浅谈电力系统谐波的危害与治理
电力系统中谐波分析与治理
电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。
然而,谐波问题却成为了影响电力系统质量的一个不容忽视的因素。
谐波不仅会导致电力设备的损坏,还会增加电能损耗,降低电力系统的可靠性。
因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有十分重要的意义。
一、谐波的产生要理解谐波,首先需要了解它的产生原因。
谐波主要来源于电力系统中的非线性负载。
常见的非线性负载包括各种电力电子设备,如变频器、整流器、逆变器等,以及电弧炉、荧光灯等。
以变频器为例,它通过对电源进行快速的通断控制来实现对电机转速的调节。
在这个过程中,电流和电压的波形不再是标准的正弦波,而是包含了各种频率的谐波成分。
整流器在将交流电转换为直流电的过程中,由于其工作特性,也会产生谐波。
同样,电弧炉在工作时,电弧的不稳定燃烧会导致电流的剧烈变化,从而产生谐波。
二、谐波的危害谐波的存在给电力系统带来了诸多危害。
对电力设备而言,谐波会使变压器、电动机等设备产生额外的损耗,导致设备发热增加,缩短使用寿命。
对于电容器来说,谐波电流可能会使其过载甚至损坏。
在电能质量方面,谐波会导致电压和电流波形的畸变,使电能质量下降,影响用电设备的正常运行。
例如,对于计算机等精密电子设备,谐波可能会引起数据丢失、误操作等问题。
此外,谐波还会增加电力系统的无功功率,降低功率因数,从而增加线路损耗和电能浪费。
三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析。
目前,常用的谐波分析方法主要有傅里叶变换、小波变换和瞬时无功功率理论等。
傅里叶变换是谐波分析中最常用的方法之一。
它可以将一个复杂的周期性信号分解为不同频率的正弦波分量,从而得到各次谐波的幅值和相位信息。
然而,傅里叶变换在处理非平稳信号时存在一定的局限性。
小波变换则能够很好地处理非平稳信号,它通过对信号进行多尺度分析,可以更准确地捕捉到信号在不同时间和频率上的特征。
电力系统谐波的危害及其抑制措施
电力系统谐波的危害及其抑制措施电力系统谐波是指在交流电网中出现的频率为基波频率的整数倍的频率成分。
谐波的产生主要来自于非线性设备,如电弧炉、变频调速设备、开关电源等。
谐波对电力系统的稳定性和可靠性产生了许多危害,因此有必要采取相应的抑制措施。
首先,谐波对电力设备的产生严重的破坏作用。
谐波会导致设备的热耗损增加,使电力设备的温升超过正常值,从而影响设备的寿命和可靠性。
此外,谐波会引起设备的振动和共振,进一步加剧设备的磨损和破坏。
另外,谐波还会导致设备的传动系统产生冲击和振动,从而引起噪声和机械共振。
其次,谐波还会使电力系统的运行效率降低。
谐波会产生额外的功耗,使系统的负载率降低,从而导致电能的损耗增加。
此外,谐波还会引起线路过载、开关跳闸和设备故障,进一步降低系统的运行效率和可靠性。
最后,谐波对用户设备的使用造成了困扰。
谐波会导致用户设备的故障率增加,降低设备的可靠性和使用寿命。
此外,谐波还会引起设备的失真和抖动,影响设备的正常运行和使用效果,给用户带来不必要的经济损失。
为了抑制电力系统谐波,可以采取以下措施:1.提高设备和电网的抗谐波能力。
对于大功率非线性设备,可以采用有源滤波器、谐波抑制变压器等装置来抑制谐波的产生和传输。
在电网设计和运行中,要合理配置电容补偿装置和滤波器,提高电网的抗谐波能力。
2.采用合适的谐波控制技术。
可以通过谐波测量和分析,确定电网中谐波的源和传输路径,然后选择合适的谐波控制技术。
常用的谐波控制技术包括谐波滤波、谐波限制和谐波抑制等。
3.加强对谐波的监测和管理。
建立谐波监测系统,实时监测电力系统中谐波的水平和频谱特性,及时发现和解决谐波问题。
同时,制定相关的管理规范和标准,加强对设备和系统的质量检测和验收,确保设备和系统的抗谐波能力。
4.加强用户教育和意识提高。
通过开展谐波知识普及活动,提高用户对谐波的认识和了解,增强用户对谐波抑制的重视和意识,合理使用电气设备,减少谐波的产生和传输。
谐波危害及抑制谐波的方法
谐波危害及抑制谐波的方法谐波是指频率高于基波的电磁波,它们会频繁出现在我们的电力系统和其他电力设备中。
虽然谐波在一些应用中可产生有益效果,但在大多数情况下,它们都是一种电力质量问题,会给电力系统和其他设备带来一系列危害。
1.设备损坏:谐波会增加设备内的电流和电压,导致设备发热加剧,并可能引起设备元件过热、熔断或焚毁。
此外,频繁的谐波还会引起设备的机械振动,造成设备损坏。
2.电力系统不稳定:谐波引起系统的电流和电压的波形失真,导致电力系统不稳定。
此外,谐波会导致电力系统中的谐振现象,这些谐振可以引起电力系统中的电流和电压急剧增加,可能破坏设备。
3.通信干扰:谐波会产生大量的高频干扰信号,这些信号可能干扰无线通信和其他电磁波设备的正常运行。
在高度电子化的社会中,这种通信干扰可能会带来严重的问题。
为了抑制谐波带来的危害,可以采取以下方法:1.装置谐波滤波器:谐波滤波器用于减小电力系统中的谐波。
滤波器通常会将谐波通过处理电路转化成其他形式,或者将它们绕过电力系统,以防止它们对设备和系统产生影响。
2.使用变压器:变压器可以用来减小谐波的影响。
通过在电力系统中安装特定的谐波抑制变压器,可以将谐波电流限制在合理的范围内,从而降低谐波的危害。
3.电源滤波器:为敏感设备提供干净的电力供应也是一种有效的抑制谐波的方法。
电源滤波器可以滤除电力供应中的谐波元素,从而降低谐波对设备的危害。
4.合理的电源设计:在电力系统设计阶段,可以采取一些措施来减小谐波的生成。
例如,选择适当的线路,减小高谐波的产生,或者选择低谐波的电力设备。
5.故障检测和维护:及时发现和处理设备和系统中的谐波问题至关重要。
定期进行电力设备的检查和维护,可以发现并消除谐波带来的潜在危害。
总而言之,谐波在电力系统和其他电力设备中的存在可能带来很多危害。
为了抑制这些危害,我们可以采取各种措施,包括使用谐波滤波器、变压器、电源滤波器、合理的电源设计以及进行定期的检查和维护。
电力系统谐波的危害性及抑制策略
电力系统谐波的危害性及抑制策略电力系统谐波是指在交流电力系统中产生的一种非正弦波形,是交流电网中所存在的一个普遍的问题。
当电力系统中出现谐波时,将会对各个方面造成影响。
因此,对电力系统谐波的危害性及抑制策略的研究变得尤为重要。
一、电力系统谐波的危害性1、对电力系统设备的影响:谐波会对电力系统中的电力设备产生不良影响,会加快电气设备的老化,损害电力设备的正常运行,甚至可能导致设备的损坏。
2、对电力质量的影响:电力系统谐波会导致电压的失真、电流的失真、功率因数的变化等,降低电力质量。
3、对用户的影响:由于电力设备运行产生谐波会向供电系统散发,因此会由电力系统供应给所有使用电力的用户,对用户的设备产生不良的影响,例如音频设备、计算机设备等。
4、对环境的影响:电力系统谐波也会对环境造成影响,例如对动物的人工造成干扰,造成空气污染等。
二、抑制电力系统谐波的策略1、电力系统谐波分析:在电力系统中,通过对电网谐波分析,可以获取谐波特征信息,以确定引入谐波的源头,并针对性地采取谐波滤波器等抑制措施。
2、谐波滤波器的安装:谐波滤波器能够有效防止谐波向电网散播,从而保护电力设备,提高电力质量。
谐波滤波器还可以通过对电力系统谐波的调制来保护电气设备,降低谐波对设备的影响。
3、调整电力系统参数:在电力系统中通过调整电网的参数可以改善电力系统谐波问题。
例如,在电力系统中调整电抗器可以控制电路中的谐波,从而防止谐波向电网散播。
4、电力设备设计:在电力设备的设计过程中可以通过提高电力设备的质量,使电力设备适应谐波的存在。
例如,增加电容、电感、阻抗等元件能够有效地消除引起电气设备故障的谐波。
综上所述,电力系统谐波是一个非常严重的问题,需要采取一系列措施予以解决。
在电力系统中安装谐波滤波器、并对电力系统参数进行调整、以及通过提高电力设备的质量,都是解决电力系统谐波的有效方法。
为了保证电力设施的正常运转,电力系统的谐波抑制工作必须不断加强。
电网谐波治理电网环境中谐波的危害及其治理
电网谐波治理电网环境中谐波的危害及其治理随着现代工业的快速发展,电子设备的使用广泛而普遍。
然而,这些设备和工具也会产生谐波,这些谐波正日益成为电网环境中更加普遍和危险的问题。
谐波是指正弦波之外的电场、磁场和电流,它会扰乱电网中的动态平衡和正常运行,产生一系列不良影响和效应。
因此,电网谐波治理已成为电能质量管理的一个重要领域。
一、谐波的危害1、对电器设备的危害首先,谐波对电器设备的损害是最为常见和普遍的问题。
这是因为,谐波会造成电器设备产生热量过多、电压过高或过低、线路过载、电机失速、传感器失效、继电器运动不正常等。
如果这些不良效应长期存在,会导致电器设备寿命缩短、性能下降、整体效率降低。
2、对能源的浪费和损失其次,谐波会增加电网的无功功率、导致电能浪费,同时会导致电能的变压器损失加剧、高压电线、配电设备、变电站等设施受损加助。
过多的谐波存在会导致电能的浪费和损失。
3、对周围环境的影响最后,谐波会扰乱正常电网运行的稳定性,同时会影响周围的环境。
过多的谐波和波动会导致室内照明的眩光、电器设备发出明显的噪声,同时会产生可见的震荡和振动。
二、为什么需要谐波治理1、优化电能质量首先,通过谐波治理可以明显优化电能质量,减少损耗和浪费。
2、保护电器设备其次,谐波治理可以有效保护电器设备,保证其正常、稳定、长期的工作。
3、保障电网运行终究,谐波治理也能够保障电网的正常、稳定、安全运行,保证周围环境的良好。
三、如何进行谐波治理1、滤波滤波是目前最有效的谐波治理技术之一。
它基于滤波器、电容器、电感器的技术原理,可以有效地过滤掉谐波。
滤波可以按照频率进行分类,多级滤波和谐波治理器是常用的滤波技术。
2、变压器的应用变压器是电网谐波治理技术中常用的治理器。
可以通过变压器,有效控制过高的电压、使电能流水动,减少谐波产生的电压。
通过选用铁心材料及设计变压器结构,也可减少变压器对谐波电压响应,被谐波所干扰的程度能够效果明显的降低。
2024年电力系统中谐波的危害与产生(3篇)
2024年电力系统中谐波的危害与产生引言:随着电力系统的发展和电力负荷的增加,谐波问题在电力系统中变得越来越严重。
谐波是指在电力系统中具有频率为整数倍于基波频率的电压或电流。
谐波的产生与许多因素有关,包括非线性负载(如电动机、电子设备等)和电力质量问题。
本文将从谐波对电力系统和用户的危害以及谐波的产生机制两个方面进行探讨。
一、谐波对电力系统的危害1. 电力设备的损坏:谐波会导致电力设备的温升和损坏,其中包括变压器、电容器、电抗器和电动机等。
谐波电流会导致设备中的铁芯饱和,进而产生过大的损耗和热量,从而缩短设备的使用寿命。
此外,谐波电压也会导致设备中的绝缘损坏,增加维修和更换成本。
2. 系统能量损耗:谐波会导致电力系统中的能量损耗增加。
谐波电流会增加输电线路和变压器的有功损耗,从而减少系统的效率。
此外,谐波还可能导致电力变压器的谐波损耗和谐波电流的损耗。
3. 电力系统的电压波动:谐波会导致电力系统的电压波动增加。
谐波电流通过电力系统中的阻抗元件(如变压器和线路)时会引起电压波动。
不同谐波的相长和相消作用会导致电压波动的增加,使得用户的供电质量下降。
4. 电力系统的谐波共振:谐波会导致电力系统中的谐波共振现象。
当电力系统的谐波阻抗与非谐波阻抗相近时,谐波电流会通过共振回路增加,从而引发电力系统的振荡和不稳定性。
二、谐波的产生机制1. 非线性负载:谐波的主要产生源是非线性负载,如电子设备、电动机等。
这些设备在工作过程中会引入谐波电流,主要是由于设备内部的非线性元件产生的。
非线性元件的存在使电流波形失真,从而引入谐波。
2. 系统谐振:电力系统中的电抗器、电容器和线路电感等元件的谐振现象也会导致谐波的产生。
当这些元件的谐振频率和谐波频率相近时,谐波电流会增加。
3. 外部干扰:电力系统中的谐波也可能是由外部干扰引起的。
例如,当电力系统与其他频率干扰源(如脉冲电源)相连接时,这些干扰源的谐波也会传入到电力系统中,从而引入谐波。
电力系统中谐波的危害与产生(三篇)
电力系统中谐波的危害与产生电力系统中的谐波是由于电力设备的非线性特性引起的。
在电力系统中,谐波的危害包括对电力设备的损坏、电能质量的恶化以及对用户的影响等方面。
谐波的产生与非线性负载、电力设备的设计及运行、电网接地等因素有关。
谐波对电力设备的损坏是谐波危害的主要方面之一。
谐波会引起设备的绝缘老化、过热、机械振动等问题。
尤其是对于变压器和电动机等设备来说,由于谐波的存在会引起电流和电压的畸变,导致设备的工作效率下降,甚至引发设备的故障和停机。
此外,谐波还会引起电容器的谐振和过电压问题,增加电力设备的工作负荷,缩短其使用寿命。
谐波对电能质量的恶化也是谐波危害的重要方面之一。
谐波会导致电能质量的下降,主要表现为电压和电流的畸变,波形失真,功率因数的下降等。
这不仅会影响电力设备的正常工作,还会对电力系统的稳定性和可靠性造成影响。
谐波还会引起电力设备的谐振现象,导致设备振动,造成噪音污染,影响人们的生活质量。
谐波对用户的影响主要体现在电力质量的下降和对电子设备的损坏。
谐波会引起电压的波动和电流的畸变,导致电子设备的正常工作受到干扰,增加设备的故障率,降低设备的使用寿命。
尤其是对于一些对电力质量要求较高的用户来说,如计算机、通讯设备、医疗设备等,谐波对其正常工作的影响更为显著。
此外,谐波还会导致电能的浪费,增加用户的用电成本。
谐波的产生与非线性负载、电力设备的设计及运行、电网接地等因素有关。
非线性负载是产生谐波的主要原因之一。
非线性负载如电子设备、电力电子器件等在工作过程中会产生非线性电流,其含有大量谐波成分。
此外,电力设备的设计及运行也会引起谐波的产生,如电容器的谐振,变压器的匝间谐振等。
而电网的接地情况也会影响谐波的产生和传播,如电网的接地方式不当会引起谐波回流和间接接触问题。
为了减少谐波的危害,需要采取一系列的措施。
首先,可以通过合理选择电力设备和设备的工作参数来降低其谐波产生的概率。
其次,可以采用滤波器等设备对谐波进行抑制和补偿。
电力系统中谐波分析与治理
电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。
然而,谐波问题却成为了影响电力系统性能的一个重要因素。
谐波的存在不仅会降低电能质量,还可能对电力设备造成损害,增加能耗,甚至影响整个电力系统的安全稳定运行。
因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有极其重要的意义。
一、谐波的产生谐波是指频率为基波频率整数倍的正弦波分量。
在电力系统中,谐波的产生主要源于以下几个方面:1、非线性负载电力系统中的许多负载,如电力电子设备(如变频器、整流器、逆变器等)、电弧炉、荧光灯等,其电流与电压之间不是线性关系,从而导致电流发生畸变,产生谐波。
2、电力变压器变压器的铁芯饱和特性会导致磁化电流出现尖顶波形,进而产生谐波。
3、发电机由于发电机的三相绕组在制作上很难做到绝对对称,以及铁芯的不均匀等因素,也会产生少量的谐波。
二、谐波的危害谐波对电力系统的危害是多方面的,主要包括以下几点:1、增加电能损耗谐波电流在电力线路中流动时,会增加线路的电阻损耗和涡流损耗,导致电能的浪费。
2、影响电力设备的正常运行谐波会使电机产生额外的转矩脉动和发热,降低电机的效率和使用寿命;对电容器来说,谐波可能导致其过电流和过电压,甚至损坏;对于变压器,谐波会增加铁芯损耗和绕组的发热。
3、干扰通信系统谐波会产生电磁干扰,影响通信设备的正常工作,导致信号失真、误码率增加等问题。
4、降低电能质量谐波会使电压和电流波形发生畸变,导致电压波动、闪变等问题,影响供电的可靠性和稳定性。
三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析和测量。
常见的谐波分析方法主要有以下几种:1、傅里叶变换这是谐波分析中最常用的方法之一。
通过对周期性信号进行傅里叶级数展开,可以得到各次谐波的幅值和相位。
2、快速傅里叶变换(FFT)FFT 是一种快速计算傅里叶变换的算法,大大提高了计算效率,适用于对大量数据的实时分析。
电力系统谐波的危害及其常用抑制方法
电力系统谐波的危害及其常用抑制方法电力系统中的谐波是指频率为基波频率的整数倍的电压和电流成分,它们在电力系统中的存在会引起一系列的问题和危害。
下面将详细介绍电力系统谐波的危害及其常用抑制方法。
一、谐波的危害1.电压失真:谐波的存在会使电压波形发生畸变,进而导致电压的失真,使电力设备无法正常运行。
电压失真还会对电力设备造成较大的冲击和损害,缩短设备的寿命。
2.系统能效下降:谐波会导致电力系统中电流的失真,由于谐波电流引起的额外功耗,使得系统能效下降。
这会导致电力设备的能耗增加,降低整个系统的效率。
4.电磁兼容性问题:谐波信号会干扰电力系统周围的其他电子设备,导致电磁兼容性问题。
这会对邻近的电子设备造成干扰,影响设备的正常运行。
5.高频谐波产生的热问题:高频谐波会导致电力设备产生过多的热量,进而引起绝缘材料的老化和烧损,甚至造成火灾。
这对电力系统的安全性构成严重威胁。
二、谐波抑制的常用方法1.变压器和电机的设计优化:在变压器和电机的设计中考虑谐波的影响,通过选择合适的材料和结构,减小谐波对设备的影响。
例如,在电机设计中,可以增加骨架的厚度或配置合适的磁路副将谐波分向其他通道。
2.滤波器的应用:安装合适的滤波器可以有效地抑制谐波。
滤波器可以通过改变电源电路的阻抗特性,将谐波电流引向滤波器,从而减小谐波的水平。
4.负载侧的谐波抑制:对于谐波敏感的设备,可以在负载侧采取一些措施来抑制谐波。
例如,使用谐波阻抗装置或磁性隔离器等。
5.教育和培训:提高电力系统从业人员对谐波问题的认识和理解,增强其对谐波抑制方法的应用能力,能够及时发现和解决谐波问题。
总之,谐波对电力系统的危害不容忽视。
为了保证电力系统的正常运行和设备的安全性,需要采取有效的措施来抑制谐波。
以上所提到的方法是目前常用的谐波抑制方法,但需要根据具体情况选择合适的方法。
谐波的危害与对策
谐波的危害与对策谐波是指频率为基波频率整数倍的电磁波。
谐波通常是电子设备和电力系统中的一种电磁干扰源,会对设备的正常运行产生危害。
本文将分析谐波的危害,并提出相关的对策。
1.电力系统中的危害:谐波会对电力系统的稳定性和可靠性产生负面影响。
谐波会导致电磁振荡,引起额外的电流和电压谐振,进而使设备损坏或系统瘫痪。
此外,谐波还会导致电力系统中的电能损耗增加,引起线路过热和设备寿命缩短。
2.设备损坏和故障:谐波会对设备造成过电压和过电流,使设备损坏或故障。
例如,谐波电流会引起电动机的过热,降低绝缘性能,导致设备寿命缩短。
谐波还会导致变压器的热损耗增加,引起变压器过热甚至发生爆炸。
此外,谐波还会导致电子设备的干扰,干扰正常的工作。
3.对人体健康的影响:谐波对人体健康产生的危害包括电磁辐射对人体的直接伤害和电磁辐射引起的各种健康问题。
长期处于高谐波环境中,人体可能会产生头痛、眩晕、失眠等症状。
同时,谐波还可能破坏人体的生物电位平衡,产生诸如心律失常等疾病。
为了应对谐波的危害,以下是一些可能的对策:1.传统滤波器技术:在电力系统中,可以采用传统的主动或被动滤波器来抑制谐波。
主动滤波器可以通过电子器件来消除不需要的谐波,并提供对称负载,减少谐波产生。
被动滤波器则是利用电抗器等设备来阻塞谐波流过的路径,减少谐波对电力系统的影响。
2.多层次的电力系统设计:在电力系统设计中,可以采用多层次的配置来抑制谐波。
通过在系统中增加合适的变压器、电抗器和滤波器等设备,可以减少谐波的传播和影响。
3.谐波监测与控制:通过谐波监测装置对电力系统中的谐波进行实时监测,并及时采取相应的控制措施。
例如,可以在容易受到谐波干扰的设备附近安装滤波器,通过选择合适的滤波参数和工作模式,减少谐波对设备的影响。
4.加强人体防护措施:对于电磁辐射对人体健康的直接威胁,应采取一系列的防护措施。
例如,在工作场所中,可以采用屏蔽层、防辐射窗等装置来减少辐射的传播和接触。
谐波电流的危害及改善措施
谐波电流的危害及改善措施
谐波电流是一种频率高于基波频率的电流,当它传导到电力系统中时,会对电气设备和系统造成一定的危害。
以下是谐波电流的危害及改善措施:
1. 危害:
(1) 对电气设备造成损坏:谐波电流会使变压器、发电机、电缆等电气设备产生热量,加剧其老化,增加故障率。
(2) 影响电能质量:谐波电流会导致电能质量下降,增加电能损失,影响电力系统的稳定运行。
(3) 产生干扰:谐波电流会在两根导线之间产生电磁场,产生电磁干扰,影响其他电子设备的正常工作。
2. 改善措施:
(1) 使用滤波器:滤波器是一种能够将谐波电流滤除的电子元件,通过使用滤波器可以有效降低谐波电流对电气设备的影响。
(2) 采用合适的电气设备:选用具有耐受谐波电流特性的电气设备,在设计电力系统时应充分考虑谐波电流的影响。
(3) 加强监测和维护:定期对电力系统进行检测和维护,及时发现和排除谐波电流带来的影响,保障电力系统的正常运行。
谐波电流对于电力系统的影响是极其重要的,为了保障电力系统的安全稳定运行,应该加强科学合理的设计、选用合适的设备、加强监
测和维护等工作,减少谐波电流的危害。
电力谐波的危害与治理
电力谐波的危害与治理1.谐波概念当正弦波电压施加在非线性电路上时,电流就变成非正弦波,非正弦电流在电网阻抗上产生压降,会使电压波形也变为非正弦波。
非正弦波可用傅立叶级数分解,其中频率与工频相同的分量称为基波,频率大于基波的分量称为谐波。
在电力系统方面,谐波是指多少倍于工频频率的交流电,简称“次”,一般是指从2次到30次范围。
如5次谐波电压(电流)的频率是250赫兹,7次谐波电压(电流)的频率是350赫兹;超过13次的谐波称高次谐波。
电力谐波对电力网(包括用户)危害是十分严重的,它是一种电力污染。
2.电力谐波的主要危害(1)谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率,大量的3 次谐波流过中性线时会使线路过热甚至发生火灾。
(2)谐波影响各种电气设备的正常工作。
谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重过热。
谐波使电容器、电缆等设备过热、绝缘老化、寿命缩短,以至损坏。
(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,这就使上述(1)和(2)的危害大大增加,甚至引起严重事故。
(4)谐波会导致继电保护和自动装置的误动作,并会使电气测量仪表计量不准确。
(5)谐波会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量;重者导致住处丢失,使通信系统无法正常工作。
3.谐波的治理:1)谐波治理标准GB/T 14549—93 《电能质量公用电网谐波》该标准对不同电压等级各次谐波允许注入值都作了具体规定(略),其规定了公用电网谐波电压(相电压)限值。
2)TXB800系列电力滤波补偿装置的结构滤波器、电容器、电抗器、开关设备再加上电阻器适当组合成各种单调和高通谐波滤波器支路,对3次、5次、7次、11次和13次及以上谐波分量进行吸收过滤。
和一般低压电容补偿设备相比,消谐滤波补偿装置除具有消谐滤波作用外,还具有无功补偿能力,使用户注入系统的谐波电流大大降低;各项电能指标得到明显改善;装置结构简单,参数调整灵活准确。
谐波的危害与治(三篇)
谐波的危害与治引言随着现代科技的发展,谐波问题在各个领域中日益突出。
谐波是指在电力系统或电子设备中,在基频上产生的频率是基频的整数倍的特殊电压或电流成分。
尽管谐波本身并不造成太大的危害,但长期存在的谐波问题会导致设备的过载、故障、减寿等问题,甚至可能对人体健康产生负面影响。
因此,对谐波进行合理治理和控制是至关重要的。
本文将探讨谐波的危害以及治理范本。
一、谐波的危害1.设备故障和过载在电力系统中存在谐波电流时,会导致设备的过载和故障。
谐波电流会加大设备的电流负荷,使得设备运行在额定负荷以上,从而加速设备的老化过程,减少设备的使用寿命。
并且,谐波电流还会产生额外的热量,进一步加剧设备的过载,从而引发设备的故障。
2.能源浪费和降效谐波电流会导致能源的浪费。
谐波电流在电力系统中流动时,由于产生压降、损耗等现象,会导致能源的损失。
此外,谐波电流在设备内部的传导和流动过程中也会产生额外的功耗,进一步降低了设备的效率。
3.电网负面影响谐波电流会对电网产生负面影响。
大量的谐波电流会导致电网的电压和电流波形失真,进而影响电网的稳定运行。
在严重的情况下,甚至会导致电网的故障和瘫痪。
4.对人体健康的危害谐波电流还可能对人体健康产生负面影响。
长时间暴露在高谐波电压或电流环境中,可能导致头痛、失眠、神经衰弱等症状。
并且,据研究表明,长期暴露在谐波电流环境中,还可能增加患癌症、心脏病等疾病的风险。
二、谐波治理的范本1.谐波源控制谐波问题的治理首先要从源头入手,减少谐波电流的产生。
可以采取以下措施来控制谐波源:(1)对发电设备进行合理规划和设计,降低发电设备的谐波产生;(2)采用高质量的电力电子设备和组件,降低设备本身产生的谐波;(3)合理设计电力系统的连接和布线,降低谐波电流的传播和影响范围。
2.谐波抑制装置的应用谐波抑制装置是指一种专门用于抑制谐波现象的设备。
通过安装谐波抑制装置,可以有效地降低谐波电流的水平,减小谐波的影响。
供电系统中谐波的危害及其抑制措施
供电系统中谐波的危害及其抑制措施引言:谐波是指电力系统中频率为原有电源频率的整数倍的电磁波分量。
随着电气设备的广泛应用,电网中的谐波也越来越普遍。
由于谐波的存在会导致电网系统工作不稳定、设备冗余损耗等问题,因此谐波的危害和抑制措施是电力系统工程中的重要问题。
一、谐波的危害1.对设备的影响:谐波电流和电压会导致电机、变压器、开关等设备的温升增加,降低设备的效率和寿命。
2.能量损耗:谐波电流所造成的功率损耗将占据供电系统中的电容器和导线,由于功率因数降低,导致线路和装置的不稳定和能量损耗加大。
3.对电网中其他用户的影响:谐波会引起电网中电压失真、电压不平衡等问题,影响其他用户的用电设备正常工作。
4.电磁兼容问题:由于谐波电流会加剧设备的辐射干扰,影响其他设备的正常工作,尤其在医疗和科研领域对设备的精度要求很高,谐波电流的存在将会造成不可忽视的影响。
二、谐波抑制的措施为了减小或消除谐波对电力系统的危害,人们提出了许多谐波抑制的方法。
下面列举几种常见的抑制措施:1.谐波源侧的抑制措施(1)使用非线性负载的限制:通过控制非线性负载的使用,减少非线性负载对电网的谐波污染。
(2)滤波器:在负载侧安装滤波器,通过滤除谐波电流的方式来减小谐波对电力系统的影响。
2.网络侧的抑制措施(1)电网的并联阻抗:增大电网的抑制阻抗,使其通过阻抗特性吸收掉谐波电流,减小谐波对电网的影响。
(2)使用无源滤波器:通过在电网中安装无源滤波器,将谐波电流引导到负载并以无功功率的形式吸收,降低谐波的影响。
3.负载侧的抑制措施(1)使用线性负载:减少非线性负载的使用,使用线性负载来替代原有的非线性设备,降低谐波问题。
(2)线性化处理:通过加装谐波抑制器或使用线性补偿装置对非线性负载进行线性化处理,减小谐波的产生。
结论:谐波对电力系统的危害不可忽视,为了减小其危害,需要采取相应的抑制措施。
谐波抑制的措施可以从谐波源侧、网络侧和负载侧入手,通过控制非线性负载的使用、安装滤波器、增大电网的抑制阻抗、使用无源滤波器等方法,可以有效地减小谐波的影响。
电力系统谐波危害的检测和治理
电力系统谐波危害的检测和治理1. 谐波的产生与传播谐波是指波形频率是原信号的整数倍的波形,它们在电力系统中的产生主要有以下几种原因:1.含有非线性电器的负载。
如交流传动机、调速器、电炉、半导体设备等,这些设备都是非线性的,负载电流与负载电压不成正比。
2.常规电力设备中的内部谐波产生。
如变压器、电抗器、高压开关、交流电动机、交流隔离开关等。
3.无功补偿设备中产生的谐波。
如静态无功补偿装置(SVC)、静态无功发生器(SVG)、高压直流输电等。
4.天然电力背景谐波。
如闪电、地磁波变化、电离层扰动等所产生的天然谐波。
在电力系统中,高频和高次谐波主要通过电网线路和变压器的漏阻抗透过到网外,低频和低次谐波则追随着电网线路、电缆和设备的连接线而传播。
2. 谐波对电力系统的危害谐波波形与原信号波形含有相位差,会产生以下影响:1.降低系统功率因数。
非线性负载的存在会导致含有高次谐波的电流,在功率评估时参与计算,从而导致系统的功率因数下降。
2.电机性能下降。
谐波电流使电机系统中发生偏磁现象,使得电机降低了效率、增强了振动、升高了温升,甚至可能导致电机损坏。
3.频率导致的电力设备故障。
高次谐波的出现会使得电力设备中绕组产生电压和电流冲击,从而产生电容损失、局部过热、击穿和腐蚀等问题,影响电力设备的可靠性。
4.失真影响通讯系统。
含有谐波的电流会引起电缆的电磁感应并激发高频的电压和电流,从而使通信线路中产生相当强烈的干扰。
3. 谐波的检测方法为了更好地理解电力系统中的谐波,需要进行检测和分析。
目前,最常用的谐波检测方法有以下三种:1.暴雪检测器。
原理是利用磁场电感感应定位,对存在负载的电设备内部的电流进行检测,不需要破坏装置或拆卸设备。
2.附着式谐波电流钳子传感器。
原理基于电磁感应定位,将电流钳子附着在测试对象的电缆或线路上,实现对电流的无损检测。
3.数字测量仪器。
利用测量器对电压和电流进行连续测量,并通过内部处理器进行数据处理,实现对谐波的检测。
供电系统中谐波的危害及其抑制措施
供电系统中谐波的危害及其抑制措施谐波对供电系统的危害主要体现在以下几个方面:1.电力系统损耗增加:谐波会导致电线和变压器的额定容量下降,从而增加系统的电阻和电抗损耗。
这会导致能源的浪费和电力系统效率的降低。
2.电压失真:谐波会引起电压波形的失真,导致电压的畸变。
这种电压畸变可能会导致灯泡闪烁、电机振动加剧以及其他故障或损坏。
3.电流畸变:谐波引起电流波形的畸变,使电流的有效值增大。
这可能导致设备过载、电缆和开关设备发热以及电动机过热。
4.故障的引发:谐波可能导致电力系统中的谐振现象。
当谐振发生时,电流和电压放大,可能导致设备损坏和系统故障。
为了抑制供电系统中的谐波,下面列举了一些有效的措施:1.使用滤波器:滤波器是一种常用的抑制谐波的设备。
它们可以作为附加电路连接到系统中,以减小谐波的影响。
滤波器可根据谐波频率进行设计,以达到减小谐波幅值和失真的效果。
2.优化设备:设计和选择具有低谐波发生率的电气设备,例如低谐波电源和电机。
这些设备可以降低谐波幅值,从而减小谐波对供电系统的影响。
3.使用变压器:通过使用多螺绕变压器可减小谐波幅值。
这种变压器通过额外的绕组消耗谐波分量,从而阻止谐波进入供电系统。
4.电网规划和设计:在电网规划和设计阶段,谐波的抑制需被纳入考虑。
通过合理规划供电系统的容量和结构,可以降低谐波的幅值和频率,从而减小谐波对系统的影响。
5.教育和培训:对电力系统运维人员进行相关培训以提高他们对谐波的认识,并了解合适的措施来减小谐波的影响。
总结起来,供电系统中的谐波产生了一系列危害,包括电力系统损耗增加、电压和电流失真、设备过载和谐振现象的引发等。
为了减小这些危害,应采取一系列的抑制措施,如使用滤波器、优化设备、使用变压器、优化电网规划以及加强教育和培训等。
最终,有效地抑制谐波会提高供电系统的可靠性,提升电气设备的性能,减少故障和损坏的风险。
电力系统中谐波的危害及统制措施
会加速绝缘介质的老化、自愈性能下降,而容易导致电容器损坏。
2、造成电抗器过热损坏当系统发生谐波时,谐波电流将使电抗器的铜耗增加,导致局部过热、振动,噪声增大等;谐波电压引起的附加损耗使电抗器的磁滞及涡流损耗增加,影响电抗器绝缘的局部放电和介质增大;励磁电流中含谐波电流,引起合闸涌流中谐波电流过大,对安全运行将造成威胁。
(三)造成同步(异步)电动机过热振动1、造成同步电动机过热振动高次谐波旋转磁场产生的涡流,使旋转电机的铁损增加,使同步电机的阻尼线圈过热,感应电机定子和转子产生附加铜损.高次谐波电流还将引起振动力矩,使电机转速发生变化。
畸变电压作用时,电机绝缘寿命将缩短。
2、造成异步电动机过热振动异常运行时负序阻抗很小,相当于电机的起动阻抗,所以很小的负序电压就会在电机中产生很大的负序电流。
负序电流使绕组铜损局部增大,引起局部过热,将造成异步电机的烧毁,同时,负序电流产生的反向放置磁场引起电机振动和噪声。
(四)谐波对电能计量装置的影响常用电能表计量不是只计基波功率,也不是只计基功率,而是介于两者之间。
只计基波电量,对非线性用户将少计电量,而对线性用户多计电量.基波与谐波综合作用下的所计电量,同基波结论相反。
所以为了纠正计量误差,在仅计基波电量时要求k=0,考虑基电量时要求k =l.谐波电流还能引起三相四线回路中的中性线超载.过去非线性负载较少,人们不重视谐波超载的危害,普遍认为三相四线回路内的中性线只通过三相不平衡电流,其值甚小,中性线截面只取相线截面的1/2甚至1/3。
但在现时谐波电流特别是三次谐波电流大增的电气回路中,这一做法将造成中性线的严重超载.中性线严重超载使绝缘劣化变色的隐患现象屡见不鲜,由此引起的电气短路火灾事故也屡有所闻,为此我国电气设计规范已规定有放大中性线截面的要求.四、仰制谐波的措施(一)广泛采用滤波器,仰制谐波源抑制电力系统的谐波,在谐波源处采取抑制措施是最有效的.依据谐波的限制标准或规定,采取必要的措施来限制谐波注入电网的谐波电流,将谐波电压抑制在容许的范围之内,以确保系统的稳定运行。
谐波的危害与治(二篇)
谐波的危害与治随着工业的发展,客户的用电量不断增长,谐波的影响和危害也日益严重。
1谐波源电力系统中谐波源有以下几种:一是各种非线性用电设备,如换流设备、调压装置、电气化铁道、电弧炉、光灯、家用电器以及各种电子节能控制设备等是电力系统谐波的主要来源。
这些设备即使供给它理想的正弦波电压,它取用的电流也是非线性的,即有谐波电流存在。
这些设备产生的谐波电流也会注入电力系统,使系统各处电压产生谐波分量,这些设备的谐波含量决定于它本身的特性和工作状况,基本上与电力系统参数无关。
二是供电系统本身存在的非线性,元件这些非线性元件主要有变压器励磁支路、交直流换流站的晶闸管控制元件、晶闸管控制的电容器、电抗器组等。
三是家用电器,如荧光灯等的单个容量不大,但数量很多且分布于各处,又难以管理。
如果这些设备的电流谐波含量过大,会对电力系统造成严重影响,此类设备的谐波含量,在制造时即应限制在一定的范围之内。
2电容器不能正常投入问题的分析通常将低压电容器组接到配变二次侧或0.4kV母线上,以补偿变压器和负荷的无功损耗,由于无功自动补偿装置能够根据负荷的变化自动投切电容器组,使功率因数保持在0.9以上,且不过补偿,能够获得良好的补偿效果。
但装设电容器后系统的谐波阻抗随系统的谐波频率不同会发生变化,即可大可小,并且当系统的谐波频率达到某一特定值时,并联电容器可能会与系统发生并联谐振或导致该次谐波被放大。
谐波电流一旦被电容器放大并迭加在电容的基波电流上,这将使流过电容器电流的有效值增加,电力电容器会由于谐波电流引起绝缘介质损耗加大、温度升高,加快电容器绝缘老化,甚至引起过热使电容器损坏。
此外,谐波电流放大引发的谐波电压增大一旦叠加在电容器的基波电压上,同样会使电容器承受电压有效值增大,并且电压峰值也会大大增加,造成电容器发生局部放电,这也是电容器损坏的一个主要原因。
由于电容器对谐波电流的放大作用,它不仅危害电容器本身,而且会危及电网中的其它电气设备,严重时会造成电气设备损坏,甚至破坏电网的正常运行。
谐波的危害与治理
谐波的危害与治理谐波是电气设备运行中不可避免出现的问题之一,其危害主要体现在设备损坏、能耗增加和工作效率下降等方面。
为了有效治理谐波,可以采取多种措施,包括谐波过滤器的应用、降低非线性负载、改进供电系统等方法。
本文将详细描述谐波的危害及治理方法。
谐波是电流或电压波形中频率是基波频率整数倍的成分。
当电力系统中存在谐波时,会带来以下危害:1. 电力设备的损坏:谐波会引起电力设备的过热、电容器的老化、电动机转矩波动、继电器误动等问题。
长此以往,会导致设备寿命的缩短,增加维护成本。
2. 能源浪费:谐波会导致电能的损失和能耗的增加。
电网中谐波电流的存在会导致额外的功率损耗,增加用户电费开支。
3. 工作效率下降:谐波会导致电力系统的电流和电压波形失真,使电力设备的工作效率下降。
例如,电机的转矩波动会降低效率,造成额外的能源浪费。
针对谐波问题,可以采取以下治理措施:1. 谐波过滤器的应用:谐波过滤器是一种能够降低电力系统谐波水平的设备,其原理是通过控制谐波电流的流向和大小来达到滤波效果。
可以根据实际需要选择合适的谐波过滤器类型,如有源谐波过滤器、无源谐波过滤器等,并在关键位置进行安装和配置。
2. 降低非线性负载:非线性负载是谐波产生的主要原因之一,如电力电子器件、变频器等。
通过控制这些非线性负载的使用,例如合理选择负载电压和电流的容量、增加电感元件等措施,可以减少非线性负载引起的谐波。
3. 改进供电系统:对供电系统进行改进也是治理谐波的重要方法。
例如,加装谐波补偿设备,通过补偿谐波电流来降低谐波水平;重新设计电力系统的接地系统,减小系统电容;提高系统电压等方法都可以有效地改进供电系统,从而减少谐波。
4. 加强维护管理:定期对电力设备进行巡检和维护,及时处理设备异常情况,可以减少谐波对设备的损坏。
此外,还可以加强对设备的监测和数据分析,及时发现谐波问题的存在,采取相应措施进行处理。
综上所述,谐波的危害主要包括电力设备损坏、能耗增加和工作效率下降等方面。
谐波的危害与治理
谐波的危害与治理谐波(Harmonics)是一种电力质量问题,指的是电力系统中频率是电力系统基波频率整数倍的电力信号。
由于现代社会对电力供应的要求越来越高,而电子设备的普及也带来了大量频率非线性负载,这使得谐波问题变得日益突出。
谐波的产生会对电力系统及相关设备带来一系列危害,因此需要进行治理。
本文将对谐波的危害及其治理进行全面探讨。
一、谐波的危害1. 对供电网造成负荷加重:谐波电流会增加供电系统的总功率需求,使电网负荷加重。
由于谐波电流的存在,设备的运行效率降低,电网传输能力减小,给供电企业带来电能损失和运行成本的增加。
2. 对设备造成电磁烦扰:谐波电流会引起电力设备内部漏磁力的增加,产生电磁烦扰现象。
这种电磁烦扰会影响到设备的正常运行,造成设备的故障、损坏甚至火灾。
3. 对电力设备造成损坏:谐波电流会引起设备内部电涌、过热等问题,导致电力设备的损坏。
特别是对低压配电设备,谐波容易引起设备的过载和损坏,给用电客户和企业带来不必要的维修成本。
4. 对电力质量造成污染:谐波会引起电压畸变,特别是谐波电压会使系统电压波形变形,导致电压失真。
这不仅影响设备的正常运行,还会在输配电系统中产生大量的电能损耗,降低电力质量,影响用户的用电质量。
5. 对通信设备造成干扰:谐波会产生高频电磁辐射,对无线通信设备产生干扰。
这种干扰会导致通信设备的信号质量下降,甚至影响通信的稳定性和安全性。
二、谐波的治理谐波治理是指采取一系列措施来减少或消除谐波对电力系统造成的危害。
谐波治理需要从源头和末端两个方面进行考虑,下面将介绍一些常见的谐波治理方法。
1. 谐波源控制:谐波源控制是对产生谐波的负载进行控制,减少谐波的产生。
常见的谐波源控制方法有:(1)采用低谐波负载:选择具有较低谐波水平的负载设备,例如使用变频器时选择带有滤波器的变频器,这样可以减少负载引起的谐波电流。
(2)限制非线性负载容量:对于存在大量非线性负载的设备,可以分时控制其使用量,减少谐波产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
— - - -
变压器局部严重过 等次谐波, 目 。 前 谐波与电磁干扰、 功率因数降低被列 产生机械振动和噪声等故障 , 因此增加整流的相数或脉动数 , 可有效 为电力系统的三大公害,因而了解谐波产生的机 热, 电容器 、 电缆等设备过热 , 绝缘部分 老化、 变 地抑制低次谐波。 不过 。 这种方法 虽 然在理论 E 可 理, 研究和清除供配电系统中的高次谐波, 对改于 质, 设备寿命缩减, 直至最终损坏。 以 实现, 但是在实际应用中的投资过大 , 在技术上 供电质量 、 确保电力系统安全、 经济运行都有着十 2 谐波会引起电网 3 谐振 , 可能将谐波电流放 对消除谐波并不十分有效 , 该方法多用于大容量 分重要的意义。 大几倍甚至数十倍 , 会对系统构成重大威胁, 特别 的整流装置负载。 所谓 , 谐波 即理想的电力系统 向用户提供 的 是对电容器和与之串联的电抗器,电网谐振常会 3 3改变部分运行 、 接线方式 , 减小谐波的产 应该是—个恒定工频的正弦波形电压 , 但是由于 使之烧毁。 生、 叠加、 放大、 产生危害的机会 各种原因, 使这种理想状态在实际中无法存在 。 因 2 谐波会导致继电保护和自动装置误动作 。 4 增加电网的短路容量、提高电气设备的短璐 此通过对周期性电压或电流的傅立叶分解 , 所得 造成不必要的供电中断和损失。 比, 来降低谐波对同一电网 E 其他i备的影响。 爨 到的 频率为基波整数倍分量的含有量, 称为谐波。 2 谐波会使电气测量仪表计量不准确, - 5 产生 加强运行时的实时控制, 避免轻负荷、 高电压 1 谐波的来源 计量误差。给供电部门或电力用户带来直接的经 的运行状态,以减少谐波电压过高对系统电器设 1 中频炉、 . 1 电弧炉等设备是该地区 谐波的主 济损失 备的影响; 要来源 2 谐波会对设备附近的通信系统产生干扰, 6 有j 的将配变中间相改接 A或者 C相。 献 减 对该地区负荷进行分析 , 发现主要 的原因是 轻则产生噪声 , 降低通信质量厘 - 导致信息丢失 , 少变压器群产生的谐波。在可能的情况下 。 贝 0 接成 该地区特钢工业发达, 中频炉、 电弧炉等作为—类 使通信系统无法正常工作。 △,l , y 形 将谐孜在高压侧消化。 I 2 谐波会干扰计算机系统等电子设备 的正 . 7 高效的加热源已经非常普及。电 弧炉是利用电极 3 整流变压器采用 Y 或 / _ 4 , Y接线 物料问产生的电弧熔炼金属 , 因此, 它的电流波形 常工作, 造成数据丢失或死机。 该方法可抑制 3 的倍数次的高次谐波 ,以整 很不规则, 含有多种谐波 次到 7 以 间谐波 , 次) 及 . 2 谐波会影响无线电发射系统、雷达系统、 流变压器采用 / 8 Y接线形式为例说明其原 理, 当高 这是谐波的—个重要来源。而中 频炉是工频电流 核磁共振等设备的工作性能, 造成噪声干扰和图 次谐波 电流从晶闸管反 串到变压器副边绕组内 整流后再变为中频 , 再利用电磁感应来熔炼金属 , 像紊乱。 时, 3 其中 的 滴 次谐波电流无路可通, 所以 因此产生大量的高次谐波,其中以 5 7 l 次、 次、1 3 力系统谐波治理方法 电 自 然就被抑制而不存在 。但将导致铁心内出现 3 次等奇次谐波为主。这正是该地区谐波的主要来 3 针对谐波源进行治理 . 1 而该磁通 源。 。 按谁干扰 , 谁污染 , 谁治理的原则 , 进行谐波 将在变压器原边绕组内产生 3 的倍数次高次谐波 1 2用户变压器群是该地 区谐波的重要来源 源当地治理。 即对于产生大量谐波的用户 , 在用户 电动势, 从而产生 3 的倍数次的高次谐波电流。 因 般情况下 , 三相变压器由于铁芯为“ ” 日 形 根据装置的原理不同, 为它们相位—致 , 只能在形绕组内产生环流, 将能 状, 中相比边相要短一半 , 因此, 三个磁路的不对 可分为无源电力滤波器 D 和有源电力滤波器 量消耗在绕组的电阻中, 故原边绕组端子 E 不会 称引起变压器劢磁电流中含有谐波分量。 以当 (P) 所 出现 3 的倍数次的高次谐波电动势。从以 匕 分析 A F。 对空载三相变压器加电压激励时,即使受电侧没 无源电力滤波器利用电容、电感谐振的原理 可以看出, 三相晶闸管整流装置的整流变压器采 从而保证电压畸变率处在 用这种接线形式时, 谐波源产生 的 3(是正整数) n n 有零序电流通路( 中性点不接地或三角形接线) , 励 吸收阻止相应次谐波。 磁电流中也会脊 谐波分量。 虽然在实际运 i 行时, 这 较低水平。 —般根据需要吸收的谐波次数 , 设置合 次谐波激磁电流在接线绕组 内 形成环流 , 不致便 个诣黼 嘻 臣 但 由 小, 于变压器绕组接法以及各 适的 L 参数 , C 分别设置滤波装置。 谐波注入公共电网。这种接线形式的优点是可以 该地区已有用户装设 了此类无源滤波补偿装 自 然消除 3 的整数倍次的谐波, 是抑制高次谐波 绕组和电网各相的连接统—规定时 , 则各台变压 器励磁电流里的同次谐波彼此叠加 , 形成了电网 置。 装设 5 次滤波装置 , 、 7 采用可控硅自动投切 , 的最基本方法 , 该方法也多用于大容量的整流装 中谐波的又—重要来源。例如 , 在绝大多数配变 在滤除谐波的同时, 对无功也进行了补偿。 2 置负载。 但 廷 中,I Yy 接线, 者I ,l 是 I 变压器的中间的铁柱对应 的 无源装置不能满足对无功功率和谐波进行快速动 线圈即中相接的都是 B , 相 这样的统—接法, 就为 态补偿的要求。同时还要注意不能在滤除某次谐 减小带来的影响 357 、、 等次谐波提供了—个分别互相叠加的条件。 波时,C参数恰好是另一个谐波的谐振参数 , L 而 根据 《 用建筑 电气设 计规 范 ) j 民 j r G r 在该地区,现有 3 k 5 V用户变压器 5台,总容量 使此谐波放大。 1—2. 0“ 693. 为控制各类非线性用 电设备所产生 3 1 40V , k 0 k A 1 V用户 变压 器约 80台 ,总 容量 0 0 而有源电力滤波 的 谐波引起的电网 30V o 3 k A 如此庞大的用户变群又成为了谐波的又 波发生器,它通过谐波采样装置将谐波源发 出的 内, 宜采限下列措施: 各类大功率非线性用电设备 q ̄ - 。 谐波采集后 , 再完整地复制出大小相等 、 方向相反 变压器的受电电压有多种可供选择时 , 如选用较 的谐波 , 并接人电网 , 将谐波抵消 , 其产生的谐波 低电压不能符合要求, 1 3谐波的其他来源 宜选用较高电压。” 也就是 事实上 , 谐波还有其他的来源 , 各类生产用 随谐波源的变化而变化, 是一种新型的滤波装置 , 中 频炉等大功率非线性用电设备在选型时, 尽基 电如电镀 、 电泵等, 生活用电中如电视机、 电脑、 荧 但费用较高。 选择较高电压。 在无功补偿设计中除了应注意避免并联电容 光灯等采用开关 电源或其他电力 电子技术的装 3 增加整流变压器二次侧整流的相数 . 2 对于带有整流元件的设备, 尽量增加整流的 器与系统感抗的谐振, 除了验算基波外 , 还需要验 置, 单独来看, 所产生的谐波非常微小 , 但是由于 相数或脉动数, 可以较好地消除低次特征谐波, 该 算 357 、 次等主要谐波, 、 避开这些参数 , t 防l 在该 其数量的极其庞大, 也是不可忽视的—部分。 2谐波的危害 措施可减少谐波源产生的 谐波含量 , —般在工程 次谐波发生谐振。 参考 文献 2 谐波会使公用电网中的电 . 1 力设备产生附 设计中予以考虑。因为整流器是供电系统中的主 加的损耗 , 了 电、 降低 发 输电及用电设备的效率 。 要谐波源之一,其在交流侧所产生的高次谐波为 『 戚伟基 电力系 1 1 统中的谐波分析及消除方法. 大量三次谐波流过中线会使线路过热 ,严重的甚 t 1 K 次谐波,即整流装 置从 6 脉动谐波次数为 【 罗安. 2 1 电网谐波治理和无功补偿技术及装引 . n 6 ,如果增加到 1 脉动时,其谐波次数为 北京: = K1 2 中国电力出版社 。O 6 2O, 至可能引发火灾。 2 2谐波会影响电气设备的正常工作 , 使电机 n 1K 1 中 K为正整数) = 2 淇 , 这样就可 以消除 57 、
科
科技 论 坛 II I
浅谈 电力 系统谐波 的危害 与治司, 哈 黑龙江 哈 尔滨 1 00 ) 5 00
摘 要: “ 谐波 污染” 已经成为电网内三 大公害之一, 只有各 方面都重视起 来, 进行治理 , 才能还电网一个干净的环境。
关键词: 电力 系统 ; 波 ; 理 谐 治