第5章细胞间的相互作用
《医学细胞生物学》第05章 内膜系统与膜泡运输
2、微粒体:为了研究ER的功能,常需要分离ER膜,用离心分离的方法将组织或细胞匀浆,经低速离心去除核及线粒体后,再经超速离心,破碎ER的片段又封合为许多小囊泡(直径约为100nm),这就是微粒体。
一、名词解释
1、细胞质基质 2、微粒体 3、糙面内质网 4、内膜系统 5、分子伴侣 6、溶酶体 7、三级(残余小体) 8、次级溶酶体 9、信号假说 10、信号肽 11、自噬作用 12、 异噬作用 13、膜流
二、填空题
四、判断题
1、×;2、√;3、×;4、√;5、×;6、×;7、×;8、×。
五、简答题
1、信号假说的主要内容是什么?
答:分泌蛋白在N端含有一信号序列,称信号肽,由它指导在细胞质基质开始合成的多肽和核糖体转移到ER膜;多肽边合成边通过ER膜上的水通道进入ER腔,在蛋白合成结束前信号肽被切除。指导分泌性蛋白到糙面内质网上合成的决定因素是N端的信号肽,信号识别颗粒(SRP)和内质网膜上的信号识别颗粒受体(又称停泊蛋白docking protein, DP)等因子协助完成这一过程。
7、三级溶酶体(残余小体):在正常情况下,被吞噬的物质在次级溶酶体内进行消化作用,消化完成,形成的小分子物质可通过膜上的载体蛋白转运至细胞质中,供细胞代谢用,不能消化的残渣仍留在溶酶体内,此时的溶酶体称为残余小体或三级溶酶体或后溶酶体。残余小体有些可通过外排作用排出细胞,有些则积累在细胞内不被排出,如表皮细胞的老年斑、肝细胞的脂褐质。
21、过氧化物酶体标志酶是 。
22、内质网蛋白的分选信号为 信号。
23、信号假说中,要完成含信号肽的蛋白质从细胞质中向内质网的转移需要细胞质中的 和内质网膜上的 的参与协助。
5-细胞因子、免疫细胞膜分子-4、5章
粘附分子分类
1.选择素家族 2.黏蛋白样家族 3.整合素家族 4.免疫球蛋白超家族 5.钙依赖黏附素家族 6.其他粘附分子 7.可溶性粘附分子
粘附分子的生物学作用 (一)黏附分子的免疫学作用: 1 、参与免疫细胞发育和分化:胸腺细胞在胸腺中发 育过程中涉及胸腺基质细胞表面的多种黏附分子。 2 、参与免疫应答和免疫调节:作为免疫细胞活化的 辅助受体和协同刺激信号。
跨模型CK一般是分泌型CK的前体,经某些水解酶 作用或mRNA不同剪接而成为分泌型CK。 TNF-α、TGF-α等存在跨膜型。
跨模型CK主要在局部通过细胞间直接接触而发挥 作用,参与细胞间粘附、邻近细胞的刺激、细胞 毒及杀瘤作用等。
二、细胞因子的共同特点
(一)理化特性 分子量为8-80KD的多肽或糖蛋白 在较低浓度下即有生物学活性 (二)分泌特点 1、多细胞来源 2、短暂的自限性分泌: 无储存 基因转录短暂 mRNA容易降解
成熟T细胞 造血干细胞 胸腺细胞
分化群(cluster of differentiation,CD) 应用以单克隆抗体鉴定为主的方法,将 来自不同实验室的单克隆抗体所识别的同一 种分化抗原归为同一个分化群,简称CD。
Smith1号
杨氏1号
CD1
王氏1号 CD即对确认的某一细胞膜上的分化抗原的称呼,其后的 序号代表某一具体的一个分化抗原的发现顺序。简单地说, CD是对一个具体的白细胞分化抗原的命名。目前已命名至 350。
包括:M-CSF、G-CSF、MG-CSF、 SCF、EOP、TPO、IL-11等
5. 生长因子(growth factor, GF)
是一类可介导不同类型细胞生长和分化的CK的总称。包括 转化生长因子β(TGF-β)、表皮细胞生长因子(EGF)、血管内 皮生长因子(VEGF)、成纤维细胞生长因子(FGF)、神经生长 因子(NGF)、血小板衍生生长因子(PDGF)等。 从作用上讲,IL-2是T细胞GF,TNFα是成纤维细胞GF。有 的GF对其他细胞有抑制作用,如TGF-β可以抑制T细胞和Mφ等 多种免疫细胞的活化、增殖、分化和效应。
第5章病毒与宿主细胞的相互作用-2022年学习资料
四、病毒的致病机理-1.病毒对细胞的直接致病作用-由于病毒在细胞内增殖,干扰和破坏了宿主细胞的正常-代谢, 成细胞死亡即所谓杀细胞效应。-2.机体的免疫应答引起的免疫病理作用-病毒感染细胞后,细胞表面可产生新的病毒 原,可诱-发宿主产生免疫应答,也能造成病理损伤。-3.病毒感染与肿瘤
五、病毒与宿主细胞的相互关系-根据病毒感染后细胞的表现:-1.溶(杀细胞感染:多见于无囊膜病毒-2.稳定态 染:多见于有囊膜病毒-3.整合感染:多见于肿瘤病毒-根据病毒感染后细胞病变的形式:-1.细胞形态的变化-2 细胞裂解-3.膜融合-4.膜渗透性的变化-5.包涵体的形成-6.细胞凋亡(急性裂解感染和特续性感染-7.细 转化(肿瘤
细胞病变GPE-病毒在细胞内增殖引起细胞变性、死亡裂解的-作用称病毒的细胞病变效应Cytopathic-e fect,CPE
正常细胞单层-CPE现象-病毒的致细胞病变效应
病毒培养时出现的CPF-细胞聚集成团、大、圆缩、脱落,细胞融合形成多核细胞,-形成空斑、细胞内出现包涵体 nclusion.body,乃至细-胞裂解等。
膜渗透性的变化-,某些病毒感染能增加细胞膜对离子的渗透性,例如允许钠离子的-流入,增加细胞内钠离子的浓度。 毒RNA的翻泽比宿主细胞更-能耐受高浓度的钠离子,渗透性的增加更有利于病毒mRNA的翻译
膜融合-有关囊膜病毒的囊膜与宿主细胞膜的融合过程研究已经成为当今脂质-双层研究的热点之一。-病毒囊膜与宿主 胞膜的融合过程是在系列分子作用机制下,两个膜-融合成为一个膜,从而使病毒侵入,完成其生命周期的第一个关键步 骤。-病毒膜融合是由一些特异性的融合蛋白及其他蛋白发生相互作用而完-成的。-一些囊膜病毒(丨型病毒膜融合) 附到靶细胞上后则是先被细胞吞-噬,以吞噬小体的方式进入到靶细胞中,在后期吞噬小体内低“值-激活了病毒的融合 白,膜融合开始。-病毒的融合蛋白被激活后发生一系列的构象变化并促使病毒囊膜和内-体膜产生融合,病毒的遗传物 也随之注入到靶细胞内。
相间相互作用
第五章相间的相互作用5.1 固体、气体与水的化学相互作用在天然水和废水中很少出现完全在水溶液中发生化学均相反应的现象。
水中最重要的化学和生化现象反而包括了水中物质与其他相之间的相互作用。
图5.1列举了一些发生相互作用的例子,如下:通过藻类的光合作用,在悬浮藻类的细胞内生成了固体生物质,而且固体生物质的产生涉及了水与细胞间溶解性固体与气体的交换。
当水中细菌降解了有机质(经常以小颗粒的形式存在),类似的交换过程也会发生。
随着化学反应不断地进行,水中也就不断地产生固体和气体。
水体系中的铁和许多重要的痕量元素被看成胶体而运输或吸附到固体颗粒上。
碳水化合物和一些杀虫剂以一种不相溶的液体膜的形式存在于水的表面。
沉积物通常被冲刷到了水体中。
图5.1 涉及水和其他相间相互作用的最重要的环境化学过程本章将讨论水体化学过程中不同相间相互作用的重要性。
一般情况下,除了水,这些相可划分为沉积物(离散的固体)和悬浮的胶体物质。
我们也将讨论沉积物的形成、作为储存库的沉积物的重要性和水溶质的来源。
前面章节所提到的固、气体的溶解度(亨利定律)在本章也会作详细的讲解。
本章的大部分讨论了胶体的行为,这包括非常细小的固体颗粒、气体或悬浮在水中的不相溶的液体。
很多重要的水生化学现象都涉及到了胶体物质。
因为胶体物质的表面积与体积的比值大,所以它的活性比较高。
5.2 沉积物的形成与重要性沉积物是相对较细小的那层物质,它覆盖在河流、湖泊与海洋的底部。
它通常由一些小、中、粗的矿物混合物组成,包括黏土、淤泥和沙子,其中混有有机质。
在组成方面它们可能从纯矿物变化到以有机质为主的物质。
沉积物也是各种生物、化学污染物和被污染了的碎屑的储存库。
我们特别关注的就是通过生物化学物质从沉积物到水生食物链的迁移过程。
寄居在沉积物中的生物包括各种各样的贝类(虾、蟹、蛤)和蠕虫、昆虫、端足类、双壳类的生物与其他的小生物,这些都是值得我们特别关注的,因为它们都是位于食物链底层的附近。
第五章 种内及种间关系
利用性竞争
干扰型竞争
争夺竞争
竞赛竞争
竞赛/争夺竞争强调资源分布的平均性,而利用/干扰性竞争强调机制。
(二)竞争类型及其一般特征
竞争结果的不对称性是种间竞争的一个共同特点。一个体的竞争代价常远高于另一个体,杀死竞争失败者是很普通的,或通过掠夺资源(使它们失去资源)或通过干扰(直接杀死或毒害它们)。
一、种间竞争
种间竞争是指两物种或更多物种共同利用同样的有限资源时产生的相互竞争作用,种间竞争的结果常是不对称性的,即一方取得优势,而另一方被抑制,甚至被消灭。竞争的能力取决于种的生态习性、生活型和生态幅度等。
高斯假说和竞争排斥原理
竞争类型及其一般特征
Lotka—Volterra模型
生态位理论
(一)高斯假说和竞争排斥原理
7、种间竞争与进化、新物种形成
长期、稳定的种间竞争还可能导致物种向着某一个方向连续进化,并可能导致新物种的出现。
(二)捕食作用(predation)
概念
捕食者与猎物
食草作用
1、概念
捕食可定义为一种生物摄取其他种生物个体的全部或部分为食,前者称为捕食者(predator),后者称为猎物或被食者(prey)。这一广泛的定义包括:
有性生殖是避开不利条件的部分机制。
(二)性比
Fisher氏性比理论(fisher‘s sex ratio theory):大多数生物种群的性比倾向于1:1,这种倾向的进化原因叫做Fisher氏性比理论。
Fisher氏性比理论解释说明
适合度是个体生产能存活后代,并能对未来世代有贡献的能力的指标。个体的相对适合度是有变化的,这种变化部分取决于个体的遗传区别,部分取决于环境的影响。
(四)生态位理论
细胞生物学-第5章-物质的跨膜运输(翟中和第四版)
二、V 型质子泵和 F 型质子泵
• V 型质子泵广泛存在 于动物细胞的胞内体 膜、溶酶体膜,破骨 细胞和某些肾小管细 胞的质膜,以及植物、 酵母及其他真菌细胞 的液泡膜上 (V 为 vesicle)
• 转运 H+ 过程中不形成 磷酸化的中间体
• 维持细胞质基质 pH 中 性和细胞器内 pH 酸性
– 载体蛋白介导 – 通道蛋白介导
(一)载体蛋白及其功能
• 多次跨膜;通过构象改变介导溶质分子跨膜转运 • 与底物(溶质)特异性结合;具有高度选择性;具有类似
于酶与底物作用的饱和动力学特征;但对溶质不做任何共 价修饰
(一)载体蛋白及其功能
• 不同部位的生物膜往往含有各自功能相关的不同 载体蛋白
(二)通道蛋白及其功能
• 两类主要转运蛋白:
– 载体蛋白:又称做载体、通透酶和转运器。介导被动运输与主动运 输
– 通道蛋白:能形成亲水的通道,允许特定的溶质通过。只介导被动 运输
两者区别:以不同方式辨别溶质。通道蛋白主要根据溶质大小和电荷和进 行辨别,假如通道处于开放状态,则足够小和带有适当电荷的分子或离子 就能通过;而载体蛋白只允许与其结合部位相适应的溶质分子通过,并且 每次转运都发生自身构象的变化。
动物、植物细胞主动运输比较
三、ABC 超家族
• ABC 超家族也是一 类ATP 驱动泵
• 广泛分布于从细菌 到人类各种生物中, 是最大的一类转运 蛋白
• 通过ATP 分子的结 合与水解完成小分 子物质的跨膜转运
(一)ABC转运蛋白的结构与工作模式
• 4 个“核心”结构域
– 2 个跨膜结构域,分别含6 个跨 膜α 螺旋,形成底物运输通路决 定底物特异性
• 3 种类型:离子通道、孔蛋白以及水孔蛋白 • 大多数通道蛋白都是离子通道 • 转运底物时,通道蛋白形成选择性和门控性跨膜通道
第五章 细胞膜及其表面(二)
第一节 细胞膜的分子结构和特性
一、细胞膜的化学组成
脂类、蛋白质、糖类 ——主要成分
膜脂 膜蛋白 膜糖
水、无机盐、金属离子 ——少量成分 蛋白质/脂类 : 在不同种类生物膜中有所不同。
不同细胞的质膜及细胞中不同膜相结构 三种膜成分的比例差异很大
(一) 膜脂 menmbrane lipid
生物膜上的脂类统称膜脂。
★(二)锚定连接( anchoring junction)
锚定连接包括两大类蛋白质:
细胞内附着蛋白:一端将特定的细胞骨架成分与连接复合体相连接,另一
端与穿膜黏着蛋白连接。
跨膜连接糖蛋白:胞内区与细胞内锚定蛋白连接,胞 外区域相邻特异的穿
膜黏连蛋白或与细胞外基质蛋白结合。
锚定连接的两类蛋白示意图
★ (二)锚定连接( anchoring junction)
(一) 膜脂 menmbrane lipid
膜脂分子的共同特点: 都有亲水性和疏水性两端,称兼性分子或双亲媒性分子 (amphipathic molecule)
双亲性分子在水溶液中排列方式:
脂分子团
脂双分子层
脂质体
(二) 膜蛋白 menmbrane protein 是膜功能的主要体现者!
根据膜蛋白与膜脂的结合方式以及在膜中的位置的不同,分为:
1 单次穿膜: 单条a-螺旋贯穿脂质双 层 多次穿膜: 数条a-螺旋折返穿越脂质 双层
非胞质面 脂 双 分 2 子 层 胞质面
3. 多亚基穿膜
内在膜蛋白具有双亲性,其亲水区域暴露在膜的内外表 面与水相吸,它们的疏水区域嵌入膜内,与脂类分子疏 水尾部通过疏水键结合,与膜结合紧密,不易分离提纯。
2、膜周边蛋白 附在膜的内外表面,非共价地结合在膜脂或跨膜蛋白上。
第5章 细胞的信息传递
思考与讨论
听到电话铃响,你就会去接电话。下图显 示了这个反应的神经信息的传送路线。由 图可以看到,神经信息的传送分两种情况: 一是神经信息在一个神经元内部的传送; 二是神经信息需要跨细胞传送。二者传送 的机制是否相同呢?
神经信息的传送路线
一 神经信息在神经纤维上的传导
阅读与分析:
仔细阅读下列材料,并回答问题: 1、什么是膜电位和动作电位?神经细胞在受到刺 激时会发生怎样的变化? 2、神经细胞以什么形式传送环境中的信息的?
二 遗传信息的传递过程
科学家发现,如果将巨型伞藻切成两半,没 有细胞核的那半能够保持正常的蛋白质合成 达一个多月之久。这表明蛋白质的合成是在 细胞质中进行的。真核生物的DNA主要集中 在核中,而像DNA这样的大分子是无法通过 核孔进入细胞质中的,因此,科学家推测, 必然有一种物质,充当DNA和蛋白质间的信 使,将DNA中的遗传信息带到合成蛋白质的 场所。最后研究发现具备这种功能的是信使 RNA(mRNA)。
二 胞间信号的受体
受体:细胞表面或内部存在类似天线的物 质(如糖蛋白、脂蛋白等),用来接收胞 间信号分子,这种物质被称为受体。 受体的特点:
②特异性:受体可以识别并特异地与化学信号分 子(配体)结合成复合物,从而启动一系列生物 化学体是细胞表面或内部的一种生物大分子物质;
复 制 转录 翻译
DNA
mRNA
蛋白质
遗 传 信 息 的 传 递
第3节 神经信息的传递
问题探讨
人体或动物通过神经系统感受并传送环境 刺激的信息,从而做出各种应答反应,以 保证机体各部分的协调及与环境的统一。 神经系统是如何感受和传送环境刺激信息 的呢?
神经系统是由神 经细胞构成的。 神经细胞又叫神 经元,是神经信 息传送的结构基 础。
第5章-骨骼肌、心肌和平滑肌细胞生理
• C亚单位带负电荷,可与Ca2+结合。 • T亚单位将整个肌钙蛋白结合在原肌凝蛋 白上。 • I亚单位的作用是将C亚单位结合Ca2+的信 号传给原肌凝蛋白,引起它的变形。
二、骨骼肌收缩的机制
(一)肌肉收缩的肌丝滑行学说 • 1、主要证据 • A. 粗细肌丝之间的几何构形表明在收缩 时它们之间要相互作用。 • B. 肌肉收缩时,暗带的长度没有改变, 说明粗肌丝没有发生卷曲变化。 • C. 拉长肌丝,H带的长度也增长。暗带的 长度不变。 • 这表明,肌收缩是粗细肌丝互相穿插滑行 造成的。
2、细肌丝(由三种蛋白质组成)
A. 肌动蛋白(肌纤蛋白,actin) 占60%。单体呈球 状,聚合成双螺旋结构,是细肌丝的主干。上面每隔一 段距离就有一个与横桥结合的位点。正常情况下被掩盖 着。
肌钙蛋白 原肌球蛋白 肌动蛋白
• B. 原肌球蛋白: 为丝状,位于肌动蛋 白双螺旋的沟内,处于横桥与肌动蛋白之 间,掩盖着横桥的结合位点。 • C. 肌钙蛋白: 是钙离子的受体含有T、 I、C三个亚单位:
由上到下:
单收缩 收缩总和 不完全强直收缩 完全强直收缩
在体骨骼肌是 以运动单位而不是 以单根肌纤维收缩 的。
3、肌肉长度与收缩张力的关系
肌肉过长或过短都使张力下降,以肌小节长2.20-2.25 μm时 张力最大。此时粗细肌丝重叠程度最佳,发挥作用的数目最多。
初长过短,部分细 肌丝得不到横桥
初长过长时,部分 横桥没有结合位点
肌 管 系 统 的 立 体 模 式 图
三联体
(三)粗、细肌丝
肌钙蛋白
肌动蛋白
原肌球蛋白
横桥
1、粗肌丝(由肌球蛋白分子构成)
相邻的两对横桥互相 扭转60度角,相距 14.3nm
第五章细胞因子(共46张PPT)
肝细胞生长因子(hepatic growth factor, HGF)
细胞因子的基因
大肠杆菌表达
大肠杆菌
纯化
细胞因子 (产品)
第二节 细胞因子的分类和生物学活性
细胞因子的种类:
白介素 在白细胞间发挥作用的细胞因子; 干扰素 具有干扰病毒感染和复制的能力;
肿瘤坏死因子 一种能使肿瘤发生出血坏死的物质; 集落刺激因子 指能刺激多能造血干细胞和不同发育分化
阶段的造血干细胞进行增殖分化,并在半固体培养基中形 成相应集落的细胞因子;
➢ 同一种CK可由多种细胞产生,一种细胞可 产生多种CK。
一种细胞可产生多种细胞因子,不同类型的细胞也可产生一种或几种相 同的细胞因子;一种细胞因子可对多种靶细胞发挥作用,产生多种不同
的生物学效应,称多效性;几种不同的细胞因子也可同一种靶细胞发
生作用,产生相同或相似的生物学效应,称重叠性;一种细胞因子可
1.理化性质
大多数CK是低分
子量糖蛋白,单 体形式。
2.作用局限性
通过自分泌和旁
分泌方式在局部发 挥作用。
自分泌 autocrine
旁分泌 paracrine
作用于分泌细 胞自身
作用于相 邻细胞
血液循环
远距离作用
内分泌 endocrine
3.分泌具有自限性
无刺激信号,合成立即终止。
4.产生具有多源性
其它 近年来由于分子生物学和克隆技术的发展 和应用,陆续发现了许多新的细胞因子,其性质 与生物、分化、免疫创伤愈合、胚胎发育、神经 损伤修复和肿瘤发生发展有关。
三 细胞因子的功能分类
白细胞介素(interleukin, IL)
干扰素(Interferon, IFN)
5细胞因子概述
第二节 细胞因子的共同特征
1、多样性:作用于多种细胞,多种生物学 效应
2、局部性:自分泌或旁分泌为主,内分泌
作用方式:自分泌,旁分泌,内分泌
Autocrine (自分泌)
T cell
IL-2
IL-2R
Paracrine (旁分泌)
IL-12
T cell
IL-12R
Endocrine (内分泌): IL-1, IL-6, TNFa
分布
广泛分布于几乎所有细胞表面,也可成 为可溶性的黏附分子分布于细胞外基 质中。
分类
据黏附分子结构特点可将其分为:
(一)免疫球蛋白超家族 (二)整合素家族 (三)选择素家族 (四)钙黏蛋白家族 (五)黏蛋白样家族
(一)免疫球蛋白超家族(IgSF)
概念:是一类肽链折叠方式与Ig相似,其氨基酸组成 与Ig高度同源的黏附分子 ,包括TCR、BCR , MHCI和MHCII类抗原等。配体是IgSF分子或整 合素分子。
CD分子参与机体多种重要的生理和病 理过程。
CD的功能
1、参与免疫细胞分化发育:B细胞, CD19,CD40
2、参与免疫细胞识别活化
1)T、B活化第一信号:CD19/21/81, CD79a/CD79b;CD3
2)T、B活化第二信号:共刺激分子对 CD28-B7,CD40-CD40L
3、参与免疫细胞的效应
第二节 黏附分子
黏附分子(adhesion molecules, AM)
是一类介导细胞与细胞间或细胞与细胞外基质间 相互接触、结合和作用的一类分子,多为跨膜糖 蛋白。以配体-受体结合的形式发挥作用,使细 胞间或细胞与基质间发生黏附,参与细胞的识别、 活化、信号转导及生长、分化、迁移等过程,是 免疫应答、炎症反应等发生的分子基础。
细胞生物学复习(1)
细胞⽣物学复习(1)第⼀章1、细胞学说的基本内容①细胞是有机体,⼀切动植物都是由细胞发育⽽来,并由细胞和细胞产物所构成。
②每个细胞作为⼀个相对独⽴的单位,既有它“⾃⼰的”⽣命,⼜对与其他细胞共同组成的整体的⽣命有所助益。
③新的细胞可以通过已存在的细胞繁殖产⽣。
2、细胞学说建⽴的意义①细胞学说对细胞及其功能有了⼀个较为明确的定义。
②细胞学说的建⽴对现代⽣物学的发展具有重要的意义。
③细胞学说的提出先于进化论约20年,它与进化论⼀起,不但奠定了⽣命科学的基础,同时也孕育细胞学的产⽣。
(细胞学说、能量转换与守恒定律和进化论,是19世纪⾃然科学领域的“三⼤发现”——恩格斯;细胞学说、达尔⽂进化论和孟德尔的遗传学是现代⽣物学的三⼤基⽯。
)3、细胞⽣物学学科的形成与发展20世纪50年代以来,随着电⼦显微镜超薄切⽚技术的发展,在⼈们眼前呈现出⼀个崭新的细胞微观世界——细胞超微结构,不仅已知的细胞结构,诸如线粒体、⾼尔基体、细胞膜、核膜、核仁、染⾊质与染⾊体等结构以新的⾯貌展现在⼈们的⾯前,⽽且还发现了⼀些新的重要的细胞结构,如内质⽹、核糖体、溶酶体、核孔复合体与细胞⾻架体系等,从⽽为细胞⽣物学学科早期的形成奠定了基础。
第⼆章1、如何理解“细胞是⽣命活动的基本单位”?(1)细胞是构成有机体的基本单位地球上的⽣命形式⽆⼀例外均由细胞构成,只有病毒是⾮细胞形态的⽣命体,但病毒并⾮完整的⽣命体,⽽是需要严格寄⽣于细胞,才会体现出⽣命的特征。
有些⽣物仅由⼀个细胞构成,另⼀些⽣物则由数百乃⾄万亿计的细胞构成。
(2)细胞是代谢与功能的基本单位有机体⼀切代谢活动最终要靠各种细胞来完成。
单细胞⽣物依靠⼀个细胞完成运动、呼吸、排泄和⽣殖等⼀系列⽣理活动,多细胞⽣物则更多地依靠细胞之间的相互合作以适应整个机体的需求。
(3)细胞是有机体⽣长与发育的基础,有机体的⽣长与发育是依靠细胞的分裂、迁移、分化与凋亡来实现的,细胞是⽣长与发育的基本单位。
化学生物学 第五章 相互作用与分子识别
(4)蛋白质与糖链相互作用的专一性
• 人的胃液、唾液、卵巢囊肿的粘液和红细胞中都含有血型物 质,它包含约75%的糖,主要是岩藻糖、半乳糖、氨基葡 萄糖和氨基半乳糖。含糖部分决定血型物质的特异性。
• 在糖蛋白中,糖链结构可以直接影响肽链构象以及由构象决 定的所有功能。糖链相互识别并互补性结合,引起细胞粘附, 动物凝集素对受体蛋白的专一性识别可发生在蛋白质与糖链、 糖链与糖链之间的互相作用,表明糖链标记的识别具有多元 化的特征。
• 任何胞外信号分子引起靶细胞一定的应 答反应均需依赖信号分子与特异受体的 结合。受体蛋白依据其细胞定位被区分 为膜受体、胞内受体或核受体。
• 信号分子,如激素、信息素(外激素)或 神经递质被称为配体,必须与受体蛋白 特定位点结合,引起受体分子构象变化, 进而启动细胞功能变化。
• 细胞或组织对特异配体分子的应答是由它所具有的特异受 体、以及配体结合受体所启动的胞内反应指令,不同类型 细胞所具有的受体不同,对同一配体分子所引起的反应不 同;相同类型的受体也可能出现在不同类型的细胞中,但 同一信号分子在不同类型细胞中以不同方式引起不同的反 应。
• 例如,乙酰胆碱受体(AChR)分布于骨骼肌、心肌和胰腺 泡细胞。当ACh释放时在骨骼肌引起肌收缩,在心脏引起 心率减缓,在胰腺则引起腺体分泌。
• 在某些细胞,不同的受体—配体相互作用可引起相同的细 胞反应。
• 例如,胰高血糖素、肾上腺素与肝细胞相应受体结合均可 引起糖原分解,释放葡萄糖使血糖升高。受体蛋白只能与 特异的信号分子相结合,这就是受体与配体相互作用的特 异性,又称结合特异性。
三、分子识别的特性
1,作用的专一性
• 生物大分子在机体内行使各种各样的功能,参 与了形形色色的反应,它们行使的功能和参与 的反应都具有高度专一性。这种专一性也是药 物分子与生物大分子相互作用并产生某专一性 生物效应的理论基础。
细胞生物学 第四版 翟中和 各章内容摘要
细胞生物学第四版翟中和各章内容摘要第1章细胞生物学是研究细胞生命活动基本规律的学科,它是现代生命科学的基础学科之一。
细胞生物学研究的主要方面包括:①生物膜与细胞器;②细胞信号转导;③细胞骨架体系;④细胞核、染色体及基因表达;⑤细胞增殖及其调控;⑥细胞分化及干细胞;⑦细胞死亡;⑧细胞衰老;⑨细胞工程;⑩细胞的起源与进化。
本章回顾了细胞学与细胞生物学发展的简史,阐述了细胞学说的建立及其重要意义,分析了细胞生物学学科形成的基础与条件。
细胞学与细胞生物学发展的历史大致可以划分为以下几个阶段:①细胞的发现;②细胞学说的建立;③细胞学的经典时期;④实验细胞学时期;⑤细胞生物学学科的形成与发展。
当今的细胞生物学是以细胞作为生命活动的基本单位这一概念为出发点,在各层次上探索生命现象的最基本、最核心问题的一门重要的学科。
第2章细胞是一切生命活动的基本单位,包括以下几个方面的涵义:(1)一切有机体都由细胞构成,细胞是构成有机体的形态结构单位。
构成多细胞生物体的细胞虽然是“社会化”的细胞,但它们又保持着形态结构的独立性,每一个细胞具有自己完整的结构体系。
(2)细胞是有机体代谢与执行功能的基本单位,在细胞内的一切生化过程与试管内的生化过程的根本不同点,是细胞有严格自动控制的代谢体系,并且有保证完成生命过程有序性的独立的结构装置。
(3)有机体的生长与发育是依靠细胞增殖、分化与凋亡来实现的。
细胞是研究有机体生长与发育的基础。
(4)细胞是遗传的基本单位,每一个细胞都具有遗传的全能性(除少数特化细胞)。
构成各种生物机体的细胞的种类繁多,结构与功能各异,但它们都具有基本共性:细胞膜,两种核酸(DNA与RNA),蛋白质合成的机器——核糖体与一分为二的增殖方式,这些是细胞结构与生存不可缺少的基础。
种类繁多的细胞可以分为原核细胞与真核细胞两大类。
近年认为原核细胞并不是统一的一大类,建议将细胞划分为原核细胞、古核细胞与真核细胞三大类。
支原体是迄今发现的最小最简单的细胞,它已具备细胞的基本结构,并且有作为生命活动基本单位存在的主要特征。
2019秋新版高中生物必修一《第5章细胞的能量供应和利用》课后习题与探讨答案
第5章细胞的能量供应和利用本章出思维导图1教材旁栏问题和练习及答案2第1节降低化学反应活化能的酶问题探讨1773年,意大利科学家斯帕兰札尼(L. Spallanzani, 1729—1799 )做了一个巧妙的实验:将肉块放入小巧的金属笼内,然后让鹰把小笼子吞下去。
过一段时间后,他把小笼子取出来,发现笼内的肉块消失了。
讨论:1.为什么要将肉块放在金属笼内?【答案】便于取出实验材料(肉块),排除物理性消化对肉块的影响,确定其是否发生了化学性消化。
2.是什么物质使肉块消失了?【答案】是胃内的化学物质将肉块分解了。
3.怎样才能证明你的推测?【答案】收集胃内的化学物质,看看这些物质在体外是否也能将肉块分解。
一、酶的作用和本质探究与实践1.与1号试管相比,2号试管出现什么不同的现象?这一现象说明什么?【答案】2号试管放出的气泡多。
这一现象说明加热能促进过氧化氢的分解,提高反应速率。
2.在细胞内,能通过加热来提高反应速率吗?【答案】不能。
3.3号和4号试管未经加热,也有大量气泡产生,这说明什么?【答案】说明FeCl3中的Fe3+和新鲜肝脏中的过氧化氢酶都能加快过氧化氢分解的速率。
4.3号试管与4号试管相比,哪支试管中的反应速率快?这说明什么?为什么说酶对于细胞内化学反应的顺利进行至关重要?【答案】4号试管的反应速率比3号试管快得多,说明过氧化氢酶比Fe3+的催化效率高得多。
细胞内每时每刻都在进行着成千上万种化学反应,这些化学反应需要在常温、常压下高效率地进行,只有酶能够满足这样的要求,所以说酶对于细胞内化学反应的顺利进行至关重要。
思考•讨论1.巴斯德和李比希的观点各有什么积极意义?各有什么局限性?【答案】巴斯德认为发酵与活细胞有关,是合理的;认为发酵是整个细胞而不是细胞中的某些物质在起作用,是不正确的。
李比希认为引起发酵的是细胞中的某些物质,是合理的;认为这些物质只有在酵母细胞死亡并裂解后才能发挥作用,是不正确的。
知识点复习第5章细胞的能量供应和利用汇总
化分解,产生二氧化碳和水,释放能量,合成大量ATP的过程。
02 03
无氧呼吸
无氧呼吸是指在厌氧条件下,厌氧或兼性厌氧微生物以外源无机氧化物 或有机物作为末端氢(电子)受体时发生的一类产能效率较低的特殊呼 吸。
发酵
微生物细胞将有机物氧化释放的电子直接交给底物本身未完全氧化的某 种中间产物,同时产生各种不同的代谢产物。
脂肪酸氧化和酮体生成
脂肪酸氧化
脂肪酸在细胞内的氧化是一个逐步脱 氢的过程,主要在线粒体中进行。通 过一系列的脱氢、加水、再脱氢及硫 解反应,最终生成乙酰CoA和少量丙 二酰CoA。
酮体生成
在脂肪酸氧化过程中,如果肝内酮体 生成过多,超过肝外组织利用的能力, 就会引起血中酮体浓度升高,导致酮 血症和酮尿症。
细胞内的糖类物质还可以作为信号分 子参与细胞信号传导过程,调节细胞 的生长、分化和凋亡等生命活动。
细胞膜中的糖蛋白、糖脂等成分对维 持细胞的结构和功能具有重要作用。
04 脂肪代谢与能量储存
脂肪分解过程及产物
脂肪分解
脂肪在体内主要分解为甘油和脂 肪酸。此过程由激素敏感性甘油 三酯酶催化。
产物
甘油和脂肪酸。其中,甘油可进 一步转化为磷酸二羟丙酮,进入 糖代谢途径;脂肪酸则进入脂肪 酸氧化过程,产生能量。
能量供应机制
磷酸原系统
ATP和CP组成的供能系统。ATP 以最大功率输出供能可维持约2秒; CP以最大功率输出供能可维持约
3-5倍于ATP。
乳酸能系统
乳酸能系统是指糖原或葡萄糖在细 胞浆内无氧分解生成乳酸过程中再 合成ATP的能量系统。
有氧氧化系统
有氧氧化系统是指糖、脂肪和蛋白 质在细胞内彻底氧化成水和二氧化 碳的过程中,再合成ATP的能量系 统。
人教版高中生物必修一第五章《细胞的能量供应和利用》章末总结及训练题
人教版高中生物必修一第五章《细胞的能量供应和利用》章末总结及训练题【要点必备】1.酶并非都是蛋白质,少数酶是RNA ;酶具有催化作用,其原理是降低化学反应的活化能。
2.酶的作用具有高效性、专一性和作用条件温和等特性。
3.ATP 中远离A 的高能磷酸键易断裂,也易形成(伴随能量的释放和储存)。
生物体内ATP 含量不多,但转化迅速,能保证持续供能。
4.植物产生ATP 的场所是叶绿体、细胞质基质和线粒体,而动物产生ATP 的场所是细胞质基质和线粒体。
光合作用的光反应产生的ATP 只用于暗反应中C 3的还原,而细胞呼吸产生的ATP 用于除C 3还原之外的各项生命活动。
5.有氧呼吸的场所是细胞质基质和线粒体,反应式为:C 6H 12O 6+6O 2+6H 2O ――→酶6CO 2+12H 2O +能量。
无氧呼吸的场所是细胞质基质,反应式为:C 6H 12O 6――→酶2C 2H 5OH +2CO 2+少量能量或C 6H 12O 6――→酶2C 3H 6O 3+少量能量。
6.光反应的场所是叶绿体类囊体薄膜,产物是O 2、[H]和ATP 。
暗反应的场所是叶绿体基质,产物是有机物和ADP 、Pi 。
7.光合作用中的物质转变为:14CO2→14C3→(14CH2O);H218O→18O2。
8.光合作用的能量转变为:光能→ATP中活跃的化学能→有机物中稳定的化学能。
【规律整合】一、生物细胞呼吸方式的判断1.根据生物的类型判断:原核生物无线粒体,大多进行无氧呼吸产生乳酸(如乳酸菌)或者酒精和二氧化碳,但也有些原核生物进行有氧呼吸,如醋酸杆菌、蓝藻等。
高等动物无氧呼吸都是产生乳酸的,高等植物绝大部分无氧呼吸产生酒精和二氧化碳,也有产生乳酸的,如马铃薯块茎、甜菜块根、玉米的胚(可记忆为“马吃甜玉米”)等。
2.根据反应物、产物的类型判断(1)消耗O2→有氧呼吸,但无法确定是否同时进行了无氧呼吸。
(2)有H2O生成→有氧呼吸,但无法确定是否同时进行了无氧呼吸。
生物(2019)必修1第5章 细胞的能量供应和利用(单元知识点小结)
单元知识点小结生物(2019)必修1第5章细胞的能量供应和利用第1节降低化学反应活化能的酶1.细胞中每时每刻都进行着许多化学反应,统称为________,它是细胞生命活动的基础,其进行的主要场所是________。
(P76)2.实验过程中的变化因素称为变量,其中人为控制的对实验对象进行处理的因素叫作________,因自变量改变而变化的变量叫作________。
除自变量外,实验过程中还存在一些对实验结果造成影响的可变因素,叫作____________(P78“科学方法”)3.除一个因素以外,其余因素都保持不变的实验叫做________,它一般要设置对照组和实验组,如果实验中对照组未作任何处理,这样的对照组叫作____________。
在实验中,除了要观察的变量外,其他变量都应当始终保持相同。
(P78“科学方法”)4.分子从常态转变为容易发生化学反应的活跃状态所需要的能量称为________。
(P78)5.酶在细胞代谢中的作用是____________。
酶既没有为反应提供能量,反应前后酶的性质也没有改变。
无机催化剂也能____________,但没有酶的显著。
加热的作用不是降低活化能,是使反应分子得到________,从常态转变为容易反应的活跃状态。
(如图)(P78)6.1926年,美国科学家利用丙酮作溶剂从刀豆种子中提取出了脲酶的结晶,然后又用多种方法证明脲酶是________。
(P79“思考·讨论”)7.20世纪80年代,美国科学家切赫和奥特曼发现少数________也具有生物催化功能。
(P80“思考·讨论”)8.酶是活细胞产生的具有催化作用的有机物,酶的化学本质是____________,其基本组成单位是____________________,其主要元素组成是________________;酶在________都可以起作用。
(P81)9.酶有如下的特性:________、________和酶的作用条件________。
必修一 第五章 细胞的能量供应和利用知识点总结
分子与细胞第五章细胞的能量供应和利用第一节降低化学反应活化能的酶细胞代谢(1)概念:细胞中每时每刻都进行的化学反应统称为细胞代谢。
(2)特点:①一般都需要酶催化,②在水环境中进行,③反应条件温和,④一般伴随着能量的释放和储存。
(3)地位:是细胞生命活动的基础。
对细胞代谢的理解(1)从性质上看,细胞代谢包括物质代谢和能量代谢两个方面。
细胞内每时每刻都在进行着化学反应,与此同时伴随着相应的能量变化。
物质是能量的载体,而能量是物质运输的动力。
物质代谢和能量代谢相伴而生,相互依存。
(2)从方向上看,细胞代谢包括同时进行、对立统一的同化作用和异化作用。
同化作用和异化作用相互依存,同化过程中有物质的分解、能量的释放,异化过程中有物质的合成、能量的储存。
同化作用为异化作用的进行提供物质和能量基础,而同化作用进行所需的能量又靠异化作用来提供。
(3)从实质上看,细胞代谢是生物体活细胞内所进行的有序的连锁的化学反应。
应特别注意只有活细胞内进行的化学反应才是有序的,死细胞内虽然也进行着化学反应,但是无序的,所以不属于细胞代谢的范畴。
(4)从意义上看,细胞代谢的过程完成了细胞成分的更新,而细胞成分的更新正是生化反应造成的物质转化和能量转变的结果。
在细胞代谢的基础上,生物体既进行新旧细胞的更替,又进行细胞内化学成分的更新,最终表现出生长、发育、生殖等生命活动。
酶的作用原理(1)活化能:分子从常态转变为容易发生化学反应的活跃状态所需要的能量(2)酶是一种生物催化剂,能改变反应途径,其作用是降低化学反应的活化能。
(3)酶在代谢中仅起到催化作用,本身化学性质和质量均不发生变化。
酶在进行催化作用时,首先与底物(即反应物)结合,形成不稳定的中间产物,中间产物再分解成酶和产物,因此可反复起催化作用。
酶的本质酶是活细胞产生的具有催化作用的有机物,其中绝大多数酶是蛋白质。
(1)凡是活细胞都可产生酶(哺乳动物的成熟红细胞等除外),只有内分泌细胞才可产生激素,所以能产生酶的细胞不一定能产生激素,但能产生激素的细胞一定能产生酶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受体的功能域
结合配体的功能域:结合特异性 产生效应的功能域:效应特异性
受体的功能
介导物质跨膜运输 (受体介导的内吞作用) 信号传递
二、信号转导系统及其特性
●信号转导系统的基本组成与信号蛋白 ●细胞内信号蛋白的相互作用
●细胞内信号蛋白复合物的装配
●信号转导系统的特性
信号转导系统的基本组成
是指在胞内产生的小分子,其浓度的变化应答于胞外信号 与细胞表面受体的结合,并在细胞信号转导中行使功能。
● 第二信使的类型
cAMP,cGMP,Ca2+ , 二酰甘油(DAG), 三磷酸肌醇(IP3)
● 第二信使学说 (second messenger theory)
胞外化学物质(第一信使)不能进入细胞,它作用于细胞 表面受体,而导致产生胞内第二信使,从而激发一系列生 化反应,最后产生一定的生理效应,第二信使的降解使其 信号作用终止。
(六)分子开关(molecular switches)
在细胞信号传导过程中 , 信息沿着一系列不 同的蛋白质所组成的信号传导途径 (signaling pathway)进行传递。
在此途径中每一种蛋白质的典型作用是改变 系列中下一个蛋白质的构象,由此激活或抑制 下游蛋白质。细胞信号传导中蛋白来自象的改变是由分子开 关完成的。
胞外信号被特异性受体所识别
胞外信号通过适当的分子开关机制实现信号 的跨膜转导,产生细胞内第二信使或活化的 信号蛋白。 信号放大
受体脱敏或受体下调,启动反馈机制从而终 止或降低细胞反应。
信号蛋白
转承蛋白(relay protein) 信使蛋白(messenger protein) 接头蛋白(adaptor protein) 放大和转导蛋白
鸟苷酸交换因子(GEF):促使与G蛋白结合的GDP解离,
同时G蛋白与GTP结合而活化 。
GTP酶促进蛋白(GAP):促进GTP水解,G蛋白失活 G蛋白信号调节子(RGS):促进GTP水解,G蛋白失活 鸟苷酸解离抑制子(GDI):抑制GTP水解,维持活性
细胞内受体: 为胞外亲脂性信号分子所激活。
同学们好!
《没有人是一座孤岛》——约翰· 多恩
没有人是一座孤岛,
可以自全。 每个人都是大陆的一片, 整体的一部分。 如果海水冲掉一块, 欧洲就缩小, 如同一个海岬失掉一角, 如同你的朋友或者你自己的领地失掉一块 任何人的死亡都是我的损失, 因为我是人类的一员, 因此 不要问丧钟为谁而鸣, 它就为你而鸣。
1.靶蛋白磷酸化和去磷酸化
蛋白激酶和蛋白磷酸酶使靶蛋白磷酸化和蛋白去磷酸化, 从而调节蛋白质的活性。 磷酸化作用机理:改变电荷、构象,导致蛋白质活性的 增强和降低。
ATP
ADP
蛋白激酶
蛋白质
ATP
蛋白磷酸酶
蛋白质-P
ADP
2.GTPase开关蛋白
两种类性:异三聚体G蛋白、单体G蛋白 两种状态:与GTP结合时活化的“开启”状态; 与GDP结合时失活的“关闭”状态。 辅助蛋白:与G蛋白结合并调节其活性
(amplifier and transducer protein) 传导蛋白(transducer protein) 分歧蛋白(bifurcation protein) 整合蛋白(integrator protein) 潜在基因调控蛋白
(latent gene regulatory protein)
一个细胞发出的信息通过介质(配 体)传递到另一个细胞并与靶细胞 相应的受体相互作用,然后通过细 胞信号转导产生细胞内一系列生理 生化变化,最终表现为细胞整体的 生物学效应的过程。
二、细胞通讯的类型
直接接触
细胞间接触依赖性的通讯,细胞间直接接触, 信号分子与受体都是细胞的跨膜蛋白。
细胞通过分泌化学信号进行通讯
第五章 细胞间的相互作用
Cell-Cell Interactions
第一节 细胞通讯—细胞间信号传递
第二节 细胞连接—细胞间相互黏附
第一节 细胞通讯—细胞间信号传递 ● 细胞通讯的概念
● 细胞通讯的类型
● 信号分子
● 受体 ● 第二信使
● 信息在细胞内的行程
一、细胞通讯的概念
cell communication
内分泌(endocrine) 旁分泌(paracrine) 自分泌(autocrine) 化学突触(chemical synapse)传递神经信号
间隙连接或胞间连丝实现代谢偶联 或电偶联
细胞识别(cell recognition)
●概念: 细胞通过其表面的受体与胞外信号物质分子(配体) 选择性地相互作用,进而导致胞内一系列生理生化变化,最 终表现为细胞整体的生物学效应的过程。 ●信号通路(signaling pathway) 细胞识别是通过各种不同的信号通路实现的。 细胞接受外界信号,通过一整套特定的机制,将胞外 信号转导为胞内信号,最终调节特定基因的表达,引起细胞 的应答反应,这种反应系列称之为细胞信号通路。
作为基因调控蛋白的受体 作为酶的受体
细胞表面受体: 为胞外亲水性信号分子所激活,
细胞表面受体分属三个受体超家族: 离子通道偶联受体(ion-channel-coupled receptor) G蛋白偶联受体(G-protein-coupled receptor) 酶连受体(enzyme-coupled receptor)
三、细胞的信号分子signal molecule
● 信号分子的概念
● 信号分子的类型
亲脂性信号分子
亲水性信号分子
气体性信号分子(NO)
四、受体(receptor)
● 受体的概念 ● 受体的类型
● 受体的结构域
● 受体的功能
五、第二信使(second messenger)
●第二信使(second messenger )
信号转导系统的特性
特异性
放大效应
网络化与反馈 整合作用
第二节 细胞内受体介导的信号转导
●细胞内核受体及其对基因表达的调节
●NO作为气体信号分子进入靶细胞直接 与酶结合
一、细胞内核受体及其对基因表达的调节
细胞内受体蛋白的3个功能域及其作用模式 类固醇激素的受体位于细胞核内 类固醇激素诱导基因活化的两步反应阶段: 初级反应阶段:直接活化少数特殊基因转录的初 级反应阶段,快速发生。 次级反应阶段:初级反应的基因产物再活化其它 基因,产生延迟的次级反应,对初级反应起 放大作用。 个别亲脂性小分子的受体位于细胞质膜上。 前列腺素