CATIA参数化设计案例[优质ppt]
catia参数化设计_螺栓
应用实例 以系列的螺栓为例,介绍参数化设计的应用。 1.进入Part Design模块 选择菜单【File】【 New …】,在随后弹出的建立新文件的对话框中选择 “Part”,进入Part Design模块。 2.建立参数 单击图标 ,弹出图9-28所示公式对话框。建立以下参数: Material=’none’ 材料 Designation=M6 螺栓名称 D_dia=6mm 螺纹大径 L_length=30mm 螺柱长度 K_max_head_depth=4mm 六角头厚度 S_nom_across_flats=10mm 六角头对边距离 P_pitch=1mm 倒角宽度 R_min=0.25mm 圆角半径
图9-38定义螺栓圆角半径的公式
(7)定义螺栓倒角宽度的公式
单击图标 ,生成螺栓的倒角。用定义螺栓圆角半径的方 法定义螺栓倒角宽度的公式为P_pitch,如图9-39所示。
图9-39 定义螺栓倒角宽度的公式 至此,螺栓实体参数化模型建立完毕。
4. 生成设计表
建立设计表 单击图标 ,弹出图9-18所示建立设计表的对话框,选择 从已有文件产生参数表,选择保存螺栓系列参数的 Excel文件, 并且自动对应同名参数。例如选择了图8-40所示的名字为bolt的 螺栓参数的Excel文件,选择“是”,响应“是否产生同名参数 自动关联”提示,即可得到图9-41所示的螺栓设计表。
图9-28公式对话框
单击 OK 按钮,参数定义结束,特征树增加了 Parameters 结点,见图 929。
图 9-29 特征树的Parameters(参数)结点
建立螺栓的模型
(1)定义螺纹半径的公式 单击图标 ,选择YZ坐标面,以坐标原点为圆心,画任意半径的圆。 将光标移至半径尺寸,单击鼠标右键,在随后弹出的上下文菜单中选择 【Radius.1 Object】【Edit Formula】,通过随后弹出的公式编辑对话框 定义螺纹半径为 D_dia * 0.5的公式,见图9-30。
catia齿轮全参数化设计
文档Designing parametricabout Bevel Wheel and Spur Gear Wheel with Catia V5用CATIA V5来设计斜齿轮与直齿轮的参数目录一齿轮参数与公式表格————————————————————————PAGE 3二参数与公式的设置—————————————————————————PAGE 5 三新建零件—————————————————————————————PAGE 7 四定义原始参数———————————————————————————PAGE 8 五定义计算参数———————————————————————————PAGE 10 六核查已定义的固定参数与计算参数——————————————————PAGE 13 七定义渐开线的变量规则———————————————————————PAGE 14 八制作单个齿的几何轮廓———————————————————————PAGE 16 九创建整个齿轮轮廓—————————————————————————PAGE 32 十创建齿轮实体———————————————————————————PAGE 35文档一齿轮参数与公式表格序号参数类型或单位公式描述1 a 角度(deg) 标准值:20deg 压力角:(10deg≤a≤20deg)2 m 长度(mm) ——模数3 z 整数——齿数(5≤z≤200)4 p 长度(mm) m * π齿距5 ha 长度(mm) m 齿顶高=齿顶到分度圆的高度6 hf 长度(mm) if m > 1.25 ,hf = m * 1.25;else hf = m * 1.4齿根高=齿根到分度圆的深度7 rp 长度(mm) m * z / 2 分度圆半径8 ra 长度(mm) rp + ha 齿顶圆半径9 rf 长度(mm) rp - hf 齿根圆半径10 rb 长度(mm) rp * cos( a ) 基圆半径11 rr 长度(mm) m * 0.38 齿根圆角半径12 t 实数0≤t≤1 渐开线变量13 xd 长度(mm) rb * ( cos(t * π) +sin(t * π) * t * π ) 基于变量t的齿廓渐开线X坐标14 yd 长度(mm) rb * ( sin(t * π) -cos(t * π) * t *π ) 基于变量t的齿廓渐开线X坐标15 b 角度(deg) ——斜齿轮的分度圆螺旋角16 L 长度(mm) ——齿轮的厚度(在定义计算参数中舔加公式时,可以直接复制公式:注意单位一致)文档文档二参数与公式的设置文档文档三新建零件依次点击————————Array点击按钮现在零件树看起来应该如下:文档四.定义原始参数点击按钮,如图下所示:这样就可以创建齿轮参数:1.选择参数单位(实数,整数,长度,角度…)2.点击按钮3.输入参数名称4.设置初始值(只有这个参数为固定值时才用)文档现在零件树看起来应该如下:文档文档(直齿轮) (斜齿轮)多了个参数:b 分度圆螺旋角五 定义计算参数大部分的几何参数都由z,m,a 三个参数来决定的,而不需要给他们设置值,因为CATIA 能计算出他们的值来。
catia参数化设计
参数化斜齿轮齿廓在啮合进程中,齿廓接触线的长度由零慢慢增加,从某一个位置开始又慢慢缩短,直至离开接触,这种慢慢进入慢慢离开的啮合进程减少了传动时的冲击、振动和噪声,从而提高了传动的稳固性,故在高速大功率的传动中,斜齿轮传动取得了较为普遍的应用。
咱们已经看到了,斜齿圆柱齿轮与直齿圆柱齿轮相较,确实是斜齿圆柱齿轮两头端面旋转了一个角度,若是旋转角度为零,那那个斜齿圆柱齿轮确实是一个直齿圆柱齿轮了,因此直齿圆柱齿轮确实是螺旋角为零的特殊斜齿圆柱齿轮。
因此,咱们能够将直齿圆柱齿轮和斜齿圆柱齿轮用同一个画法画出来,只改变一下参数(为端面的参数)就能够够输出不同的直齿或斜齿的齿轮,可能思路如下:如此,斜齿圆柱齿轮就画完了。
1.设置catia,通过tools-->options将relation显示出来,以便待会利用,如下图:2.输入齿轮的各项参数斜齿圆柱齿轮中有如下参数及参数关系,不涉及法向参数齿数 Z模数 m压力角 a齿顶圆半径 rk = r+m分度圆半径 r = m*z/2基圆半径 rb = r*cosa齿根圆半径 rf = *m螺旋角 beta齿厚 depth进入线框和曲面建模模块(或part design零件设计模块)如图:输入各参数及公式,如下图:3.点击fog按钮,成立一组X,Y,关于参数t的函数,方程为:x=rb*sin(t*PI*1rad)-rb*t*PI*cos(t*PI*1rad)y=(rb*cos(t*PI*1rad))+((rb*t*PI)*sin(t*PI*1rad))如下图:4.一样的方式成立Y的关系函数,建议把函数名字改成x和y,方便识别。
这时,能够看到关系树上新建的两个函数了:5.在xy平面画一个点,坐标为(0,0),并以此点为圆心在xy平面上成立齿根圆(确实是空间的画圆工具),如下图:公式内输入rf,即齿根圆半径。
一样方式成立齿顶圆。
6.下面的工作就是画齿廓了。
在xy平面上作点,在输入框内右键选择公式如图所示:然后按以下图所示,输入x的坐标一样的方法输入y的坐标值,然后在建几个点,比如选择t=,,,,,时的几个点。
基于CATIA的渐开线圆柱齿轮参数化设计
1 引言
渐开线圆柱齿轮是现代机械中最常见的一种 传动机构 , 广泛应用于机床传动装置 、各种减速 器以及车辆的变速箱等 , 是最具代表性的一种齿 轮 。用数控机床加工渐开线齿轮时 , 首先需对其 进行三维造型设计 , 造型的准确性将直接影响加 工精度 , 因此为其提供精确的渐开线齿轮模型非 常重要 。按照传统的设计方法 , 每次都要进行计
摘 要 : 简要介绍了在 CATIA中进行参数化设计的基本方法与设计步骤 , 通过渐开线圆柱齿轮的参数化设 计 , 详细阐述了基于 CATIA的渐开线公式的建立方法 , 精确绘制了渐开线齿廓 , 建立了产品知识库 , 提高了产 品的设计效率 。
关键词 : 渐开线齿轮 ; CATIA; 参数化设计 Abstract: Basic methods and design p rocedures are described1 Parameterized design of involute gear is performed based on CATIA , and the related formulas are derived and accurate involute gear tooth p rofile is drawn1A lso, part know l2 edge library is established to imp rove design efficiency1 Keywords: involute gear; CATIA; parameterized design
有的知识单元用参数 ( Parameters) 、关系 ( Rela2 tions) 、行 为 ( B ehaviors ) 来 表 达 , 以 设 计 表 (Design Table) 的形式形成产品知识库 , 再利用知 识库的知识 , 定义相关的工程参数 , 形成以数学 公式 、函数关系形式表达的工程规则 , 并根据设 计需要建立规则的设计引导过程 , 以实现从工程 参数到几何参数的驱动过程 。
实战CATIA制图-PPT课件
常用的CATIA制图技巧及方法
1
实战CATIA制图
如何进入CATIA管理员模式 如何设置默认的、统一的制图环境 实战小技巧
通过设置绘图环境, 1、我们可以提高我们的绘图效率,提升绘图体验,无需进行频繁的更改 字体、箭头、标注方式等一些繁琐的操作。 2、图幅整洁,标准统一,很方便无需过多更改,即可制作出符合标准的 图纸 3、学习运用实践中的一些操作手法,提高工作效率,解决实际遇到的问 题。
1.正视图投影,仅投影的零件本体数据,(方法前门有讲解) 2.常规制作截面视图 3.修改截面视图链接,使其包含相关匹配零部件数据
练习文件
25
实战小技巧
如何生成相关截面(方法2)
直接投影线框法
1.在3D里边制作参考面,相交取得相关线,去参。采用正视图投影的 方法投影截面视图。
2.在主视图里边手工绘制投影线,及方向箭头。
15
实战小技巧
如何插入和修改图纸框架
定位到如下背景文件路径,根据 需要选择需要的背景模板。
插入图纸背景后,在工作视图的模式 下是无法修改的,需要点击 编辑--图纸背景,进入图纸背景编辑模式, 编辑完成后,点击编辑---工作视图返 回。
以上模板是我根据现有公司CAD 格式图纸模板绘制的CATIA格式 的模板,可以根据实际需求进行 修改,进而成为单位统一标准。
代替。
CATReferenceSettingPath 用户标准存储文件夹,同上, 优先级高于程序默认的标准。
3
如何制定标准 为什么要修改制定自己的标准?
1.修改默认的字体 2.修改默认的箭头格式 3.修改默认的标注格式 4.满足公司对于制图格式的需求
4
如何制定标准
点击工具》标准,打开标准设置(注意需要在管理员模式下才有修改新建权 限)
CATIA参数化设计及零件库的建立PPT课件
.
13
或者,在记事本中插入PartNumber列,给定 该列的序列号,并给每一列添加数据。编辑时, 可使用Tab键分隔各列。
.
14
保存表格后,弹出如下对话框。
.
15
创建模板零件 选择任一组尺寸,即可得到
相应大小的零件。
.
16
选择第一组尺寸,生成轴,保存,作为模板零 件。
.
17
建立零件库 新建CatalogDocument文件,
.
2
利用CATIA的Formula(公式)功能 、
Design Table(设计表)功能 和Catalog(目录)
功能
,用户可以很容易地进行零件的参数
化设计,并建立相应的三维零件库。
本教程将结合轴(Shaft)和平键(Flat Key) 两个实例,向大家介绍CATIA 的上述功能。
.
3
1. 选项设置:工具—选项
CATIA参数化设计及零件库的建立
.
1
参数化设计
机械专业所用的三维绘图软件都是用尺寸驱动来进行参数化
设计的。例如可以通过更改直径大小来进行参数化设计。
图1 修改草图尺寸
如果仅仅通过上面的方法对一个零件的每一个尺寸进行修改的话,那么整 个工作量会很大,也不实际。故而,在此提出CATIA的参数化设计。
.
4
例1:轴
打开CATIA的零件设计模块,绘制草图,标注 尺寸。退出草图编辑器,旋转,得到轴。
.
5
定义参数
点击 图标,打开参数建立
对话框。点击“新类型参数”,选择“长度”、
“单值”,输入“R”,“30mm”,即可新建
参数R。同理建立参数L=100mm。此时参数定义
catia全参数建模 ppt课件
5、最终结果(#final part) 该openboy用来存放零件的最终设计曲面数据、材料的矢量方向、材料 厚度、零件MLP信息、搭接面零件上的螺母、螺栓以及对部件的设计修改 信息。如图所示。
5.1 #final geometry 该openbody用来存放零件的最终设计结果,仅仅用一个面片来表示,这 个结果可以用 Invert Orientation命令将零件设计过程(#part definition)数 据的最后一步结果保存在#final geometry openbody内。另外,当数据冻结后 ,要用copy as result命令将零件设计过程(#part definition)数据的最后一步dy内。用 Invert Orientation命令的优点 是可以使最终结果始终与设计修改保持参数化的关联关系,设计过程更改后 系统自动更新最终结果。如图所示
7、 关键截面(#Sections) 此openbody内存放了显示零件关键部位信息的截面数据,如安装孔
、定位孔、搭接面、零件局部结构形式等数据。这些数据信息可以反映 零件周边的装配、搭接关系,可以很好的指导零件结构设计。如图所示 。
结论:
综上所述,参数化设计在现代汽车产品开发中具有重要的意义,参数化设 计可以大大提高汽车开发设计的工作效率,适合在同平台上系列产品的演 变,大大缩短产品开发周期。汽车各个零件相互间有着紧密的联系和协调 性。部分设计质量好不等于产品质量也好。为此,重要的是各零件的设计 人员应具备(自己专业之外的)其他零件的知识,懂得对整体的影响。 CATIA V5 Start Model在零件设计过程中可以很好的体现CATIA V5的参 数化设计优势,培养设计人员在汽车开发设计中的整体设计理念,设计人 员通过对零件结构特征的分析理解,可以很好的吃透零件,把握零件的要 素特征和关键结构形式,举一反三。
最新CATIA参数化设计及零件库的建立教学讲义ppt课件
三交河煤矿“4.21”特大瓦斯爆炸事故
(续)
1991年4月21日早8时井下停电,约14时30分送电。下午 16时,共138人约15时左右相继入井。16时05分,203工作 面工人打眼试电钻产生火花引起瓦斯爆炸,冲击波扬起巷 道积尘,引起了全矿井煤尘连续爆炸。地面工人听到轰的 一声巨响,平峒冲出火焰并伴随着冒出浓烟爆炸导致井下 多处巷道支架被推倒,顶板冒落,平峒、大巷砌碹顶冒落 103处约530m,机电设备多数位移变形并遭到不同程度的 破坏,井下通风设施全部摧毁。冲击波把平峒口附近的三 间房摧垮,致使当班井下138人及早班应下班未出井的5人 和中班正准备入井的4人,共计147名矿工全部遇难,另有 地面2人重伤,4人轻伤。(待续)
三交河煤矿“4.21”特大瓦斯爆炸事 故
一、事故经过
洪洞县三交河煤矿是地方国有企业,位于城西32公 里左木乡境内,井田面积285Km2,工业储量26800万吨, 煤种为肥气煤,煤尘爆炸指数为33.89%,有强爆性危 险,属低瓦斯矿井。1980年该矿曾发生死亡30人的瓦 斯爆炸事故。
1991年4月21日16时05分,山西省洪洞县三交河煤 矿,发生了特大瓦斯煤尘爆炸事故,死亡147人,重伤 2人,轻伤4人,另外在抢救事故中牺牲了1名救护队员, 造成经济损失295万元。(待续)
CATIA参数化设计及零 件库的建立
参数化设计
机械专业所用的三维绘图软件都是用尺寸驱动来进行参数化
设计的。例如可以通过更改直径大小来进行参数化设计。
图1 修改草图尺寸
如果仅仅通过上面的方法对一个零件的每一个尺寸进行修改的话,那么整 个工作量会很大,也不实际。故而,在此提出CATIA的参数化设计。
例1:轴
保存表格后,弹出如下对话框。
catia参数化设计
或者 if 條件 陳述 else if 條件 陳述 ……… else 陳述
39
4.2 create fog 創建fog
Fog規律的創建如下圖所示
允許建立多個參數,但參與運算 的參數隻能是兩個;否則會彈出 如圖錯誤信息
40
4.3 例題
a*b
16
2.2.2 數學函數
參考檔案:Math.CATPart 求平方根 sqrt(Real) 例:求4的平方根,sqrt(4)
求d的平方根,sqrt(d)
求最大值: max(arg1:Real,arg2:Real) 例:求實數a,b,c,d的最大值 max(a,b,c,d) 當a=19, b=15, c=18, d=16 則g=19=max(a,b,c,d)
此方法作出的參考線與定義線屬於law特征
27
3.3 有效區域 若定義線在參考線的投影不是正好在原點與終點,則law的有效區域如下圖 所示
有效區域
無效區域
28
3.4 x參數在定義線上
兩條曲線a、b,當x在a,y在b線時,不滿足每個x值與唯一的y值相 對應的條件。可以通過改變x所在的線段來滿足
勾選這裡
17
2.3 formula 公式
Formula.CATPart 1 長方形的周長等於:長+寬乘於2
2 圓的面積等於:PI乘於R的平方
注意:PI一定要大寫
或者在這裡選
18
為了避免輸入產生錯誤,特別是參數比較復雜時,參數要盡可能用鼠標點選 在產品目錄樹裡選擇與在“Members of All”選擇是同效的
43
4.3.4 变化圆角加强练习 要求圆角R=两截面的R之和。。
最新catia参数化设计
cat i a参数化设计参数化一•斜齿圆柱齿轮的儿何特征斜齿轮齿廓在啮合过程中,齿廓接触线的长度山零逐渐增长,从某一个位置开始乂逐渐缩短,直至脱离接触,这种逐渐进入逐渐脱离的啮合过程减少了传动时的冲击、振动和噪声,从而提高了传动的稳定性,故在高速大功率的传动中,斜齿轮传动获得了较为广泛的应用。
二. 斜齿圆柱齿轮与直齿圆柱齿轮的儿何关系如图可以很容易得岀法向齿距pt 与端面齿距m有如下羌系:久=Pi cos 0因而法向模数与端面模数有如下关系:cos 0同样,我们也容易得到压力角之间的关系:tan a* = tan cos 0斜齿圆柱齿轮的啮合条件两个斜齿轮的法向模数、压力角相等并且螺旋角〃相反三. catia画图思路我们已经看到了,斜齿圆柱齿轮与直齿圆柱齿轮相比,就是斜齿圆柱齿轮两端端面旋转了一个角度,如果旋转角度为零,那这个斜齿圆柱齿轮就是一个直齿圆柱齿轮了,因而直齿圆柱齿轮就是螺旋角为零的特殊斜齿圆柱齿轮。
因此,我们可以将直齿圆柱齿轮和斜齿圆柱齿轮用同一个画法画出来,只改变一下参数(为端面的参数)就可以输出不同的直齿或者斜齿的齿轮,大概思路如下:a.首先用formula输入齿轮各参数的关系;b.画出齿轮齿根圆柱坯子;c.通过输入的公式得出一个齿的齿廓;d.在曲面设计模块下将齿廓平移到坯子的另一端面(通过平移复制一个新的齿廓到另一端面);e.将新的齿廓旋转到特定角度;f.多截面拉伸成形一个轮齿;g.环形阵列这个轮齿这样,斜齿圆柱齿轮就画完了。
四. catia绘图步骤1.设置catia,通过tools-->options将relation显示出来,以便待会使用,如图所示:2.输入齿轮的各项参数斜齿圆柱齿轮中有如下参数及参数关系,不涉及法向参数齿数Z模数m压力角a齿顶圆半径rk = r+m分度圆半径r = m*z/2基圆半径rb = r*cosa齿根圆半径rf = rT. 25*m螺旋角beta 齿厚depth进入线框和曲面建模模块(或part design零件设计模块)如图:ENOVIA V5 File Edit View Insert Teals Window Help ^infrastructureP^flechanical Design ►Shape ►Analysis &.5imulation ►AEC Plant ►Machining ►Rigitel Mockup ►Equipment & Systems ►Digital Process for Manufacturing ►^.Machining Simulation►Ergonomics Design &Anal声is ►Knowledgeware ►ENOVIA V5 VPM1 Pro duct 1丄xiechi. .Part ■^"20 Layout for 3D Design 卩奉.DraftingPart DesignAssembly DesignSketcherProduct Functional Tolerancing & AnnotationWeld DesignMold Tooling DesignStructure DesignCore & Cavity DesignHealing AssistantFunctional Molded Part2 RoughOffse..PartSheet Metal DesignAerospace Sheet Metal Design u -芸0. Sheet Metal ProductionComposites Design3 hub2..Part4 nest. .Part5 nestcoffee. .Product FvibWireframe and Surface Design Generative Sheetmetal Design 琴坯F凹dionR Tolerancing & Annotation输入各参数及公式,如图所示:ATIAY5 (xit:c«CAirnrt]ENWIAV5[fwrt 盼妙如岁PFormulas: xiec夠Hfter OnwecRMdtRaftW :|FUter Type : [Up poramHE1 •点击进入输入公式界面耳2•选择参数类型OodUe dickon a grguer 2 eck itPdrametef I Vaho FtcfixHa I Acove 3.点击建立掺数rkdepthM A…岔42M«J斗Ocnm «m*Z/2e lmm yes37.58S(nm «r*«o$(a) y«3Smm •茨F"|rrrn m•44mm■ 2 小mm y«!8mm18dcg4.输入参数名5.输入数值或6输入公式(有公式不输入数值)DrirtePc OTc ⑹ IJ 0K | J Apply | ■3•点击fog按钮,建立一组X, Y,关于参数t的函数,方程为:x=rb*sin(t*PI*lrad)-rb*t*PI*cos(t*PI*lrad)y=(rb*cos(t*PI*lrad))+((rb*t*PI)*sin(t*PI*lrad))如图所示:Law Editor: X ActiveWlXfT昭|啖妙0|广Law created by saimachensi 2007/12/16*/x=rb*sin(t*PI*lrad)-rb*tWcos(t*PI*irad)|⑤r v1emb&rs of Parameters Members of AllFormal parameters TypeParameters HKeywordsDesign TableOperatorsPointer on value FunctionsPoint ConstructorsLawLine Constructors Circle Constructors StringDirection Constructors ListDictionaryRenamed parametersIntegerRealAngleLengthBooleariString^laneSolid5et of parametersSet OF RelationsI*」2m日Frb汗▲一-Relationsi.Forrnula.1RelationsVFormula .2RelationsRelationsAlformula.3 (.Formula.4ZJJ 1T4.更改参数名称Select an object or a command4•同样的方法建立Y的关系函数,建议把函数名字改成x和y,方便辨认。
CATIA知识工程参数化教程
(2)Information
返回提示信息,见图14。
(3)Warning” 返回警告信息,见图15。
图14 返回提示信息
PPT文档演模板
图15返回警告信息
CATIA知识工程参数化教程
2.4 规则
规则(Rules)类似于程序设计语言的条件语句,在满足条件的情况下执 行一些指令,如定义参数或方程,或者发出提示信息,用于对参数的控 制。
9.2.1.参数
1. 参数(Parameter)的特点
( 1 ) 参 数 是 CATIA 特 有 的 特 征 , 被 赋 予 特 定 值 , 可 以 在 Relation(关系)中引用。
(2)可以在实体模型层(part level)、装配模型层(product level)和特征层(feature level)三个层次定义参数。
PPT文档演模板
图1设置参数在特征树的显示状态
CATIA知识工程参数化教程
该选项卡分为以下三栏:
(1) Parameter Tree View栏
• With value 切换开关:若该切换开关为开,参数值显示在特 征树上,参见图2。
• With formula切换开关:若该切换开关为开,方程显示在特 征树上,参见图2。
(2) Parameter names栏
• Surrounded by The symbol切换开关:若该切换开关为开,参 数需要用引号括起,对非拉丁字母的参数名称必须用引号括 起,参见图2。
(3) Language栏
• Load extended language libraries切换开关:若该切换开关为 开,可以使用测量或用户定义函数,可以从下面的选项框中 选择库函数。
CATIA参数化设计案例(共18张PPT)优秀
第六页,共18页。
#part definition包括主要面(#main surfaces)、基础面(#basic surface)、压筋 为此,重要的是各零件的设计人员应具备(自己专业之外的)其他零件的知识,懂得对整体的影响。
Part Body内是用来存放零件实体 数据,一般是设计的最终结果实体数 据。如果需要更改Part Body的名称, 可以在Part Body右键属性内更改,如 果要反映该零件设计的不同阶段或不 同状态的实体数据,或者是周边相关 零件的实体数据(周边相关零件的 Parent信息来自#external geometry), 可以在零件内插入多个Part Body来分 别定义。
整体结构树形式 如图所模版的具 体应用方法。
1.零件名称(PART NUMBER)
零件名称定义的规范性和准确性对一个汽车主机厂来说在整个 汽车产品生命周期内对产品的采购、生产、销售都具有重要意义。 所以首先要确定零件的准确件号和尽量简单且详尽的名称。
2.车身坐标系(Axis Systems) 该坐标原点为车身坐标原点即是世界坐标原点,定义该坐
标系以后后期设计过程中的几何元素的空间坐标都以该坐标系 为基准。
3.参数(Parameters) Parameters内是用来存放零件的厚度参数。
第二页,共18页。
4.零件实体数据(#Part Body)
局部,由简单到复杂的过程,Start_Part就是遵循这样一个 思路来进行零件设计的。当接到一个设计任务时,首先考虑 构成该零件的主要型面是怎样的,即该零件的形状是怎样的。 在该型面的基础上怎样来很好的实现零件的功能,就是接下 来要考虑零件的结构设计,即增加必要的压筋结构 (#depressions)、翻边结构(#flanges)和孔(#holes)特征。当 然基础面和零件结构这两者是相互影响的,要综合考虑。 首先看基础面的设计。基础面是零件结构的基础,零件形 状由基础面的形状来决定。
CATIA实用参数化建模理念
CATIA参数化建模理念现阶段我们是运用大坝的CAD二维图来画三维图,也就是说先有二维图,后有三维图;基于CATIA的逆向建模是先建模,再出二维图。
在传统的三维设计包含两种设计模式:①自下而上的设计方法是在设计初期将各个模型建立,在设计后期将各模型按照模型的相对位置关系组装起来,自下向上设计更多应用于机械行业标准件设计组装。
②自上而下设计的设计理念为先总体规划,后细化设计。
大坝骨架设计承了自上而下的设计理念,在大坝三维设计过程中,为了定义各建筑物相对位置关系,骨架包含整个工程的关键定位,布置基准,定义各个建筑物间相关的重要尺寸,自上向下的传递设计数据,应用这种技术就可更加有目的,规范地进行后续的工程设计。
一、参数化设计基本原理参数化设计基本原理:建立一组参数与一组图形或多组图形之间的对应关系,给出不同的参数,即可得到不同的结构图形。
参数化设计的优点是对设计人员的初始设计要求低,无需精确绘图,只需勾绘草图,然后可通过适当的约束得到所需精确图形,便于编辑、修改,能满足反复设计的需要。
①参数(Parameter)是作为特征定义的 CATIA文档的一种特性。
参数有值,能够用关系式(Relation)约束。
②关系式(relation)是智能特征的一般称谓,包括:公式(formulas)、规则( rules)、检查(checks)和设计表(design tables)。
③公式(formulas)是用来定义一个参数如何由其他参数计算出的。
④零件设计表:设计表是 Excel或文本表格,有一组参数。
表格中的每列定义具体参数的一个可能的值。
每行定义这组参数可能的配置。
零件设计表是创建系列产品系列的最好方法,可以用来控制系列产品的尺寸值和特征的激活状态,表格中的单元格通常采用标准形式,用户可以随时进行修改。
⑤配置(Configuration)是设计表中相关的参数组的一组值。
⑥超级副本(PowerCopy):超级副本是一组经过分组以用于不同上下文的特征(几何元素、公式、约束等),它提供了在粘贴时根据上下文重新指定特征的能力。
知识工程 CATIA参数、公式、规则 PPT
a*b
16
2.2.2 数学函数
参考档案:Math.CATPart 求平方根 sqrt(Real) 例:求4的平方根,sqrt(4)
求d的平方根,sqrt(d)
求最大值: max(arg1:Real,arg2:Real) 例:求实数a,b,c,d的最大值 max(a,b,c,d) 当a=19, b=15, c=18, d=16 则g=19=max(a,b,c,d)
此方法作出的参考线与定义线属于law特征
27
3.3 有效区域 若定义线在参考线的投影不是正好在原点与终点,则law的有效区域如下图 所示
有效区域
无效区域
28
3.4 x参数在定义在线
两条曲线a、b,当x在a,y在b线时,不满足每个x值与唯一的y值相 对应的条件。可以通过改变x所在的线段来满足
勾选这里
22
3 law (规律)
仅在Generative Shape Design模块里可以使用规律 规律常用在以下两个方面 1 规律可以作用于平行线 parallel curve 2 规律可以作用于扫描面 Sweep Surface
23
3.1 创建规律的条件 原则:1.每个x值与唯一的y值相对应
2.Reference只能是直线 3.Reference线与Definition不能是空间线(即不属于于任一平面的线)
21
2.6 Formula 习题 请自定义参数,用公式完成以下要求: 1.圆的周长公式c=2nr 2.立方体的体积公式V=a3 3.作一个圆柱,圆柱的高等于底面周长,即h=c 4.求1300 的正弦值sin与800 的余弦值cos之和,并把它们的和赋给m 5.求x、y、z之中的最大值,并把它们的最大值赋给n 6.求e的平方根,并把它的平方根赋给f
CATIA参数公式规则 ppt课件
2021/3/26
CATIA参数公式规则 ppt课件
10
CATIA参数公式规则
Formula(公式)可以讓相互獨立的的Parameter產生約束關系
如:長方形的 長a=15mm 寬b=10mm 周長c=2*(a+b)
圓的半徑為R=5mm 面積S=PI*R**2
2021/3/26
CATIA参数公式规则 ppt课件
2021/3/26
CATIA参数公式规则 ppt课件
34
CATIA参数公式规则
PI 3.149323846 注意,要大寫!
E 2.718282
注意,要大寫!
false 假 參數的布爾值凍結
true 真 參數的布爾值激活
2021/3/26
CATIA参数公式规则 ppt课件
CATIA参数化设计及零件库的建立
参数化设计的基本步骤
定义参数
设计师根据设计需求定 义一组参数,并为其赋 予合适的数值范围和单
位。
建立参数关系
通过数学公式和逻辑关 系将参数关联起来,以 实现参数之间的相互影
响和制约。
生成几何模型
根据参数关系和初始条 件,使用Catia的几何建 模功能生成相应的几何
模型。
验证和优化
对生成的几何模型进行 验证和优化,以确保其 符合设计要求和性能指
标。
03
Catia参数化设计实例
实例一:轴类零件的参数化设计
总结词
轴类零件是机械系统中常见的传动件,参数化设计可以提高设计效率,减少重 复劳动。
详细描述
轴类零件的参数化设计主要涉及直径、长度、键槽等参数的设定,通过Catia软 件的参数和公式功能,可以快速生成不同规格的轴类零件,实现批量设计和优 化。
高效、灵活、可重复使用,能够 快速响应设计变更,提高设计质 量和效率。
Catia软件介绍
Catia
是一款功能强大的CAD/CAE/CAM 软件,广泛应用于汽车、航空、船舶 、机械等领域。
Catia的优势
提供了丰富的设计工具和模块,支持 参数化设计,具有强大的数据管理功 能和集成开发环境。
02
Catia参数化设计基础
参数化设计的基本原理
参数化设计是通过定义一组参数来控 制几何形状的尺寸和形状,从而实现 产品设计的自动化和标准化。
参数化设计的基本原理是通过建立参 数之间的数学关系,使得修改参数值 可以自动更新几何形状,从而快速生 成和修改设计方案。
Catia参数化设计工具介绍
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.零件实体数据(#Part Body)
Part Body内是用来存放零件实 体数据,一般是设计的最终结果实 体数据。如果需要更改Part Body的 名称,可以在Part Body右键属性内 更改,如果要反映该零件设计的不 同阶段或不同状态的实体数据,或 者是周边相关零件的实体数据(周 边相关零件的Parent信息来自 #external geometry),可以在零 件内插入多个Part Body来分别定义000.CATPart
在建模过程中应尽量避免使用以下操作: 因其不利于参数化控制
首先,此模板根据车身零件3D数据的结构特征,将历史树分成如下组成部分:
· 1.零件名称(PART NUMBER)
• 2.车身坐标系(Axis Systems)
• 3.参数(Parameters)
基础面(#basic surface)内只包含 #reference_structure和face两部分, #reference_structure内有Start Model模板内给定 的其个元素,一个参考点(坐标值可任意给定)、 三个plane面(分别平行与三个系统平面)、三个 基于plane绘制的草绘( Sketch with Absolute Axis Definition 相对于 Sketcher更便于参数化 控制其空间位置和草绘形状)。基础面的制定没 有MLP一样严谨的设计规范,由于零件形状的不 同,设计人员的不同,基础面有着不同的设计思 路和方法。以下面的零件为例来说明。
零件名称定义的规范性和准确性对一个汽车主机厂来说 在整个汽车产品生命周期内对产品的采购、生产、销售都具 有重要意义。所以首先要确定零件的准确件号和尽量简单且 详尽的名称。 2.车身坐标系(Axis Systems) 该坐标原点为车身坐标原点即是世界坐标原点,定义该坐 标系以后后期设计过程中的几何元素的空间坐标都以该坐标系 为基准。
7.1 主要面(#main surfaces) 该openbody内有零件设计过程中,基础面(#basic
surface)、压筋结构(#depressions)、翻边结构(#flanges)、 裁剪结构(#trimmed_part)和孔(#holes)这些特征完成以 后的面。 7.2 基础面(#basic surface)
• 如图所示,要构建#basic surface 1内face 01面片,先将 #reference_structure内的元素全部复制粘贴到face 01内,调整 reference_point的坐标值以确定其空间位置,随后Update更新三个基 准平面和三个草绘的位置(因为三个基准平面和三个草绘与 reference_point有参数关联关系),此时,在其中的两个草绘上分别 做出引导线(guide curve)和轮廓线(profile),再用 Sweep或 Extrude拉伸生成直纹面(直纹面在参数化设计中更便于控制面的参 数)。
• 通过以上介绍,我们了解了基础面(#basic surface)的设计思路,下面 再看具体到一个单面片的设计方法。
• 上面讲到在基础面(#basic surface)内只包含#reference_structure和 face两部分。其中#reference_structure内的几何元素是被套用来设计 单面片的固定格式。
• 5.外部引用数据(#external geometry)
6.最终结果(#final part)
• 该openboy用来存放零件的最终设计曲面数 据、材料的矢量方向、冲压方向、零件 MLP信息以及对部件的设计修改信息。如 图
7、 零件设计过程(#part definition)
• 在结构树上的这一部分是零件设计的主体 工作,也是工作量最大,最关键的部分。 这部分#part definition的构成如图
• 4.零件实体数据(PartBody)
• 5.外部数据(external geometry)
• 6.最终结果(final part) • 7.零件设计过程(part definition)
整体结构树形 式如图所示
• 其次,详细介绍各个组成部分在模版的具 体应用方法。
1.零件名称(PART NUMBER)
• 如图所示,决定该零件形状的基础面可由如上二个子基础面组成,二 个主要子基础面相互倒角得到大的基础面,在子基础面设计过程中要 注意不同结构的命名和它们之间的相互历史层次关系。往往每个子基 础面又由许多面元素构成,这些面元素同样要求用清晰的命名和历史 层次关系体现在结构树上。
• 子基础面basic surface由多个面片通过依次倒角 Shape Fillet得到 (在通常情况下较少采用 Edge Fillet和 Variable Radius Fillet 命令倒角,因其不利于参数化控制)。
在零件设计过程中要有大局观,整体意识。即由整体 到局部,由简单到复杂的过程,Start_Part就是遵循这样 一个思路来进行零件设计的。当接到一个设计任务时,首 先考虑构成该零件的主要型面是怎样的,即该零件的形状 是怎样的。在该型面的基础上怎样来很好的实现零件的功 能,就是接下来要考虑零件的结构设计,即增加必要的压 筋结构(#depressions)、翻边结构(#flanges)和孔(#holes) 特征。当然基础面和零件结构这两者是相互影响的,要综 合考虑。 首先看基础面的设计。基础面是零件结构的基础,零件形 状由基础面的形状来决定。
#part definition包括主要面(#main surfaces)、基础面(#basic surface)、压筋 结构(#depressions)、翻边结构(#flanges)、 裁剪结构(#trimmed_part)、孔(#holes)
和左右件共同特征 (Common_LH/RH_Features)、左件单一特 征(Unique_LH Side_Features)、右件单一 特征(Unique_RH Side_Features)。