐渐扩大、逐渐收缩、突然扩大、突然收缩、壁面冲击、直角弯道等平面上的流动图像。
在逐渐扩大段,可看到由边界层分离而形成的旋涡,在上游流速越大,涡旋尺度越小,紊动强度越高。
在逐渐收缩段,无边界层分离,亦无旋涡,流线均匀收缩。
因此,逐渐收缩段比逐渐扩大段水头损失小。
在突然扩大段出现较大的旋涡区,而突然收缩段只在死角和收缩断面的进口附近出现较小的旋涡区。
因此,突扩段比突然收缩段有更大的局部水头损失(缩扩的直径比小于),且水头损失主要产生在突缩断面之后。
在突然收缩段,类似直角进口管嘴流动。
在管嘴进口附近,流线收缩并有旋涡产生,致使有效过流断面减小,流速增大,在收缩断面出现真空。
在直角弯道和壁面冲击段有多处旋涡出现,尤其在弯道流动中,流线弯曲更剧烈,在近内壁处出现明显的回流。
通过调节流量大小,观察旋涡大小和湍动强度与流速关系。
当流量减小,逐渐扩大段流速和湍动强度较小时,可以看到单个大尺度涡旋。
反之,流量增大,单个尺度涡旋随之破碎,形成无数个小尺度涡旋。
因此,涡旋尺度随湍动强度增大而变小,内摩擦加强,水头损失增大。
2)Ⅱ型演示仪。
演示文丘里流量计、孔板流量计、圆弧进口管嘴流量计等三种结构流量计及圆弧形弯道等流动图像。
三种流量计中,文丘里流量计的过流顺畅,流线顺直,无边界层分离和旋涡产生。
孔板流量计的过流阻力较大,在孔板前,流线逐渐收缩,汇集于孔口处,只在拐角处有小旋涡,孔板后的水流逐渐扩散,并在主流区的周围形成较大的旋涡区。
圆弧进口管嘴流量计入流顺畅,管嘴过流段上无边界层分离和旋涡产生。
在圆形弯道段,边界层分离的现象及分离点明显可见,与直角弯道比较,流线较顺畅,旋涡发生区域小。
而Ⅰ型演示仪中直角弯道旋涡大,回流更加明显。
上述三种流量计中,孔板流量计结构简单,测量精度高,但水头损失很大,在工程上可用于泄洪消能。
3)Ⅲ型演示仪。
演示30°弯头、直角圆弧弯头、直角弯头、45°弯头、非自由射流等流段的流动图像。
演示图像显示:各种弯道的后面都因边界层分离而产生旋涡。
转弯角度不同,旋涡大小、形状各异,水头损失不同。
在圆弧转弯段,流线较顺畅,在串联管道上,还显示局部水头损失叠加影响的图谱。
在非自由射流段,射流离开喷口后,不断卷吸周围流体,形成射流的紊动扩散。
在此流段上还可以看到射流的“附壁效应”现象。
4)Ⅳ型演示仪。
演示30°弯头、分流、合流、45°弯头、YF-溢流阀、闸阀、蝶阀等流段纵剖面上的流动图谱。
演示图像显示:在转弯、分流、合流等过流段上,有不同形态的旋涡出现。
合流旋涡较为典型,明显干扰主流,使主流受阻,这在工程上称之为“水塞”,给排水技术要求合流时用45°三通连接。
闸阀半开时尾涡区较大,水头损失也大。
蝶阀全开时过流顺畅,阻力小,半开时尾涡紊动激烈,表明阻力大且易引起振动。
YF-溢流阀装置显示阀门前后的流动形态:流体经阀口喷出后,在阀芯的大反弧段发生边界层分离,出现一圈旋涡带;在射流和阀座的出口处,也产生一较大的旋涡环带。
在阀后,尾迹区大而复杂,并有随机的卡门涡街产生。
经阀芯芯部流过的小股流体也在尾迹区产生不规则的左右扰动。
调节流量大小,旋涡的基本形态不变,表明在相当大的雷诺数范围内,旋涡基本稳定。
由于旋涡带的存在,必然会产生较激烈的振动,而阀芯的振动又作用于流体的脉动和旋涡区的压力脉动,因而引起阀芯的更激烈振动。
显然,这是一个很重要的振源。
5)Ⅴ型演示仪演示明渠逐渐扩散、单圆柱绕流、多圆柱绕流及直角弯道等流动图像。
在明渠逐渐扩散段,可看到由边界层分离而形成的旋涡,边界层分离将引起较大的能量损失。
单圆柱绕流时,可观察到边界层分离状况、分离点位置、滞止点、卡门涡街的产生与发展过程。
观察到多圆柱绕流时的流体混合、扩散、组合旋涡等流谱。
卡门涡街是指在圆柱的两个对称点上产生边界层分离后,不断交替在两侧产生旋转方向相反的旋涡,并流向下游,形成冯••卡门“涡街”。
通过观察涡街现象,分析升力产生的原理、绕流物体产生振动以及振动方向与来流方向相垂直的问题。
多圆柱绕流广泛用于热工传热系统的“冷凝器”和其他工业管道的热交换器。
流体流经圆柱时,边界层内的流体和柱体发生热交换,柱体后的旋涡则起混掺作用,然后流经下一柱体,再交换再混掺,换热效果较佳。
6)Ⅵ型演示仪演示明渠逐渐扩散、桥墩形钝体绕流、流线体绕流、直角弯道和正反流线体绕流等流动图谱。
桥墩形钝体绕流显示:在尾流区也有卡门涡街现象,不过和圆柱绕流的涡街频率有所不同,圆柱绕流的涡街频率在Re数不变时不会发生变化,而在非圆柱绕流时涡街频率却随机变化。
关于绕流物体的振动问题,有三种途径解决:一是改变流速;二是改变绕流体自振频率;三是改变绕流体结构形式,破坏涡街的固有频率,避免共振。
流线形柱体绕流是绕流体的最好形式,流动顺畅,形体阻力最小。
从正反流线体的对比流动可见:当流线体倒置时也出现卡门涡街。
因此,为使过流平稳,应采用顺流而放的圆头尖尾形柱体。
7)Ⅶ型演示仪这是一只“双稳放大射流阀”流动原理显示仪。
射流经喷嘴喷射后,如果先附于左壁,射流经左通道后,向右出口输出;当旋转仪器表面控制圆盘,使左气道与圆盘气孔相通时(通大气),因射流获得左侧的控制流(小信号),射流便切换至右壁,流体从左出口输出。
这时若再转动控制圆盘,切断气流,射流稳定于原通道不变。
如要射流再切换回来,只要转动控制圆盘,使右气道与圆盘气孔相通即可。
因此,该装置既是一个射流阀,又是一个双稳射流控制元件。
只要给一个小信号(气流),便能够输出一个大信号(射流),并能把脉冲小信号保持记忆下来。
由演示所见的射流附壁现象,又被称作“附壁效应”。
利用附壁效应可制成“或门”、“非门”、“或非门”等各种射流元件,并可把它们组成自动控制系统或自动检测系统。
由于射流元件不受外界电磁干扰,比电子自控元件有独特的优势。
在装置中配置了液位自动控制装置,该装置就是射流元件在自动控制中的应用。
图为双稳放大射流阀与双水箱容器及4根连通管连通各处位置示意图。
水泵启动后,流道喉管2a 、2b 处由于过流断面较小,流速过大,形成真空。
当喉管2a 、2b 处压力不一致时,使射流偏向一侧而形成“附壁效应”。