外文资料翻译---具有高灵敏度的甲醛气体传感器的制备及其气敏特性

外文资料翻译---具有高灵敏度的甲醛气体传感器的制备及其气敏特性
外文资料翻译---具有高灵敏度的甲醛气体传感器的制备及其气敏特性

1 外文资料翻译译文

具有高灵敏度的甲醛气体传感器的制备及其气敏特性相对甲醛混有氧化铬的氧化铟气体传感器特性已经研究过了。间接加热式气体传感器是用敏感材料进行制备的。最终的材料的状态和传感层的形态通过x射线衍射和扫描电子显微镜分别在焙烧前后观察到其特点。操作温度对传感器响应的影响氧化铬和氧化铟传感器的气体浓度特性的对比已经研究过了。结果表明,在低操作温度该传感器对于甲醛具有良好的反应性能,使他们成为甲醛气体检测最有希望的候选材料。

1介绍

作为一个重要的工业化学品,甲醛被应用于制造业,建筑板,胶合板和漆这样的材料。此外,它还是消费产品中一个中间添加物,如洗涤剂和肥皂。由于其杀菌性能也可用于药理学和药物中。然而,调查结果表明,因为它是挥发性有害化合物,所以甲醛会对人体造成许多损害。因此,需要一种有效的方法来监测甲醛进而进行气体环境测量与控制。制造气体传感器被认为是一个理想的监测气体的手段。我们目前的调查主要涉及与甲醛的检测。

虽然半导体金属氧化物气体传感器提供了对有毒气体或可燃性气体的安全检测,但是他们仍然有一定的局限性,如灵敏度,选择性,长期稳定性等等。为了克服半导体金属氧化物气体传感器的缺点,半导体金属氧化物的制备与掺杂的研究已经做过了。氧化铟是一个有希望的具有宽禁带的半导体材料(3.70电子伏特),其电子浓度主要取决于计量缺陷的浓度(如氧空位)就像其他金属氧化物半导体。就传感机制来说,颗粒的大小,缺陷,表面与界面的性能和化学计量学直接影响了传感器表面的氧化物种类的状态和数量,最后影响了金属氧化物传感器的性能。因此,为了提高并改善气体传感性能(敏感性,选择性,较好的热稳定性和较低的操作温度),氧化铟通常用于纳米结构形式或掺杂合适的贵金属和金属氧化物。作为一个单组分氧化物,由于其良好的灵敏度,氧化铟是一种很有前途的氧化性气体检测的候选者。因此,当其他金属氧化物掺杂氧化铟,对于不同的气体可调谐的气体灵敏度也不同。他们已经很好的研究了检测大部分重要气体的传感器材料,如乙醇,一氧化碳,二氧化氮,和氢气。然而,研究很少集中在甲醛传感器的材料特性。在本次调查中,用固态合成技术制备氧化镉和氧化铟的混合物,通过X射线衍射和扫描电镜图像来观察其特点。基于化镉和氧化铟的混合物的间接加热的气体传感器就被制备好了。甲醛传感器中混合物的特性也就确定了。

2实验

所有的来源于商业用于实验的化学试剂需要保证没有进一步提纯。根据我们的初步实验,氧化铟或氧化镉对于甲醛来说不具有良好的传感特性。氧化铟或氧化镉粉末是由碳酸盐和氧化铟制备的。不同阶段碳酸盐–氧化铟样品的成分已经研究过了。氧化镉:氧化铟=1 : 2.5重量比被认为是最有希望的甲醛气体的传感特性。混合蒸馏去离子水的碳

酸盐–氧化铟样品仔细研磨至约50-500纳米大小的颗粒。然后对样品分别以500,650,750和850摄氏度在空气中煅烧1个小时。

X射线衍射(X射线衍射, Rigaku D/MAX-3B粉末衍射仪)有着用于鉴定阶段目标的铜质物和K辐射(λ=1.54056a°),其中衍射X射线强度被记录为一个2θ。该样本是从10度到70°(2θ)以0.02°为一个单位进行扫描。根据Scherrer的公式:Rx = 0.9λ/(B cos θ),平均晶粒尺寸(接收)测量从X射线衍射峰以每分钟2°的速度进行扫描,λ是X射线的波长,θ是衍射角,B是真正的半个波峰宽度。扫描电子显微镜(扫描电镜)的照片是由荷兰的xesem-tmp获得的。

该间接加热传感器可以根据文献[13]进行制备。混合材料作为一个敏感的物质由带有金属电极和铂电线氧化铝管制备成的。镍–铬合金线缠绕在氧化铝管上被用作电阻。这个电阻需要确保有基本的加热和温度控制。这些元素在650摄氏度的空气中烧结1小时。焙烧后,基于氧化铟的敏感物质的厚度大约为0.6 毫米。为了提高其稳定性和重复性,气体传感器适宜在150摄氏度的空气中烧1小时。该传感器电阻通过在电压为5伏下的串联电阻相连接的传统电路进行测量。气体反应β被定义为在真空和气体中的电阻比。

在650摄氏度煅烧的氧化铬与氧化铟材料的传感性能优于在500,750,和850摄氏度进行煅烧的传感性能。在本文中,我们主要讨论在650摄氏度焙烧的材料。

X射线粉末衍射模式的准备和煅烧材料如图1所示。氧化铟和氧化铬峰值可以通过在650摄氏度情况下煅烧1小时的样品的外形进行观察。氧化铟和氧化铬的外形展现了一个很高的结晶度。400摄氏度碳酸盐分解,氧化铬形成。相氧化铟的状态没有改变,和其他的状态(例如,CdIn2O 4)在650度燃烧后并不能看出来。.另一方面,氧化铟的X射线衍射峰的宽度在煅烧前后并不改变,从中我们可以看出氧化铬能有效地抑制晶粒生长。根据雪莱的方程计算的晶粒平均尺寸28纳米,煅烧后氧化铟30纳米,氧化铬31纳米。

比较的结果是,扫描电镜图片显示了制备和煅烧样品中各种大小的粒子。大颗粒由小微晶组成。图2(a)和(b)分别显示了制备和焙烧过程中的扫描电镜图像。大多数粒子有不规则的形态,颗粒大小的范围是100–500纳米。

传感器的导电率取决于气体种类,同时也取决于暴露在测试性气体中的传感材料的操作温度,这些问题以经解决了。图3描述传感器的反应和操作温度之间的关系。操作温度对反应有重大影响。有趣的是,反应首先逐渐增加,然后随着操作温度的提高减少。可以看出,对于甲醛气体在低温范围内,基于氧化铬和氧化铟的传感器具有优异的气敏特性。在95摄氏度它展出了对甲醛气体最高的响应。较低的工作温度在应用中是一个优点。

如图4所示,响应的抵押–氧化铟基于传感器的氧化铬和氧化铟在95度操作时的

响应展示了对气体浓度的良好依赖性。该传感器对酒精和汽油有着非常小的反应,但对于甲醛气体有着较大响应。百万分之十的甲醛气体的反应超过了百万之八十的甲醛气体的响应。本反应是大大高于最近报道氧化锌和氧化铅,三氧化钨和氧化铅,镍,和基于甲醛气体的la0.68pb0.32feo3。这种气体传感器展现了对甲醛气体的较大反应和对酒精与汽油的较高选择性。这一结果表明,氧化铬和氧化铟是一个良好的检测甲醛气体的气敏材料,可用于监测和控制甲醛气体。

一个良好的反应和快速响应、恢复时间可以用这种传感器在最佳工作温度95摄氏度下进行观察。针对不同甲醛气体浓度(10–100 ppm)的器皿传感器如图5所示。作为一个高灵敏度的传感器,它可以测量非常低浓度,甚至百万分之一。随着甲醛气体浓度的增加输出电压的增加呈线性关系并且有较短的响应时间。响应时间和恢复时间(定义为达到最终平衡值90%)为2分钟,恢复时间为4分钟。

气敏机理是基于氧化铬和氧化铟材料的电导的变化。材料的表面对氧的吸收影响了氧化铬和氧化铟传感器的导电性。氧的吸附取决于颗粒大小,较大的材料面积,和合适的传感器操作温度。随着空气中温度的增加,氧的状态被吸附在氧化铬和氧化铟材料的表面的氧的状态在下面的反应中发生。氧从材料中捕获电子,导致了空穴浓度的增加和电子浓度的减少。当传感器接触甲醛气体时,被捕获的电子以吸附状态被释放,导致传感器电阻减小。因此,氧化铬和氧化铟传感器甲醛气体的减少是敏感的。

该传感器具有良好的稳定性(没有显示的数据)。稳定性机制更为复杂和进一步的工作是得到了一一个明确的认识。

4总结

通过固态合成技术氧化铬和氧化铟样本的制备甲醛探测的传感材料已被证明是可行的。制作好的传感器显示了很大程度的反应,高选择性,快速反应,和在低操作温度时良好的恢复性。实验结果表明了混有氧化铬的氧化铟气体传感器的材料潜力。

鸣谢

这项工作得到了中国国家自然科学基金会和中国云南省自然科学基金支持。

2外文译文

The fabrication and gas-sensing characteristics of the

formaldehyde gas sensors with high sensitivity

Abstract

Gas-sensing characteristics of CdO-mixed In2O3 to formaldehyde were investigated. Gas sensors of indirect heating type were fabricated by the sensitive materials. The phases in the resulting materials and the morphologies of the sensing layers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, before and after calcination. The effects of operating temperature on the sensor response and the response versus gas concentration properties of the CdO–In2O3 sensors were investigated. It was shown that the sensors exhibited good response properties to formaldehyde gas at low operating temperature, making them to be promising candidates for practical detectors to formaldehyde gas.

1. Introduction

As an important industrial chemical, formaldehyde is utilized in the manufacturing of building boards, plywood, and lacquer materials [1,2]. Moreover, it is an intermediate in consumer products, such as detergents and soaps, and also used in pharmacology and medicine because of its sterilization property. However, the investigated results showed that formaldehyde could cause many damages to the human body because it is a volatile and deleterious compound [3,4]. Therefore, effective methods to monitor formaldehyde have been demanded for atmospheric environmental measurement and control. The fabrication of gas sensors is thought to be a desirable means for monitoring the gases. Our present investigation mainly deals with the detection of formaldehyde.

Although gas sensors based on semiconductor metal oxides provide the safe detection of toxic or flammable gases, they still have some limitations and challenges such as sensitivity, selectivity, long-term stability, and so on. To overcome the disadvantages of semiconductor metal oxide gas sensors, the research on preparation and doping of semiconductor metal oxides had been done. Indium oxide is a promising semiconductor material with a wide band gap (3.70 eV), whose electron concentration is determined mainly by the concentration of stoichiometric defects (such as oxygen vacancy) like other metal oxide semiconductors.

In view of the sensing mechanism, the particle size, defects, the properties of surface and interface, and stoichiometry directly affect the state and amount of oxygen species on the surface of sensors, and consequently the performance of the metal oxide-based sensors.

Therefore, in order to enhance and improve the gas sensing performances (sensitivity, selectivity, good thermal stability, and lower operating temperature), In2O3 is usually prepared in a nanostructured form and/or doped with suitable noble metals and/or metal oxides [5–11].Asa single-component oxide, In2O3 is a promising candidate for the detection of oxidizing gases because of its good sensitivity [12]. Thus, when other metal oxides were doped into In2O3, the resulting materials have the potential for tunable sensitivity for different gases [6]. They have been well studied as the sensor material to detect most of the key gases, such as ethanol [5],CO [6,7],NO2 [7,8], and H2 [9]. Nevertheless, research has seldom been focused on the formaldehyde sensing properties of the material. In this investigation, the CdO-mixed In2O3 was prepared with solid-state synthesis technology and characterized by X-ray diffraction and SEM images. Gas sensors for indirect-heating based on CdO-In2O3 sensing materials were fabricated. The formaldehyde sensing properties of the mixed oxides were determined.

2. Experimental

All the chemical reagents used in the experiments were obtained from commercial sources as guaranteed-grade reagents and used without further purification. Based on our preliminary experiments, In2O3 or CdO does not have good sensing properties to formaldehyde. CdO-In2O3 powders were prepared from CdCO3 and In2O3. CdCO3–In2O3 samples with various phase compositions were studied. The Cd:In = 1:2.5 weight ratio was found to be the most promising for the sensing properties to formaldehyde gas. CdCO3–In2O3 samples mixed with distilled deionized water were round carefully to about 50–500 nm size, and then the samples were calcined at 500, 650, 750, and 850 .C,respectively, for 1 h in air. X-ray diffraction (XRD, Rigaku D/MAX-3B powder diffractometer) with a copper target and K. radiation (λ = 1.54056 °A) was used for the phase identification, where the diffracted X-ray intensities were recorded as a function of 2θ. The sample was scanned from 10. to 70. (2θ) in steps of 0.02.. The mean crystallite sizes (Rx) were measured from XRD peaks at a scan rate of 2./min based on the Scherrer’s equation: Rx = 0.9λ/(Bcos θ), where λis the wavelength of X-ray, θ is the diffraction angle, and B is the true half-peak width. Scanning electron microscopy (SEM) photographs were obtained by XL30ESEM-TMP, Holland.

The sensors of indirect heating were fabricated according to the literature [13]. The mixed material used as a sensitive body was fabricated on an alumina tube with Au electrodes and platinum wires. A Ni–Cr alloy wire crossing the alumina tube was used as a resistor. This resistor ensured both substrate heating and temperature control. The elements were sintered at

650 .C for 1 h in air. Thickness of the sensitive body based on In2O3 was approximately 0.6 mm after calcination. In order to improve their stability and repeatability, the gas sensors were aged at an operating temperature of 150 .C for 150 h in air. The sensor resistance was measured by using a conventional circuit in which the element was connected with an external resistor in series at a circuit voltage of 5 V. The gas response β was defined as the ratio of the electrical resistance in air (Ra)to that in gas(Rg).

3. Results and discussion

Sensing properties of CdO–In2O3 material calcined at 650 .C is better than those at 500, 750, and 850 .C. In this paper, we mainly discuss the material calcined at 650 .C. The X-ray powder diffraction patterns for the as-prepared and calcined materials are shown in Fig. 1. The peaks of In2O3 and CdO are observed in the pattern of the sample calcined at 650 .C for 1 h. The pattern is indexed as In2O3 (JCPDS No. 06-0416) and CdO (JCPDS No. 65-2908), and shows a high degree of crystallinity. CdCO3 will be decomposed and CdO be formed at400 .C [14]. The phase of In2O3 is not changed and other new phase (for example, CdIn2O4) is not observed after calcining at 650 .C. On the other hand, the width of XRD peaks of In2O3 Fig. 1. The XRD patterns of as-prepared and calcined materials: (a) CdCO3 (JCPDS No. 42-1342), (b) In2O3 (JCPDS No. 06-0416), and (c) CdO (JCPDS No. 65-2908). does not change before and after calcination, revealing that the CdO can effectively inhibit the crystalline grain growth [15]. The crystallite average sizes calculated according to Scherrer’s equation are about 28 nm for In2O3 before calcination, and about 30 nm for In2O3 and 31 nm for CdO after calcination. Comparing with the XRD results, SEM images revealed that there were various sizes of particles in the as-prepared and calcined samples. The large particles were composed of small crystallites. Fig. 2(a) and (b) shows SEM images of the as-prepared and calcined materials, respectively. Most particles have irregular morphology, and the particle size is in the range of 100–500 nm.

It has been addressed that the electrical conductivity of a sensor depends on the gas atmosphere, but also on the operating temperature of the sensing material exposed to the test gas [16]. Fig. 3 depicts the relation between the response and the operating temperature for the sensor. The operating temperature has a great influence on the response. Interestingly, the response first increases gradually and then decreases with increasing the operating temperature. It can be seen that the CdO–In2O3 based sensor shows excellent gas-sensing characteristics to formaldehyde gas in the low temperature range. It exhibited the highest response to formaldehyde gas at 95 .C.The low operating temperature is an advantage in application. As shown in Fig. 4, the response of the CdO–In2O3 based sensor operated at

95 .C shows good dependence on the gas concentration. The sensor exhibits very small response to alcohol and gasoline, but large response to formaldehyde gas. The response to 10 ppm formaldehyde gas is more than 80. The response is considerably larger than those recently reported for SnO2–Sb2O4,WO3–Sb2O4, NiO, and La0.68Pb0.32FeO3-based formaldehyde gas sensors [17–21]. This gas sensor showed large response to formaldehyde gas and high selectivity against alcohol and gasoline. This result indicates that the CdO–In2O3 specimen is a good gas-sensing material for detecting formaldehyde, which can be applied for monitoring and controlling of the formaldehyde gas.

A good response and quick response/recovery time were observed with this sensor at the optimal operating temperature of 95 .C. The response changes of the gas sensor to different formaldehyde gas concentrations (10–100 ppm) are shown in Fig. 5. As a highly sensitive sensor, it can measure very low concentrations, even 10 ppm. The output voltage increases in a linear relation to the formaldehyde gas concentration with a short response time. Response time and recovery time (defined as the time required to reach 90% of the final equilibrium value) was 2 min and the recovery time was 4 min.

The gas-sensing mechanism is based on the changes in conductance of the CdO–In2O3 material. The oxygen adsorbed on the surface of the material influences the conductance of the CdO–In2O3 sensor. The oxygen adsorption depends on the particle size, large specific area of the material, and the operating temperature of the sensor [22]. With the increasing temperature in air, the state of oxygen adsorbed on the surface of the CdO–In2O3 material undergoes the following Fig. 3. The effects of operating temperature on the sensor response to 100 ppm formaldehyde. increasing concentrations operated at an operating temperature of The oxygen species capture electrons from the material, leading to an increase in hole concentration and a decrease in electron concentration. When the sensor is exposed to formaldehyde gas, the electrons

trapped by the adsorptive states will be released, leading to

a decrease in sensor resistance. So, the CdO–In2O3 sensor is

sensitive to reducing formaldehyde gas.

The sensors have good stabilities (no shown data). The stability mechanism is more complicated and further work is to be done to get a definite understanding.

4. Conclusion

Preparation of the CdO–In2O3 specimen used as a sensing material to formaldehyde has

been shown to be feasible by the solid-state synthesis technologies. The fabricated sensor showed large response magnitude, high selectivity, quick responses, and good recovery to formaldehyde gas at a low operating temperature (95 .C). The experimental results indicate the potential of using CdO-mixed In2O3 material for formaldehyde gas sensing.

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 50662006), and Natural Science Foundation of Yunnan Province, China (No. 2006E0013M).

传感器技术论文中英文对照资料外文翻译文献

中英文对照资料外文翻译文献 附件1:外文资料翻译译文 传感器新技术的发展 传感器是一种能将物理量、化学量、生物量等转换成电信号的器件。输出信号有不同形式,如电压、电流、频率、脉冲等,能满足信息传输、处理、记录、显示、控制要求,是自动检测系统和自动控制系统中不可缺少的元件。如果把计算机比作大脑,那么传感器则相当于五官,传感器能正确感受被测量并转换成相应输出量,对系统的质量起决定性作用。自动化程度越高,系统对传感器要求越高。在今天的信息时代里,信息产业包括信息采集、传输、处理三部分,即传感技术、通信技术、计算机技术。现代的计算机技术和通信技术由于超大规模集成电路的飞速发展,而已经充分发达后,不仅对传感器的精度、可靠性、响应速度、获取的信息量要求越来越高,还要求其成本低廉且使用方便。显然传统传感器因功能、特性、体积、成本等已难以满足而逐渐被淘汰。世界许多发达国家都在加快对传感器新技术的研究与开发,并且都已取得极大的突破。如今传感器新技术的发展,主要有以下几个方面: 利用物理现象、化学反应、生物效应作为传感器原理,所以研究发现新现象与新效应是传感器技术发展的重要工作,是研究开发新型传感器的基础。日本夏普公司利用超导技术研制成功高温超导磁性传感器,是传感器技术的重大突破,其灵敏度高,仅次于超导量子干涉器件。它的制造工艺远比超导量子干涉器件简单。可用于磁成像技术,有广泛推广价值。 利用抗体和抗原在电极表面上相遇复合时,会引起电极电位的变化,利用这一现象可制出免疫传感器。用这种抗体制成的免疫传感器可对某生物体内是否有这种抗原作检查。如用肝炎病毒抗体可检查某人是否患有肝炎,起到快速、准确作用。美国加州大学巳研制出这类传感器。 传感器材料是传感器技术的重要基础,由于材料科学进步,人们可制造出各种新型传感器。例如用高分子聚合物薄膜制成温度传感器;光导纤维能制成压力、流量、温度、位移等多种传感器;用陶瓷制成压力传感器。

英文论文及中文翻译

International Journal of Minerals, Metallurgy and Materials Volume 17, Number 4, August 2010, Page 500 DOI: 10.1007/s12613-010-0348-y Corresponding author: Zhuan Li E-mail: li_zhuan@https://www.360docs.net/doc/8f4334280.html, ? University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2010 Preparation and properties of C/C-SiC brake composites fabricated by warm compacted-in situ reaction Zhuan Li, Peng Xiao, and Xiang Xiong State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China (Received: 12 August 2009; revised: 28 August 2009; accepted: 2 September 2009) Abstract: Carbon fibre reinforced carbon and silicon carbide dual matrix composites (C/C-SiC) were fabricated by the warm compacted-in situ reaction. The microstructure, mechanical properties, tribological properties, and wear mechanism of C/C-SiC composites at different brake speeds were investigated. The results indicate that the composites are composed of 58wt% C, 37wt% SiC, and 5wt% Si. The density and open porosity are 2.0 g·cm–3 and 10%, respectively. The C/C-SiC brake composites exhibit good mechanical properties. The flexural strength can reach up to 160 MPa, and the impact strength can reach 2.5 kJ·m–2. The C/C-SiC brake composites show excellent tribological performances. The friction coefficient is between 0.57 and 0.67 at the brake speeds from 8 to 24 m·s?1. The brake is stable, and the wear rate is less than 2.02×10?6 cm3·J?1. These results show that the C/C-SiC brake composites are the promising candidates for advanced brake and clutch systems. Keywords: C/C-SiC; ceramic matrix composites; tribological properties; microstructure [This work was financially supported by the National High-Tech Research and Development Program of China (No.2006AA03Z560) and the Graduate Degree Thesis Innovation Foundation of Central South University (No.2008yb019).] 温压-原位反应法制备C / C-SiC刹车复合材料的工艺和性能 李专,肖鹏,熊翔 粉末冶金国家重点实验室,中南大学,湖南长沙410083,中国(收稿日期:2009年8月12日修订:2009年8月28日;接受日期:2009年9月2日) 摘要:采用温压?原位反应法制备炭纤维增强炭和碳化硅双基体(C/C-SiC)复合材

DS18B20 单线温度传感器外文翻译

DS18B20单线温度传感器 一.特征:ucts DS18B20 data sheet 2012 ●独特的单线接口,只需1个接口引脚即可通信 ●每个设备都有一个唯一的64位串行代码存储在ROM上 ●多点能力使分布式温度检测应用得以简化 ●不需要外部部件 ●可以从数据线供电,电源电压范围为3.0V至5.5V ●测量范围从-55 ° C至+125 ° C(-67 ° F至257 ° F),从-10℃至+85 °C的精 度为0.5 °C ●温度计分辨率是用户可选择的9至12位 ●转换12位数字的最长时间是750ms ●用户可定义的非易失性的温度告警设置 ●告警搜索命令识别和寻址温度在编定的极限之外的器件(温度告警情况) ●采用8引脚SO(150mil),8引脚SOP和3引脚TO - 92封装 ●软件与DS1822兼容 ●应用范围包括恒温控制工业系统消费类产品温度计或任何热敏系统二.简介 该DS18B20的数字温度计提供9至12位的摄氏温度测量,并具有与非易失性用户可编程上限和下限报警功能。信息单线接口送入DS18B20或从DS18B20 送出,因此按照定义只需要一条数据线与中央微处理器进行通信。它的测温范围从-55°C到+125°C,其中从-10 °C至+85 °C可以精确到0.5°C 。此外,DS18B20可以从数据线直接供电(“寄生电源”),从而消除了供应需要一个外部电源。 每个DS18B20 的有一个唯一的64位序列码,它允许多个DS18B20的功

能在同一总线。因此,用一个微处理器控制大面积分布的许多DS18B20是非常简单的。此特性的应用范围包括HV AC、环境控制、建筑物、设备或机械内的温度检测以及过程监视和控制系统。 三.综述 64位ROM存储设备的独特序号。存贮器包含2个字节的温度寄存器,它存储来自温度传感器的数字输出。此外,暂存器可以访问的1个字节的上下限温度告警触发器(TH和TL)和1个字节的配置寄存器。配置寄存器允许用户设置的温度到数字转换的分辨率为9,10,11或12位。TH,TL和配置寄存器是非易失性的,因此掉电时依然可以保存数据。 该DS18B20使用Dallas的单总线协议,总线之间的通信用一个控制信号就可以实现。控制线需要一个弱上拉电阻,因为所有的设备都是通过3线或开漏端口连接(在DS18B20中用DQ引脚)到总线的。在这种总线系统中,微处理器(主设备)和地址标识上使用其独有的64位代码。因为每个设备都有一个唯一的代码,一个总线上连接设备的数量几乎是无限的。单总线协议,包括详细的解释命令和“时间槽”,此资料的单总线系统部分包括这些内容。 DS18B20的另一个特点是:没有外部电源供电仍然可以工作。当DQ引脚为高电平时,电压是单总线上拉电阻通过DQ引脚供应的。高电平信号也可以充当外部电源,当总线是低电平时供应给设备电压。这种从但总线提供动力的方法被称为“寄生电源“。作为替代电源,该DS18B20也可以使用连接到VDD 引脚的外部电源供电。 四.运用——测量温度 该DS18B20的核心功能是它是直接输出数字信号的温度传感器。该温度传

关于力的外文文献翻译、中英文翻译、外文翻译

五、外文资料翻译 Stress and Strain 1.Introduction to Mechanics of Materials Mechanics of materials is a branch of applied mechanics that deals with the behavior of solid bodies subjected to various types of loading. It is a field of study that i s known by a variety of names, including “strength of materials” and “mechanics of deformable bodies”. The solid bodies considered in this book include axially-loaded bars, shafts, beams, and columns, as well as structures that are assemblies of these components. Usually the objective of our analysis will be the determination of the stresses, strains, and deformations produced by the loads; if these quantities can be found for all values of load up to the failure load, then we will have obtained a complete picture of the mechanics behavior of the body. Theoretical analyses and experimental results have equally important roles in the study of mechanics of materials . On many occasion we will make logical derivations to obtain formulas and equations for predicting mechanics behavior, but at the same time we must recognize that these formulas cannot be used in a realistic way unless certain properties of the been made in the laboratory. Also , many problems of importance in engineering cannot be handled efficiently by theoretical means, and experimental measurements become a practical necessity. The historical development of mechanics of materials is a fascinating blend of both theory and experiment, with experiments pointing the way to useful results in some instances and with theory doing so in others①. Such famous men as Leonardo da Vinci(1452-1519) and Galileo Galilei (1564-1642) made experiments to adequate to determine the strength of wires , bars , and beams , although they did not develop any adequate theo ries (by today’s standards ) to explain their test results . By contrast , the famous mathematician Leonhard Euler(1707-1783) developed the mathematical theory any of columns and calculated the critical load of a column in 1744 , long before any experimental evidence existed to show the significance of his results ②. Thus , Euler’s theoretical results remained unused for many years, although today they form the basis of column theory. The importance of combining theoretical derivations with experimentally determined properties of materials will be evident theoretical derivations with experimentally determined properties of materials will be evident as we proceed with

无线传感器网络论文中英文资料对照外文翻译

中英文资料对照外文翻译 基于网络共享的无线传感网络设计 摘要:无线传感器网络是近年来的一种新兴发展技术,它在环境监测、农业和公众健康等方面有着广泛的应用。在发展中国家,无线传感器网络技术是一种常用的技术模型。由于无线传感网络的在线监测和高效率的网络传送,使其具有很大的发展前景,然而无线传感网络的发展仍然面临着很大的挑战。其主要挑战包括传感器的可携性、快速性。我们首先讨论了传感器网络的可行性然后描述在解决各种技术性挑战时传感器应产生的便携性。我们还讨论了关于孟加拉国和加利 尼亚州基于无线传感网络的水质的开发和监测。 关键词:无线传感网络、在线监测 1.简介 无线传感器网络,是计算机设备和传感器之间的桥梁,在公共卫生、环境和农业等领域发挥着巨大的作用。一个单一的设备应该有一个处理器,一个无线电和多个传感器。当这些设备在一个领域部署时,传感装置测量这一领域的特殊环境。然后将监测到的数据通过无线电进行传输,再由计算机进行数据分析。这样,无线传感器网络可以对环境中各种变化进行详细的观察。无线传感器网络是能够测量各种现象如在水中的污染物含量,水灌溉流量。比如,最近发生的污染涌流进中国松花江,而松花江又是饮用水的主要来源。通过测定水流量和速度,通过传感器对江水进行实时监测,就能够确定污染桶的数量和流动方向。 不幸的是,人们只是在资源相对丰富这个条件下做文章,无线传感器网络的潜力在很大程度上仍未开发,费用对无线传感器网络是几个主要障碍之一,阻止了其更广阔的发展前景。许多无线传感器网络组件正在趋于便宜化(例如有关计算能力的组件),而传感器本身仍是最昂贵的。正如在在文献[5]中所指出的,成功的技术依赖于

英文文献及中文翻译

毕业设计说明书 英文文献及中文翻译 学院:专 2011年6月 电子与计算机科学技术软件工程

https://www.360docs.net/doc/8f4334280.html, Overview https://www.360docs.net/doc/8f4334280.html, is a unified Web development model that includes the services necessary for you to build enterprise-class Web applications with a minimum of https://www.360docs.net/doc/8f4334280.html, is part of https://www.360docs.net/doc/8f4334280.html, Framework,and when coding https://www.360docs.net/doc/8f4334280.html, applications you have access to classes in https://www.360docs.net/doc/8f4334280.html, Framework.You can code your applications in any language compatible with the common language runtime(CLR), including Microsoft Visual Basic and C#.These languages enable you to develop https://www.360docs.net/doc/8f4334280.html, applications that benefit from the common language runtime,type safety, inheritance,and so on. If you want to try https://www.360docs.net/doc/8f4334280.html,,you can install Visual Web Developer Express using the Microsoft Web Platform Installer,which is a free tool that makes it simple to download,install,and service components of the Microsoft Web Platform.These components include Visual Web Developer Express,Internet Information Services (IIS),SQL Server Express,and https://www.360docs.net/doc/8f4334280.html, Framework.All of these are tools that you use to create https://www.360docs.net/doc/8f4334280.html, Web applications.You can also use the Microsoft Web Platform Installer to install open-source https://www.360docs.net/doc/8f4334280.html, and PHP Web applications. Visual Web Developer Visual Web Developer is a full-featured development environment for creating https://www.360docs.net/doc/8f4334280.html, Web applications.Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.360docs.net/doc/8f4334280.html,ing the development tools in Visual Web Developer,you can develop https://www.360docs.net/doc/8f4334280.html, Web pages on your own computer.Visual Web Developer includes a local Web server that provides all the features you need to test and debug https://www.360docs.net/doc/8f4334280.html, Web pages,without requiring Internet Information Services(IIS)to be installed. Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.360docs.net/doc/8f4334280.html,ing the development tools in Visual Web Developer,you can develop https://www.360docs.net/doc/8f4334280.html, Web pages on your own computer.

多路温度采集系统外文翻译文献

多路温度采集系统外文翻译文献 多路温度采集系统外文翻译文献 (文档含中英文对照即英文原文和中文翻译) 译文: 多路温度传感器 一温度传感器简介 1.1温度传感器的背景 在人类的生活环境中,温度扮演着极其重要的角色。无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。自 18 世纪工业革命以来,工业发展对是否能掌握温度有着绝对的联系。在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎%80 的工业部门都不得不考虑着温度的因素。温度对于工业如此重要,由此推进了温度传感器的发展。

1.2温度传感器的发展 传感器主要大体经过了三个发展阶段:模拟集成温度传感器。该传感器是采用硅半导体集成工艺制成,因此亦称硅传感器或单片集成温度传感器。此种传感器具有功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温、控温,不需要进行非线性校准,外围电路简单。它是目前在国内外应用最为普遍的一种集成传感器,典型产品有AD590、AD592、TMP17、LM135 等;模拟集成温度控制器。模拟集成温度控制器主要包括温控开关、可编程温度控制器,典型产品有LM56、AD22105 和 MAX6509。某些增强型集成温度控制器(例如 TC652/653)中还包含了A/D 转换器以及固化好的程序,这与智能温度传感器有某些相似之处。但它自成系统,工作时并不受微处理器的控制,这是二者的主要区别;智能温度传感器。能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE)的结晶。智能温度传感器内部都包含温度传感器、A/D 转换器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU);并且它是在硬件的基础上通过软件来实现测试功能的,其智能化程度也取决于软件的开发水平。温度传感器的发展趋势。进入21世纪后,温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。 1.3单点与多点温度传感器 目前市场主要存在单点和多点两种温度测量仪表。对于单点温测仪表,主要采用传统的模拟集成温度传感器,其中又以热电阻、热电偶等传感器的测量精度高,测量范围大,而得到了普遍的应用。此种产品测温范围大都在-200℃~800℃之间,分辨率12位,最小分辨温度在0.001~0.01 之间。自带LED显示模块,显示4位到16位不等。有的仪表还具有存储功能,可存储几百到几千组数据。该类仪表可很好的满足单个用户单点测量的需要。多点温度测量仪表,相对与单点的测量精度有一定的差距,虽然实现了多路温度的测控,但价格昂贵。针对目前市场的现状,本课题提出了一种可满足要求、可扩展的并且性价比高的单片机多路测温系统。通过温度传感器 DS18B20采集,然后通过C51 单片机处理并在数码管上显示,可以采集室内或花房中四处不同位置的温度,用四个数码管来显示。第一个数码管显示所采集的是哪一路,哪个通道;后三个数码管显示所采

10kV小区供配电英文文献及中文翻译

在广州甚至广东的住宅小区电气设计中,一般都会涉及到小区的高低压供配电系统的设计.如10kV高压配电系统图,低压配电系统图等等图纸一大堆.然而在真正实施过程中,供电部门(尤其是供电公司指定的所谓电力设计小公司)根本将这些图纸作为一回事,按其电脑里原有的电子档图纸将数据稍作改动以及断路器按其所好换个厂家名称便美其名曰设计(可笑不?),拿出来的图纸根本无法满足电气设计的设计意图,致使严重存在以下问题:(也不知道是职业道德问题还是根本一窍不通) 1.跟原设计的电气系统货不对板,存在与低压开关柜后出线回路严重冲突,对实际施工造成严重阻碍,经常要求设计单位改动原有电气系统图才能满足它的要求(垄断的没话说). 2.对消防负荷和非消防负荷的供电(主要在高层建筑里)应严格分回路(从母线段)都不清楚,将消防负荷和非消防负荷按一个回路出线(尤其是将电梯和消防电梯,地下室的动力合在一起等等,有的甚至将楼顶消防风机和梯间照明合在一个回路,以一个表计量). 3.系统接地保护接地型式由原设计的TN-S系统竟曲解成"TN-S-C-S"系统(室内的还需要做TN-C,好玩吧?),严格的按照所谓的"三相四线制"再做重复接地来实施,导致后续施工中存在重复浪费资源以及安全隐患等等问题.. ............................(违反建筑电气设计规范等等问题实在不好意思一一例举,给那帮人留点混饭吃的面子算了) 总之吧,在通过图纸审查后的电气设计图纸在这帮人的眼里根本不知何物,经常是完工后的高低压供配电系统已是面目全非了,能有百分之五十的保留已经是谢天谢地了. 所以.我觉得:住宅建筑电气设计,让供电部门走!大不了留点位置,让他供几个必需回路的电,爱怎么折腾让他自个怎么折腾去.. Guangzhou, Guangdong, even in the electrical design of residential quarters, generally involving high-low cell power supply system design. 10kV power distribution systems, such as maps, drawings, etc. low-voltage distribution system map a lot. But in the real implementation of the process, the power sector (especially the so-called power supply design company appointed a small company) did these drawings for one thing, according to computer drawings of the original electronic file data to make a little change, and circuit breakers by their the name of another manufacturer will be sounding good design (ridiculously?), drawing out the design simply can not meet the electrical design intent, resulting in a serious following problems: (do not know or not know nothing about ethical issues) 1. With the original design of the electrical system not meeting board, the existence and low voltage switchgear circuit after qualifying serious conflicts seriously hinder the actual construction, often require changes to the original design unit plans to meet its electrical system requirements (monopoly impress ). 2. On the fire load and fire load of non-supply (mainly in high-rise building in) should be strictly sub-loop (from the bus segment) are not clear, the fire load and fire load of non-qualifying press of a circuit (especially the elevator and fire elevator, basement, etc.

压力传感器外文翻译

压力传感器 合理进行压力传感器的误差补偿是其应用的关键。压力传感器主要有偏移量误差、灵敏度误差、线性误差和滞后误差,本文将介绍这四种误差产生的机理和对测试结果的影响,同时将介绍为提高测量精度的压力标定方法以及应用实例。 目前市场上传感器种类丰富多样,这使得设计工程师可以选择系统所需的压力传感器。这些传感器既包括最基本的变换器,也包括更为复杂的带有片上电路的高集成度传感器。由于存在这些差异,设计工程师必须尽可能够补偿压力传感器的测量误差,这是保证传感器满足设计和应用要求的重要步骤。在某些情况下,补偿还能提高传感器在应用中的整体性能。 本文以摩托罗拉公司的压力传感器为例,所涉及的概念适用于各种压力传感器的设计应用。 摩托罗拉公司生产的主流压力传感器是一种单片压阻器件,该器件具有 3 类: 1.基本的或未加补偿标定; 2.有标定并进行温度补偿; 3.有标定、补偿和放大。 偏移量、范围标定以及温度补偿均可以通过薄膜电阻网络实现,这种薄膜电阻网络在封装过程中采用激光修正。 该传感器通常与微控制器结合使用,而微控制器的嵌入软件本身建立了传感器数学模型。微控制器读取了输出电压后,通过模数转换器的变换,该模型可以将电压量转换为压力测量值。传感器最简单的数学模型即为传递函数。该模型可在整个标定过程中进行优化,并且模型的成熟度将随标定点的增加而增加。 从计量学的角度看,测量误差具有相当严格的定义:它表征了测量压力与实际压力之间的差异。而通常无法直接得到实际压力,但可以通过采用适当的压力标准加以估计,计量人员通常采用那些精度比被测设备高出至少 10 倍的仪器作为测量标准。 由于未经标定的系统只能使用典型的灵敏度和偏移值将输出电压转换为压 力,测得的压力将产生如图 1 所示的误差。 这种未经标定的初始误差由以下几个部分组成: a.偏移量误差。由于在整个压力范围内垂直偏移保持恒定,因此变换器扩散和激光调节修正的变化将产生偏移量误差。 b.灵敏度误差,产生误差大小与压力成正比。如果设备的灵敏度高于典型值,灵敏度误差将是压力的递增函数(见图 1)。如果灵敏度低于典型值,那么灵敏度误差将是压力的递减函数。该误差的产生原因在于扩散过程的变化。

中文和英文简历和专业英语材料翻译

韶关学院 期末考核报告 科目:专业英语 学生姓名: 学号: 同组人: 院系: 专业班级: 考核时间:2012年10月9日—2012年11月1 日评阅教师: 评分:

第1章英文阅读材料翻译 (1) 第2章中文摘要翻译英文 (3) 第3章中文简历和英文简历 (4) 第4章课程学习体会和建议 (6) 参考文献 (7)

第1章英文阅读材料翻译 Mechanization and Automation Processes of mechanization have been developing and becoming more complex ever since the beginning of the Industrial Revolution at the end of the 18th century. The current developments of automatic processes are, however, different from the old ones. The “automation” of the 20th century is distinct from the mechanization of the 18th and 19th centuries inasmuch as mechanization was applied to individual operations, wherea s “automation” is concerned with the operation and control of a complete producing unit. And in many, though not all, instances the element of control is so great that whereas mechanization displaces muscle, “automation”displaces brain as well. The distinction between the mechanization of the past and what is happening now is, however, not a sharp one. At one extreme we have the electronic computer with its quite remarkable capacity for discrimination and control, while at the other end of the scale are “ transfer machines” , as they are now called, which may be as simple as a conveyor belt to another. An automatic mechanism is one which has a capacity for self-regulation; that is, it can regulate or control the system or process without the need for constant human attention or adjustment. Now people often talk about “feedback” as begin an essential factor of the new industrial techniques, upon which is base an automatic self-regulating system and by virtue of which any deviation in the system from desired condition can be detected, measured, reported and corrected. when “feedback” is applied to the process by which a large digital computer runs at the immense speed through a long series of sums, constantly rejecting the answers until it finds one to fit a complex set of facts which have been put to it, it is perhaps different in degree from what we have previously been accustomed to machines. But “feedback”, as such, is a familiar mechanical conception. The old-fashioned steam engine was fitted with a centrifugal governor, two balls on levers spinning round and round an upright shaft. If the steam pressure rose and the engine started to go too fast, the increased speed of the spinning governor caused it to rise up the vertical rod and shut down a valve. This cut off some of the steam and thus the engine brought itself back to its proper speed. The mechanization, which was introduced with the Industrial Revolution, because it was limited to individual processes, required the employment of human labor to control each machine as well as to load and unload materials and transfer them from one place to another. Only in a few instances were processes automatically linked together and was production organized as a continuous flow. In general, however, although modern industry has been highly mechanized ever since the 1920s, the mechanized parts have not as a rule been linked together. Electric-light bulbs, bottles and the components of innumerable mass-produced

自动化 外文翻译 文献综述 温度传感器

分辨率可编程单总线数字温度传感器—— DS18B20 1 概述 1.1 特性: ?独特的单总线接口,只需一个端口引脚即可实现数据通信 ?每个器件的片上ROM 都存储着一个独特的64 位串行码 ?多点能力使分布式温度检测应用得到简化 ?不需要外围元件 ?能用数据线供电,供电的范围3.0V~5.5V ?测量温度的范围:-55℃~+125℃(-67℉~+257℉) ?从-10℃~+85℃的测量的精度是±0.5℃ ?分辨率为9-12 位,可由用户选择 ?在750ms 内把温度转换为12 位数字字(最大值) ?用户可定义的非易失性温度报警设置 ?报警搜索命令识别和针对设备的温度外部程序限度(温度报警情况) ?可采用8 引脚SO(150mil)、8引脚μSOP和3引脚TO-92 封装 ?软件兼容DS1822 ?应用范围包括:恒温控制、工业系统、消费类产品、温度计和任何的热敏系统

图1 DS18B20引脚排列图 1.2 一般说明 DS18B20数字温度计提供9至12位的摄氏温度测量,并具有非易失性的用户可编程触发点的上限和下限报警功能。DS18B20为单总线通信,按定义只需要一条数据线(和地线)与中央微处理器进行通信。DS18B20能够感应温度的范围为-55~+125℃,在-10~+85℃范围内的测量精度为±0.5℃,此外,DS18B20 可以直接从数据线上获取供电(寄生电源),而不需要一个额外的外部电源。 每个DS18B20都拥有一个独特的64位序列号,因此它允许多个DS18B20作用在一条单总线上,这样,可以使用一个微处理器来控制许多DS18B20分布在一个大区域。受益于这一特性的应用包括HAVC 环境控制、建筑物、设备和机械内的温度监测、以及过程 监测和控制过程的温度监测。

传感器外文翻译

Basic knowledge of transducers A transducer is a device which converts the quantity being measured into an optical, mechanical, or-more commonly-electrical signal. The energy-conversion process that takes place is referred to as transduction. Transducers are classified according to the transduction principle involved and the form of the measured. Thus a resistance transducer for measuring displacement is classified as a resistance displacement transducer. Other classification examples are pressure bellows, force diaphragm, pressure flapper-nozzle, and so on. 1、Transducer Elements Although there are exception ,most transducers consist of a sensing element and a conversion or control element. For example, diaphragms,bellows,strain tubes and rings, bourdon tubes, and cantilevers are sensing elements which respond to changes in pressure or force and convert these physical quantities into a displacement. This displacement may then be used to change an electrical parameter such as voltage, resistance, capacitance, or inductance. Such combination of mechanical and electrical elements form electromechanical transducing devices or transducers. Similar combination can be made for other energy input such as thermal. Photo, magnetic and chemical,giving thermoelectric, photoelectric,electromaanetic, and electrochemical transducers respectively. 2、Transducer Sensitivity The relationship between the measured and the transducer output signal is usually obtained by calibration tests and is referred to as the transducer sensitivity K1= output-signal increment / measured increment . In practice, the transducer sensitivity is usually known, and, by measuring the output signal, the input quantity is determined from input= output-signal increment / K1. 3、Characteristics of an Ideal Transducer The high transducer should exhibit the following characteristics a) high fidelity-the transducer output waveform shape be a faithful reproduction of the measured; there should be minimum distortion. b) There should be minimum interference with the quantity being measured; the presence of the transducer should not alter the measured in any way. c) Size. The transducer must be capable of being placed exactly where it is needed.

相关文档
最新文档