P2P技术原理及应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题报告

项目名称:P2P 技术原理和应用课程名称:计算机网络A

班级:计102

姓名:张振孙可梅云成

教师:张晓明

信息工程学院计算机系

P2P技术原理及应用

1 P2P技术原理

什么是对等网络(P2P)技术?P2P技术属于覆盖层网络(Overlay Network)的范畴,是相对于客户机/服务器(C/S)模式来说的一种网络信息交换方式。在C/S模式中,数据的分发采用专门的服务器,多个客户端都从此服务器获取数据。这种模式的优点是:数据的一致性容易控制,系统也容易管理。但是此种模式的缺点是:因为服务器的个数只有一个(即便有多个也非常有限),系统容易出现单一失效点;单一服务器面对众多的客户端,由于CPU能力、内存大小、网络带宽的限制,可同时服务的客户端非常有限,可扩展性差。P2P技术正是为了解决这些问题而提出来的一种对等网络结构。在P2P网络中,每个节点既可以从其他节点得到服务,也可以向其他节点提供服务。这样,庞大的终端资源被利用起来,一举解决了C/S模式中的两个弊端。

P2P网络有3种比较流行的组织结构,被应用在不同的P2P应用中。

(1)DHT结构

分布式哈希表(DHT)[1]是一种功能强大的工具,它的提出引起了学术界一股研究DHT的热潮。虽然DHT 具有各种各样的实现方式,但是具有共同的特征,即都是一个环行拓扑结构,在这个结构里每个节点具有一个唯一的节点标识(ID),节点ID是一个128位的哈希值。每个节点都在路由表里保存了其他前驱、后继节点的ID。如图1(a)所示。通过这些路由信息,可以方便地找到其他节点。这种结构多用于文件共享和作为底层结构用于流媒体传输[2]。

(2)树形结构

P2P网络树形结构如图1(b)所示。在这种结构中,所有的节点都被组织在一棵树中,树根只有子节点,树叶只有父节点,其他节点既有子节点也有父节点。信息的流向沿着树枝流动。最初的树形结构多用于P2P 流媒体直播[3-4]。

(3)网状结构

网状结构如图1(c)所示,又叫无结构。顾名思义,这种结构中,所有的节点无规则地连在一起,没有稳定的关系,没有父子关系。网状结构[5]为P2P提供了最大的容忍性、动态适应性,在流媒体直播和点播应用中取得了极大的成功。当网络变得很大时,常常会引入超级节点的概念,超级节点可以和任何一种以上结构结合起来组成新的结构,如KaZaA[6]。

2 P2P技术应用现状

由于能够极大缓解传统架构中服务器端的压力过大、单一失效点等问题,又能充分利用终端的丰富资源,所以P2P技术被广泛应用于计算机网络的各个应用领域,如分布式科学计算、文件共享、流媒体直播与点播、语音通信及在线游戏支撑平台等方面。

(1)分布式科学计算

我们知道,许多计算机的CPU资源并不是时刻保持峰值运转的,甚至很多时候计算机处于“空闲”状态,比如使用者暂时离开等情况。而P2P技术可以使得众多终端的CPU资源联合起来,服务于一个共同的计算。这种计算一般是计算量巨大、数据极多、耗时很长的科学计算。在每次计算过程中,任务(包括逻辑与数据等)被划分成多个片,被分配到参与科学计算的P2P节点机器上。在不影响原有计算机使用的前提下,人们利用分散的CPU资源完成计算任务,并将结果返回给一个或多个服务器,将众多结果进行整合,以得到最终结果。

世界最著名的P2P分布式科学计算系统非“SETI@home”项目莫属。SETI@home项目(简称为S@H或SETI),由美国加利福尼亚大学伯克利分校在1999年发起,是至今最成功的分布式计算项目。SETI@home

通过分析从射电望远镜传来的数据来搜寻地外文明,这在不少科幻迷甚至是很多普通大众眼里都是一个“很酷”的应用。SETI的早期版本截至2005年已经吸引了543万用户,分析了大量积压数据。正如宇宙的浩瀚一般,需要计算的数据(即存在宇宙空间的无数无线电信号)也是海量的。可以说,这几百万台终端组成了一个目前最快的高性能计算机都望尘莫及的“超级计算机”。

(2)文件共享

要问一百个网友目前中国最流行的文件下载方式,恐怕99个都会回答是“BT”。“BT”是

BitTorrent[7]的简称,是一种依赖P2P方式将文件在大量互联网用户之间进行共享与传输的协议,对应的客户端软件有BitTorrent、BitComet和BitSpirit等。由于其实现简单、使用方便,在中国用户之间被广泛使用。BitTorrent中的节点在共享一个文件时,首先将文件分片并将文件和分片信息保存在一个流(Torrent)类型文件中,这种节点被形象地称作“种子”节点。其他用户在下载该文件时根据Torrent文件的信息,将文件的部分分片下载下来,然后在其他下载该文件的节点之间共享自己已经下载的分片,互通有无,从而实现文件的快速分发。由于每个节点在下载文件的同时也在为其他用户上传该文件的分片,所以整体来看,不会随着用户数的增加而降低下载速度,反而下载的人越多,速度越快。

BitTorrent是一种无结构的网络协议。除了BitTorrent之外,还有不少著名的无结构化的P2P文件共享协议,典型的有Gnutella[8]和KaZaA[6]。

Gnutella协议是一种最典型的完全分布式、无等级结构的P2P网络模型。网络中的节点随机连接若干个其他节点,称之为“邻居”。这种结构能够很好地适应P2P网络中节点频繁加入与离开的动态特性,因为任意一个节点都可以被新加入的节点作为“邻居”而连接,任意一个“邻居”也可以随意地离开网络。同时,这种加入节点和离开节点的选择是节点间的独立行为,随机分布于网络之中。所以说Gnutella的网络具有健壮性、实时性、可靠性、负载平衡等优势。

在Gnutella网络中存在以下问题:

冗余消息多,对带宽的消耗存在一定的浪费。Gnutella网络协议采用泛洪式(Flooding)消息传播机制,这种消息传播机制产生了呈指数级增长的冗余消息。据统计,P2P软件白天占Internet上运行带宽的40%~70%,晚上有时能达到80%。

搜索效率低,可扩展性差。Gnutella网络的搜索协议将所有资源与节点统一对待,没有考虑节点的性能差异,也没有利用查询成功的历史经验,使得搜索效率低下。

KaZaA协议中节点大体上也是无结构连接的。但是在KaZaA协议中存在一种“超级节点”。这种“超级节点”其实是来源于各个普通的客户端节点,但它们一般具有计算能力强、接入带宽大、在线时间稳定等特点。在KaZaA协议中,超级节点承担着部分服务器的任务,如管理部分普通节点,负责搜索消息的转发等。每一个节点上线后会寻找一个超级节点挂靠,并和原先挂靠在该超级节点下的其他普通节点随机相连,组成一个小的无结构网络。普通节点的共享文件索引汇报给所挂靠的超级节点。因而,KaZaA网络大

相关文档
最新文档