第八章记数据统计法—卡方检验法
《卡方检验正式》课件
卡方检验的结果可以直接解释为实际意义 ,例如,如果卡方值较大,则说明观察频 数与期望频数存在显著差异。
缺点
对数据要求高
卡方检验要求数据量较大,且各分类的期望频数不能太小,否则可能 导致结果不准确。
对离群值敏感
卡方检验对离群值比较敏感,离群值可能会对结果产生较大的影响。
无法处理缺失值
卡方检验无法处理含有缺失值的数据,如果数据中存在缺失值,需要 进行适当的处理。
案例二:市场研究中的卡方检验
总结词
市场研究中,卡方检验用于评估不同市 场细分或产品特征与消费者行为之间的 关联。
VS
详细描述
在市场研究中,卡方检验可以帮助研究者 了解消费者对不同品牌、产品或服务的偏 好。例如,通过比较不同年龄段消费者对 某品牌的选择比例,企业可以更好地制定 市场策略和产品定位。
案例三:社会调查中的卡方检验
小,表示两者之间的差异越小。通常根据卡方值的概率水平来判断差异
是否具有统计学显著性。
02
卡方检验的步骤
建立假设
假设1
观察频数与期望频数无显著差异
假设2
观察频数与期望频数有显著差异
收集数据
从样本数据中获取观察频数 确定期望频数,可以使用理论值或预期频数
制作交叉表
将收集到的数据整理成二维表格形式,行和列分别表示分类变量
卡方检验的基本思想
01
基于假设检验原理
卡方检验基于假设检验的原理,通过构建原假设和备择假设,利用观测
频数与期望频数的差异来评估原假设是否成立。
02
比较实际观测频数与期望频数
卡方检验的核心是比较实际观测频数与期望频数,通过卡方值的大小来
评估两者之间的差异程度。
03
第八章记数数据统计法—卡方查验法
第八章记数数据统计法—卡方查验法知识引入在各个研究领域中,有些研究问题只能划分为不同性质的类别,各类别没有量的联系。
例如,性别分男女,职业分为公事员、教师、工人、……,教师职称又分为教授、副教授、……。
有时虽有量的关系,因研究需要将其按必然的标准分为不同的类别,例如,学习成绩、能力水平、态度等都是持续数据,只是研究者依必然标准将其划分为优良中差,喜爱与不喜爱等少数几个品级。
对这些非持续等距性数据,要判别这些分类间的不同或多个变量间的相关性方式称为计数数据统计方式。
卡方查验是专用于解决计数数据统计分析的假设查验法。
本章要紧介绍卡方查验的两个应用:拟合性查验和独立性查验。
拟合性查验是用于分析实际次数与理论次数是不是相同,适用于单个因素分类的计数数据。
独立性查验用于分析各有多项分类的两个或两个以上的因素之间是不是有关联或是不是独立的问题。
在计数数据进行统计分析时要专门注意取样的代表性。
咱们明白,统计分析确实是依据样本所提供的信息,正确推论整体的情形。
在这一进程中,最全然的一环是确保样本的代表性及对实验的良好操纵。
在心理与教育研究中,所搜集到的有些数据属于定性资料,它们常常是通过调查、访问或问卷取得,除少数实验能够事前打算外,大部份搜集数据的进程是难于操纵的。
例如,某研究者关于某项教育方法的问卷调查,由于有一部份教师和学生对该项方法存成心见,或对问卷本身有成见,全然就不填写问卷。
如此该研究所能收回的问卷只能代表一部份观点,因此它是一个有偏样本,假设据此对整体进行推论,就会产生必然的误差,必将不能真实地反映出教师与学生对这项教育方法的意见。
因此应用计数资料进行统计推断时,要专门警惕谨慎,避免样本的偏倚性,只有具有代表性的样本才能作出正确的推论。
第一节卡方拟合性查验一、卡方查验的一样问题卡方查验应用于计数数据的分析,关于整体的散布不作任何假设,因此它又是非参数查验法中的一种。
它由统计学家皮尔逊推导。
理论证明,实际观看次数(f o)与理论次数(f e),又称期望次数)之差的平方再除以理论次数所得的统计量,近似服从卡方散布,可表示为:这是卡方查验的原始公式,其中当f e越大(f e≥5),近似得越好。
卡方检验法的基本步骤
卡方检验法的基本步骤1.引言1.1 概述引言是一篇长文的开篇部分,它为读者提供了一个大致了解文章主题和内容的概述。
在本文中,我们将探讨卡方检验法的基本步骤。
卡方检验法是一种统计方法,用于确定观察到的数据是否与期望的数据分布相符合。
它可以用于比较两个或多个分类变量之间的关系,并确定它们是否独立。
卡方检验法的步骤主要包括计算期望频数、计算卡方值和判断显著性。
通过这些步骤,我们可以评估数据之间的差异,从而得出结论。
在接下来的章节中,我们将详细介绍卡方检验法的基本概念和原理,以及具体的步骤。
了解卡方检验法的基本步骤对于进行实证研究和数据分析至关重要。
通过掌握这些步骤,我们可以准确地分析和验证数据,进一步推动统计学和实证研究的发展。
1.2文章结构文章结构部分的内容如下:1.2 文章结构本文将以卡方检验法的基本步骤为核心内容进行阐述,主要分为引言、正文和结论三个部分。
引言部分将对卡方检验法进行概述,介绍其基本概念和原理,旨在为读者提供对该方法的整体了解。
同时,还会说明本文的目的和意义,以引起读者的兴趣和阅读欲望。
正文部分将详细阐述卡方检验法的基本概念和原理。
首先,将介绍卡方检验法是一种统计推断方法,用于分析两个或多个分类变量之间的关联性。
然后,将详细解释卡方检验法的基本步骤,包括建立假设、计算卡方值、确定临界值和进行推断。
通过实例分析,将具体说明每个步骤的操作过程和意义,以帮助读者掌握卡方检验法的实施方法。
结论部分将对本文进行总结,简要回顾卡方检验法的基本步骤和应用前景。
首先,将对卡方检验法的基本步骤进行总结和概括,强调每个步骤的重要性和关联性。
然后,将探讨卡方检验法在实际应用中的前景和意义,包括其在医学研究、社会科学和市场调查等领域的应用。
最后,还将提出未来对于卡方检验法的进一步研究方向和改进空间,以促进该方法在实践中的更广泛应用。
通过以上的文内结构,本文将全面系统地介绍卡方检验法的基本步骤,使读者能够深入了解该方法的原理和实施过程。
教育与心理统计学 第八章 X2检验考研笔记-精品
第八章X2检验(卡方检验)一、基本概念(一)X2检验[一级]X2检验是一种非参数检验方法,适用于心理研究中的计数数据(即命名变量),应用卡方检验分析计数数据时,对计数数据总体的分布形 态不作任何假设,它能处理一个因素两项或多项分类的实际观察频数与理论频数分布是否相一致问题,或说无显著差异问题。
又称为列联 表分析或交叉表分析、百分比检验等。
(二)实际频数[一级]简称实计数或实际数,是指在实验或调查中得到的计数资料,又称为观察频数。
(三)理论次数[一级]是指根据概率原理、某种理论、某种理论次数分布或经验次数分布计算出来的次数,又称为期望次数。
二.简述X2检验的主要用途卡方检验主要可以用于处理计数数据的拟合问题。
具体说,它可以检验单变量多项分类上的实计数和理论次数分布之间的差异显著性,称 为配合度检验;也可以检验两个变量各项分类上的次数之间是否存在显著关联,称为独立性检验。
卡方检验主要是处理计数费 法,由于其对数据的分布不像参数检验那样通常要求正态,因此也被认为属于非参数检验法。
三;X2检验的假设(使用条件)卡方检验的适用条件[苏大15]卡方检验的假定与限定。
[一级「 (1)分类相互排斥,互不包容:检验中的分类必须相互排斥,这样每一个观测值就会被划分到一个类别或另一个类别之中。
(2)观测值相互独立:各个被试的观测值之间彼此独立,这是X2检验最基本的一个假定。
在实验研究中,让观测值的总数等于实验中不同 被试的总数,要求每个被试只有一个观测值,这是确保观测值相互独立最安全的做法。
(3)期里次数的大小:为了努力使X2分布成为X2值合理准确的近似估计,每一个单元格中的期望次数应该至少在5个以上。
拟合度(配合度)检验、独立性检验、同质性检验。
广型合度检验Q )拟合度检验的定义拟合度检验的定义:即总体分布的假设检验,也称为总体分布的拟合优度检验,简称拟合度检验、拟合检验,也称为无差假说检验。
拟合度检验的主要原理是借助X2统计量的实得指标来考察实际观测次数fO 与某一理论假定下的次数fe 之间的差异是否显著。
《卡方检验》课件
制作交叉表
确定交叉表的行列变量
根据研究目的和内容,选择合适的行列变量,构建交叉表。
制作交叉表
将分组后的数据按照行列变量制作成交叉表,以便于进行卡 方检验。
计算理论频数
确定期望频数
根据交叉表中的数据,结合各组 的概率计算期望频数。
计算理论频数
根据期望频数和实际频数计算理 论频数,为后续的卡方检验提供 依据。
计算卡方值
计算卡方值
使用卡方检验的公式计算卡方值,该 值反映了实际频数与理论频数的差异 程度。
自由度的确定
在计算卡方值时,需要确定自由度, 自由度通常为行数与列数的减一。
显著性水平的确定
选择显著性水平
显著性水平是衡量卡方值是否显著的指标,通常选择0.05或0.01作为显著性水 平。
判断显著性
根据卡方值和自由度,结合显著性水平判断卡方检验的结果是否显著,从而得 出结论。
3.84、6.63等),可以确定观测频数与期望频数之间的差异是否具有统
计学显著性。
02
卡方检验的步骤
收集数据
确定研究目的
制定调查问卷或收集程序
在开始收集数据之前,需要明确研究 的目的和假设,以便有针对性地收集 相关数据。
根据研究目的和内容,制定合适的调 查问卷或建立数据收集程序,确保数 据的完整性和准确性。
详细描述
例如,在市场调研中,我们可以通过卡方检验来分析不同年龄段、性别、职业等 人群对于某产品的态度或购买意愿是否有显著差异,从而为产品定位和营销策略 提供依据。
实际案例二:医学研究中的应用
总结词
在医学研究中,卡方检验常用于病例 对照研究和队列研究中的分类变量关 联性分析。
详细描述
例如,在病例对照研究中,我们可以 通过卡方检验来比较病例组和对照组 在某些基因型、生活方式或暴露因素 上的分布是否有统计学差异,从而探 讨病因或危险因素。
医学统计方法之卡方检验PPT课件
3、查界值表,确定P值,做出推断结论
查χ2界值表,υ=6,χ20.05(6)=12.59, χ2 > χ20.05(1) ,则 P<0.05,在α=0.05的水准下,拒绝H0,认为三个不同地区 的人群血型分布总体构成比有差别。
.
38
二、多个样本率间多重比较
行×列表χ2检验的结果说明差异有统计学意义,需作两 两比较时,先调整α值,再进行率的两两比较。
配对检验公式推导:
bc
(+,)和(,+)两个格子中的理论频数均为
2
b c 40时
2
(AT)2(b b c )2 2(c b c)22
T
bc
bc
2
2
(b c)2
bc
~ 2 分布
同理可得b c 40时
1
校正公式: 2 (| A T | 0.5)2 (| b c | 1)2
表8-5 两种培养基的培养结果
B培养基
A培养基
+
-
合计
+
48
24
72
-
20
106
126
合计
68
130
198
A 培养基 B培养基
痰标本 1 2 3 4 5 6 7 8 9 10 11 12 13 14
结果统计
A培养基 + + + + + + + + + + -
B培养基 + + + + + + + -
合计
145 109 254 57.09
1.建立检验假设并确定检验水准
9第八章 卡方检验
也称卡方检验。 检验也称卡方检验 χ2 检验 也称卡方检验 。 是英国统计 学家Pearson于 1900年提出的一种应 于 学家 年提出的一种应 用范围很广的假设检验方法, 用范围很广的假设检验方法,可用于 检验两个率间的差异; 检验两个率间的差异 ; 检验多个率 (或构成比 间的差异;判断两种属性 或构成比)间的差异 或构成比 间的差异; 或现象间是否存在关联性; 或现象间是否存在关联性;了解实际 分布与某种理论分布是否吻合; 分布与某种理论分布是否吻合;判断 两个数列间是否存在差异等。 两个数列间是否存在差异等。
计算公式
(a + b)!(c + d )!(a + c)!(b + d )! P= a!b!c!d!n!
式中a、b、c、d 和n的意义同前 , !为阶乘符号。0!= 1, 为阶乘符号。 1!= 1 ,3!= 3×2×1 = 6。
(三)求P值的步骤
• 1 . 列四格表 。 使四格表周边合计数 列四格表。 不变, 不变 , 依次增减四格表中任一格子 的数据,列出所有可能的四格表。 的数据,列出所有可能的四格表。 • 列四表格的数量 = 最小合计数 + 1 。 列四表格的数量= 最小合计数+ • 如例 8 -3 , 增减 a 格的数据 ,得 9 个 如例8 格的数据, 四格表。 四格表。
χ2分布的特点
• ⑴ χ2 分布的形状依赖于 ν 的大小 : 当 ν≤2 时 , 曲线呈 L 型 ; 随着 ν 的增加 , 曲线呈L 的增加, 曲线逐渐趋于对称; →∞时 曲线逐渐趋于对称 ; 当 ν→∞ 时 , 分布 趋近于正态分布。 趋近于正态分布。 • ⑵χ2分布具有可加性:如果两个独立的 分布具有可加性: 随机变量X1和X2分别服从ν1和ν2的χ2分 那么它们的和( 也服从( 布,那么它们的和(X1+X2)也服从(ν1+ ν2)的χ2分布。 分布。
卡方检验的原理和内容公式原理
卡方检验是一种统计检验方法,其原理是比较理论频数和实际频数的吻合度或拟合优度。
基本思想是通过统计样本的实际观测值与理论推断值之间的偏离程度,来判断理论值是否符合。
卡方检验的应用范围包括检验某个连续变量或离散变量是否与某种理论分布接近,即分布拟合检验;以及检验类别变量之间是否存在相关性,即列联分析。
卡方检验的基本公式是卡方值,它是由实际频数和理论频数之间的差的平方与理论频数的比值计算得出的。
卡方值的计算公式如下:
卡方值=∑(实际频数-理论频数)^2 / 理论频数
其中,∑表示求和,实际频数和理论频数分别表示观测频数和期望频数。
如果卡方值越大,说明观测频数和期望频数之间的偏离程度越大;如果卡方值越小,说明观测频数和期望频数之间的偏离程度越小,越趋于符合。
需要注意的是,卡方检验的前提假设是样本数据服从卡方分布,且样本量足够大。
同时,卡方检验对于样本量较小的数据可能不太稳定,此时可以考虑使用其他统计方法如Fisher's exact test等。
第八章 卡方检验
20(25.8) 24(18.2) 21(15.2) 5(10.8) 41 29
表8-1中是两组样本的频数分布。我们的问题是 这两个频数分布的总体分布是否相等?或者这 两份样本是否来自同一个总体? 因为这里是二分类变量,问两个总体分布是否 相等就相当于问两组样本的总体有效率是否相 等。 四个格子的数据20、24、21、5是基本数据,其 余的数据44、25、41、29、70都是从这四个数 据计算得来的,因此,该表称为四格表 (fourfold table ),又称为2 × 2列联表。 在此四格表中, 20、24、21、5是实际频数A, 在这四个数字旁边括号内的数字是理论频数T, 通过实际频数和理论频数的差异的大小可以确 定 χ2 检验中检验统计量的大小。
2(d)0.85 14(固定值) 5 (固定值) 82 (固定值)
假设检验的过程
1.建立假设: H0 : π 1 = π 2 H1 : π 1 ≠ π 2 2.确定显著性水平, α取0.05。 3.确定比当前表格更极端表格的组合数,并计算 概率值P。 4.做出结论
在边缘合计数不变的条件下,比当前四 格表更极端的组合情况可根据最小的理 论频数所在的格子来寻找。本例中为d。 实际频数为2,理论频数为0.8536。差值 为1.15。所以d取值为2,3,4,5,这4 种组合就是满足条件的四格表。计算它 们的概率之和为0.20。 因为P > 0.05;不拒绝H0,差异无 统计学意义,还不能认为两组患者的 病死率存在差异。
42 2 ( 2 × 9 − 26 × 5 − ) × 42 2 2 χ = 28 × 14 × 7 × 35 = 3.62
V=(2-1)( ( )(2-1)=1 )( )
=3.62 < 3.84, P > 0.05;不拒绝H0, 差异无统计学意义,还不能认为两个年级学生 的近视眼患病率有差异。
统计学方法卡方检验描述
统计学方法卡方检验描述引言统计学是科学研究中不可或缺的一个工具,其应用广泛,包括了推断统计学和假设检验。
在统计学中,卡方检验是一种重要的方法,能够用来判断两个离散变量之间是否存在关联。
本文将详细介绍卡方检验的原理、应用场景、步骤以及其在统计分析中的重要性。
卡方检验的原理卡方检验,全称卡方独立性检验,是由卡尔·皮尔逊提出的一种统计方法。
其原理基于对观察值与期望值之间的差异进行比较,以判断两个变量之间是否存在关联。
卡方检验的基本思想是通过比较实际观察到的频数与期望频数之间的差异,来判断两个变量之间的关系。
具体而言,对于给定的统计样本,我们可以计算出每一组的期望频数,然后使用卡方检验统计量来衡量实际观察频数与期望频数之间的差异。
如果差异足够大,我们就可以认为两个变量之间存在关联。
卡方检验的应用场景卡方检验在实际应用中具有广泛的应用场景,特别适用于以下情况:1.检验两个离散变量之间是否存在关联。
例如,研究两个疾病之间的关联性、两个药物之间的疗效差异等。
2.检验两个分类变量之间是否存在关联。
例如,研究性别与是否吸烟之间的关系、教育程度与收入水平之间的关系等。
3.对样本数据进行拟合优度检验。
例如,将观察到的频数与理论上的频数进行比较,判断数据是否符合特定的分布。
4.检验数据的独立性。
例如,检验调查结果是否受到回答者特定属性的影响。
卡方检验的步骤卡方检验主要包括以下几个步骤:步骤一:建立假设在进行卡方检验前,我们首先需要建立起原假设和备择假设。
通常情况下,原假设是两个变量之间没有关联,备择假设是两个变量之间存在关联。
步骤二:计算期望频数计算期望频数是卡方检验的关键步骤之一。
通过使用样本中的观察频数和总体的比例,我们可以计算出每一组的期望频数。
步骤三:计算卡方检验统计量卡方检验统计量是衡量观察频数和期望频数之间差异的指标。
常见的卡方检验统计量包括皮尔逊卡方统计量和对数似然比统计量。
步骤四:确定显著性水平和自由度根据问题的要求和样本的特点,确定显著性水平和自由度。
“医学统计课件-卡方检验”
卡方检验中的显著性水平和p 值
显著性水平和p值是判断卡方检验结果是否显著的重要指标。我们将解释它们 的概念和计算方法,并讨论常用的显著性水平选择。
卡方检验的优缺点
卡方检验是一种简单有效的统计方法,但也有其局限性。我们将讨论卡方检 验的优点和不足之处,以及与其他统计方法的比较。
单样本卡方检验的原理和步骤
单样本卡方检验用于比较一个分类变量的观察频数与期望频数之间的差异。 我们将介绍其原理、计算方法和实际操作步骤。
独立性卡方检验的原理和步骤
独立性卡方检验用于判断两个分类变量之间是否存在相关性。我们将详细解 释它的原理、计算方法,并提供一个实际案例进行分析。
适合度卡方检验的原理和步骤
卡方检验的实际应用案例
通过实际案例,我们将展示卡方检验在医学和流行病学研究中的应用。这些 案例将帮助您更好地理解卡方检件——卡方 检验”
卡方检验是一种常用的统计方法,用于比较两个或多个分类变量之间的差异。 本课件将详细介绍卡方检验的原理、步骤、应用和优缺点,以及在医学研究 和流行病学中的实际案例。
卡方检验的分类及适用范围
卡方检验可以分为单样本卡方检验、独立性卡方检验和适合度卡方检验。每 种检验方法适用的情况略有不同,我们将详细探讨它们的应用领域和限制。
医学统计方法之卡方检验
医学统计方法之卡方检验卡方检验,又称卡方分布检验(Chi-Square Test),是一种常用的统计方法,用于检验两个或多个分类变量之间是否存在显著差异。
本文将详细介绍卡方检验的原理、应用范围以及具体的步骤。
一、原理:卡方检验的原理是基于卡方分布的性质。
卡方分布是指具有自由度的正态分布的平方和,记为χ^2(k),其中k为自由度。
在卡方检验中,我们将观察到的频数与理论预期频数进行比较,从而判断两个或多个分类变量之间的差异是否显著。
二、应用范围:卡方检验广泛应用于医学研究中的数据分析,尤其是在对两个或多个分类变量之间的关联进行检验时。
常见的应用场景包括但不限于以下几种:1.检验观察频数与理论预期频数之间的差异,以判断观察结果是否与理论预期相符。
2.检验两个或多个分类变量之间的关联性,以确定它们之间是否存在显著的相关性。
3.比较两个或多个群体在一个或多个分类变量上的分布差异,从而判断它们之间是否存在显著差异。
三、步骤:卡方检验的主要步骤包括以下几个:1. 建立假设:首先需要明确检验的假设。
在卡方检验中,通常有两种假设:“原假设”(null hypothesis,H0)和“备择假设”(alternative hypothesis,H1)。
原假设通常表示没有差异或关联,备择假设则表示存在差异或关联。
2.计算期望频数:根据原假设,计算出理论预期频数。
理论预期频数是基于既定的分布假设和样本总体的参数计算得出的。
3.计算卡方值:将观察频数与理论预期频数进行比较,计算出卡方值。
卡方值是观察频数与理论预期频数之间的差异的平方和。
4.确定自由度:根据检验问题的具体情况确定自由度。
在卡方检验中,自由度通常由分类变量的水平数目决定。
5.查表找出p值:根据卡方分布表,找出相应自由度下的临界值。
将计算得到的卡方值与临界值进行比较,确定其显著性水平。
p值是指在原假设成立的前提下,观察到的差异大于或等于当前差异的概率。
6.做出判断:根据p值与显著性水平的比较,做出判断是否拒绝原假设。
医学统计学课件卡方检验
队列研究中的卡方检验
总结词
在队列研究中,卡方检验用于比较不同暴露 水平或不同分组在某个分类变量上的分布差 异,以评估暴露因素与疾病发生之间的关系 。
详细描述
队列研究是一种前瞻性研究方法,按照暴露 因素的不同将参与者分为不同的组,追踪各 组的疾病发生情况。通过卡方检验,可以比 较不同暴露水平或不同分组在分类变量上的 分布差异,如分析不同饮食习惯的人群中患
卡方检验与相关性分析的区别
卡方检验主要用于比较实际观测频数与期望频数之间的差异,而相关性分析则用于研究 两个或多个变量之间的关联程度。
卡方检验与相关性分析的联系
在某些情况下,卡方检验的结果可以为相关性分析提供参考,帮助了解变量之间的关联 程度。
05
卡方检验的应用实例
病例对照研究中的卡方检验
总结词
02
公式
卡方检验的公式为 $chi^{2} = sum frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$,
其中 $O_{ij}$ 表示实际观测频数,$E_{ij}$ 表示期望频数。
03
适用范围
卡方检验适用于两个分类变量的比较,可以用于分析病例对照研究、队
列研究等类型的研究。
卡方检验的用途
如比较不同年龄组、性别组等人群中某种疾病的患病率。
卡方检验的基本假设
每个单元格中的期望 频数应该大于5。
卡方检验对于样本量 较小的情况可能不适 用。
观察频数与期望频数 应该服从相同的概率 分布。
02
卡方检验的步骤
收集数据
01
02
03
确定研究目的
在开始卡方检验之前,需 要明确研究的目的和假设 ,以便有针对性地收集数 据。
统计学中的卡方检验方法
统计学中的卡方检验方法卡方检验是一种常用的统计方法,用于确定两个变量之间是否存在相关性。
它基于比较观察值与期望值之间的差异,通过计算卡方值来评估这种差异是否具有统计显著性。
本文将介绍卡方检验的原理、应用场景以及如何进行计算。
1. 原理卡方检验是基于频数表进行的统计推断方法。
它假设观察到的数据符合某种理论分布,然后计算观察值与理论值之间的差异程度。
卡方检验的原假设为无关性假设,即两个变量之间不存在相关性。
若观察到的卡方值大于一定的临界值,就可以拒绝原假设,认为两个变量之间存在相关性。
2. 应用场景卡方检验广泛应用于多个领域,包括医学、社会学、市场调研等。
以下是一些常见的应用场景:(1)医学研究:用于判断某种治疗方法对疾病的疗效是否显著,或者某种食物是否与某种疾病的发生相关。
(2)市场调研:用于分析消费者的购买偏好与不同产品之间的关联性。
(3)教育研究:用于研究学生的性别与不同学科成绩之间是否存在相关性。
(4)调查研究:用于分析样本调查结果与总体情况之间的差异。
3. 计算方法卡方检验的计算过程包括以下几个步骤:(1)建立假设:首先,我们需要明确研究的假设,包括原假设和备择假设。
(2)制作频数表:将观察到的数据按照行和列分组,形成一个频数表。
表中的值表示观察到的频数。
(3)计算期望值:根据无关性假设,计算期望频数,评估观察值与期望值之间的差异。
(4)计算卡方值:利用计算公式,将观察频数和期望频数代入,得到卡方值。
(5)确定显著性水平:根据显著性水平和自由度,查找卡方分布表,找到对应的临界值。
(6)比较卡方值和临界值:如果卡方值大于临界值,拒绝原假设,认为两个变量之间存在相关性;如果卡方值小于临界值,则无法拒绝原假设,即认为两个变量之间不存在相关性。
总结:卡方检验是一种简单而有效的统计方法,用于分析两个变量之间的相关性。
它的应用领域广泛,可以在医学、社会学、市场调研等领域中发挥重要作用。
通过计算卡方值和比较临界值,我们可以推断两个变量之间是否存在相关性。
卡方检验应用
卡方检验应用第八章记数数据统计法一卡方检验法知识引入在各个研究领域中,有些研究问题只能划分为不同性质的类别,各类别没有量的联系。
例如,性别分男女,职业分为公务员、教师、工人、......... , 教师职称又分为教授、副教授、……。
有时虽有量的关系,因研究需要将其按一定的标准分为不同的类别,例如,学习成绩、能力水平、态度等都是连续数据,只是研究者依一定标准将其划分为优良中差,喜欢与不喜欢等少数几个等级。
对这些非连续等距性数据,要判别这些分类间的差异或者多个变量间的相关性方法称为计数数据统计方法。
卡方检验是专用于解决计数数据统计分析的假设检验法。
本章主要介绍卡方检验的两个应用:拟合性检验和独立性检验。
拟合性检验是用于分析实际次数与理论次数是否相同,适用于单个因素分类的计数数据。
独立性检验用于分析各有多项分类的两个或两个以上的因素之间是否有关联或是否独立的问题。
在计数数据进行统计分析时要特别注意取样的代表性。
我们知道,统计分析就是依据样本所提供的信息,正确推论总体的情况。
在这一过程中,最根本的一环是确保样本的代表性及对实验的良好控制。
在心理与教育研究中,所搜集到的有些数据属于定性资料,它们常常是通过调查、访问或问卷获得,除了少数实验可以事先计划外,大部分收集数据的过程是难于控制的。
例如,某研究者关于某项教育措施的问卷调查,由于有一部分教师和学生对该项措施存有意见,或对问卷本身有偏见,根本就不填写问卷。
这样该研究所能收回的问卷只能代表一部分观点,所以它是一个有偏样本,若据此对总体进行推论,就会产生一定的偏差,势必不能真实地反映出教师与学生对这项教育措施的意见。
因此应用计数资料进行统计推断时,要特别小心谨慎,防止样本的偏倚性,只有具有代表性的样本才能作出正确的推论。
第一节卡方拟合性检验一、卡方检验的一般问题卡方检验应用于计数数据的分析,对于总体的分布不作任何假设,因此它又是非参数检验法中的一种。
它由统计学家皮尔逊推导。
卡方检验
假设检验方法
01 基本原理
03 检验方法 05 代码实现
目录
02 步骤 04 资料检验
卡方检验,是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,包括两个率或两个构成比 比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
基本原理
卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程 度就决定卡方值的大小,如果卡方值越大,二者偏差程度越大;反之,二者偏差越小;若两个值完全相等时,卡 方值就为0,表明理论值完全符合。
卡方检验要求:最好是大样本数据。一般每个个案最好出现一次,四分之一的个案至少出现五次。如果数据 不符合要求,就要应用校正卡方。
谢谢观看
注意:卡方检验针对分类变量。
步骤
(1)提出原假设: H0:总体X的分布函数为F(x). 如果总体分布为离散型,则假设具体为 H0:总体X的分布律为P{X=xi}=pi, i=1,2,... (2)将总体X的取值范围分成k个互不相交的小区间A1,A2,A3,…,Ak,如可取 A1=(a0,a1],A2=(a1,a2],...,Ak=(ak-1,ak), 其中a0可取-∞,ak可取+∞,区间的划分视具体情况而定,但要使每个小区间所含的样本值个数不小于5, 而区间个数k不要太大也不要太小。 (3)把落入第i个小区间的Ai的样本值的个数记作fi,成为组频数(真实值),所有组频数之和 f1+f2+...+fk等于样本容量n。 (4)当H0为真时,根据所假设的总体理论分布,可算出总体X的值落入第i个小区间Ai的概率pi,于是,npi 就是落入第i个小区间Ai的样本值的理论频数(理论值)。
检验方法
第八章卡方分析教学版详解演示文稿
2=3.905
ei= y×N
1 7 24 60 104 130 114 70 31 9 2
• 非参数统计 优点:对资料的没有特殊要求
不受分布的影响(偏态、 分布不明的资料)
不受方差齐性的限制 不受变量类型的影响 不受样本量的影响
缺点:
检验效率低(易犯Ⅱ型错误) 对信息的利用不充分。
因此在二者都可用时,总是用参数检验
一、2检验概述
• 实际应用情况:调查、问卷、访谈等方法中,按性质划分 类别,然后将结果按类计点人数或个数,得到计数数据。
2 24 162 12 162 12 162 6,
16
16
16
df
3 1
2, 查表02.0(5 2)=5.99, 2
2 0.05
,
p
0.02,
所以,推翻原假设,即此项民意测验的态度有显著差异。
例2 某班学生50人,体检结果按一定标准划分为甲、乙、丙三 类,各类人数分别为:甲类16人,乙类24人,丙类10人,问 该班学生的身体状况是否符合正态分布?
170
2
15.38
167
7
12.38
164
22
9.38
161
57
6.38
158
110
3.38
155
124
0.38
152
112
-2.62
149
80
-5.62
146
25
-8.62
143
8
-11.62
140
4
-14.62
N=552, X=154.62, S=5.07
Z=x/S
3.03 2.44 1.85 1.26 0.67 0.07 -0.52 -1.11 -1.70 -2.29 -2.88
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章记数数据统计法—卡方检验法知识引入在各个研究领域中,有些研究问题只能划分为不同性质的类别,各类别没有量的联系。
例如,性别分男女,职业分为公务员、教师、工人、……,教师职称又分为教授、副教授、……。
有时虽有量的关系,因研究需要将其按一定的标准分为不同的类别,例如,学习成绩、能力水平、态度等都是连续数据,只是研究者依一定标准将其划分为优良中差,喜欢与不喜欢等少数几个等级。
对这些非连续等距性数据,要判别这些分类间的差异或者多个变量间的相关性方法称为计数数据统计方法。
卡方检验是专用于解决计数数据统计分析的假设检验法。
本章主要介绍卡方检验的两个应用:拟合性检验和独立性检验。
拟合性检验是用于分析实际次数与理论次数是否相同,适用于单个因素分类的计数数据。
独立性检验用于分析各有多项分类的两个或两个以上的因素之间是否有关联或是否独立的问题。
在计数数据进行统计分析时要特别注意取样的代表性。
我们知道,统计分析就是依据样本所提供的信息,正确推论总体的情况。
在这一过程中,最根本的一环是确保样本的代表性及对实验的良好控制。
在心理与教育研究中,所搜集到的有些数据属于定性资料,它们常常是通过调查、访问或问卷获得,除了少数实验可以事先计划外,大部分收集数据的过程是难于控制的。
例如,某研究者关于某项教育措施的问卷调查,由于有一部分教师和学生对该项措施存有意见,或对问卷本身有偏见,根本就不填写问卷。
这样该研究所能收回的问卷只能代表一部分观点,所以它是一个有偏样本,若据此对总体进行推论,就会产生一定的偏差,势必不能真实地反映出教师与学生对这项教育措施的意见。
因此应用计数资料进行统计推断时,要特别小心谨慎,防止样本的偏倚性,只有具有代表性的样本才能作出正确的推论。
第一节卡方拟合性检验一、卡方检验的一般问题卡方检验应用于计数数据的分析,对于总体的分布不作任何假设,因此它又是非参数检验法中的一种。
它由统计学家皮尔逊推导。
理论证明,实际观察次数(f o)与理论次数(f e),又称期望次数)之差的平方再除以理论次数所得的统计量,近似服从卡方分布,可表示为:这是卡方检验的原始公式,其中当f e越大(f e≥5),近似得越好。
显然f o与f e相差越大,卡方值就越大;f o与f e相差越小,卡方值就越小;因此它能够用来表示f o与f e相差的程度。
根据这个公式,可认为卡方检验的一般问题是要检验名义型变量的实际观测次数和理论次数分布之间是否存在显著差异。
它主要应用于两种情况:卡方检验能检验单个多项分类名义型变量各分类间的实际观测次数与理论次数之间是否一致的问题,这里的观测次数是根据样本数据得多的实计数,理论次数则是根据理论或经验得到的期望次数。
这一类检验称为拟合性检验。
拟合性检验的零假设是观测次数与理论次数之间无差异。
其中理论次数的计算一般是根据某种理论,按一定的概率通过样本即实际观测次数来计算。
这里所说的某种理论,可能是经验规律,也可能是理论分布。
确定理论次数是卡方检验的关键。
拟合性检验自由度的确定与两个因素有关:一是分类的项数,二是在计算理论次数时,所用统计量或约束条件的个数,这两者之差即为自由度。
由于一般情况下,计算理论次数时只用到“总数”这一统计量,所以自由度一般是分类的项数减1。
但在对连续数据分布的配合度检验中,常常会用数据个数、平均数、标准差等统计量来计算理论次数,所以此时的自由度应从总分类项中减去更多的个数。
按照检验中理论次数的定义不同,拟合性检验有以下集中应用。
二、检验无差假设所谓无差假设,是指各项分类的实计数之间没有差异,也就是说各项分类之间的概率相等(均匀分布),因此理论次数完全按概率相等的条件来计算。
即任一项的理论次数都等于总数/分类项数。
因此自由度也就等于分类项数减1。
【例1】随机地将麻将色子抛掷300次,检验该色子的六个面是否均匀。
结果1-6点向上的次数依次是,43,49,56,45,66,41。
解:每个类的理论次数是300/6 = 50,代入公式:因此,在0.05的显著性水平下,可以说这个色子的六面是均匀的。
【例2】随机抽取60名高一学生,问他们文理要不要分科,回答赞成的39人,反对的21人,问对分科的意见是否有显著的差异。
解:如果没有显著的差异,则赞成与反对的各占一半,因此是一个无差假设的检验,于是理论次数为60/2=30,代入公式:所以对于文理分科,学生们的态度是有显著的差异的。
三、检验假设分布的概率这里的假设分布可以是经验性的,也可以是某理论分布。
公式中所需的理论次数则按照这里假设的分布进行计算。
【例3】国际色觉障碍讨论会宣布,每12个男子中,有一个是先天性色盲。
从某校抽取的132名男生中有4人是色盲,问该校男子色盲比率与上述比例是否有显著差异?解:按国际色觉障碍讨论会的统计结果,132人应该有132/12=11人是色盲,剩下的121人非色盲,代入公式有:因此,在0.05和显著性水平下,该校男子色盲比率与国际色觉障碍讨论会的统计结果有显著差异,显然根据比例可知该校的色盲率小于国际色觉障碍讨论会的统计结果。
【例4】在英语四级考试中,某学生做对了80个四择一选择题中的28题,现在要判断该生是否是完全凭猜测做题。
解:假如该生完全凭猜测做题,那么平均而言每道题做对的可能性是1/4,因此80个题中平均而能做对80/4=20题,代入公式有:因此,该生可能会做一些题。
四、连续变量分布的拟合性检验对于一组连续数据,经常需要对其次数分布究竟服从哪种理论分布进行探讨,这一方面的主要应用就是在前面经常所提到的总体正态性检验。
首先要将测量数据整理成次数分布表和画出次分布图,并据此选择恰当的理论分布。
这些理论分布是多种多样的,例如有正态分布、均匀分布等。
然后根据选择的理论分布计算出理论次数,就可以计算卡方统计量并进行显著性检验了。
若差异显著,说明所选择的理论分布不合适,可以再选一个理论分布进行检验,直至完全拟合。
当然有时也只需检验是否与某确定的理论分布相符,如正态性检验(参见教材有关内容)。
对连续随机变量分布的吻合性检验,关键的步骤是计算理论次数与确定自由度。
理论次数的计算是按所选理论分布规律,并利用观测数据的有关统计量来计算各分组(次数分布表中)理论次数。
自由度则是用分组数减去计算理论次数时所用统计量的数目。
这种拟合性检验计算较为繁琐,不做要求。
五、小理论次数时的连续性校正卡方检验中,当某分类理论次数小于5时,卡方统计量不能很好地满足卡方分布,此时需要对卡方统计量进行校正,称为卡方的连续性校正,其公式如下:尽管采用此方法校正后,卡方统计量能较为接近卡方分布,不过我们仍然建议在实际中最好增大样本的容量,尽量减少出现这种不大服从理论分布的情况。
第二节独立性检验卡方检验还可以用于检验两个或两个以上因素(各有两项或以上的分类)之间是否相互影响的问题,这种检验称为独立性检验。
例如要讨论血型与性格的关系,血型有A、B、AB、O四类,性格采用心理学上的A型性格来划分,即有A型和B型两种,每个人可能是它们之间交叉所形成的8种类型中的一种,那么倒底它们之间有不有关系,就可以用卡方独立性检验。
卡方独立性检验用于检验两个或两个以上因素(各有两项或以上的分类)之间是否相互影响的问题。
所谓独立,即无关联,互不影响,就意味着一个因素各个分类之间的比例关系,在另一个因素的各项分类下都是相同的,比如在血型与性格关系中,如果A型性格人群中各血型的比例关系,与B型性格人群中各血型的比例关系相同,就可能说血型与性格相互独立,当然这里的“两者比例相同”在统计的意义下,应表述为“两比例差异不超过误差范围”,因为就算总体之间相互独立,收集到两个比例完全相同的样本的可能是很小很小的,甚至是不可能的。
相反,若一个因素各个分类之间的比例关系,在另一个因素的各项分类下是不同的,则它们之间相关。
假如A型性格中A型血的比例高于B型性格中A型血的比例,而且达到显著水平,那么就可以说血型与性格之间相关,不相互独立。
卡方独立性检验的零假设是各因素之间相互独立。
因此理论次数的计算也是基于这一假设,具体计算时,采用列联表的方式,后面将举例说明。
【例1】某校对学生课外活动内容进行调查,结果整理成下表,表中彩色格子里的数是原始数据的汇总数,括号内的数是理论次数(是按下面将要介绍的原理计算得来的),此外的是原始数据。
性别(因素2)课外活动内容(因素1)小计和(fx) 体育文娱阅读男生21(15.3) 11(10.2) 23(29.5) 55女生 6(11.7) 7(7.8) 29(22.5) 42小计和(fy) 27 18 52 97由于所有学生参加三项活动的比例是27:18:52,因此如果课外活动的选择与性别没有关系的话,男女生参加这三项活动的比例也应是这同一比例,而男女各自的人数可以计算,所以每格内的理论次数的计算方法如下:男生中参加体育活动的理论人数:55×27/97=15.3参加文娱活动的理论人数:55×18/97=10.2参加阅读活动的理论人数:55×52/97=29.5女生中参加体育活动的理论人数:42×27/97=11.7参加文娱活动的理论人数:42×18/97= 7.8参加阅读活动的理论人数:42×52/97=22.5我们将行列的小计和分别用f x和f y来表示,总人数用N 来表示时,上述计算理论次数的方法可以表示为:fe ij = fx i× fy j/N所以,卡方独立性检验的公式可以表示如下,其中最后一个式子比较便于计算,fxy 表示每格的原始数据。
由于在计算理论次数时,用了按每个因素分类的小计和(fx 和fy,其个数分别记为R 个和C 个),和总和N ,而总和又可由按每个因素分类的小计和计算得来,因此若从总分类个数R×C中减去R+C,则将总和重复减去了,因此要补1 个自由度回来,所以最终独立性检验的自由度表示为:上述例题最终计算得:或者:这两个公式的计算结果有一点点差异,这完全是计算误差即四舍五入引起的。
df = (3-1)(2-1) = 2,而χ20.05(2) = 5.99,所以在0.05的显著性水平下,拒绝零假设,即可以认为性别与课外活动内容有关联,或者说男女生在选择课外活动上存在显著的差异。
四格表独立性检验对于两个都只作两项分类的因素,它们的数据整理成的是一个2×2 的表格,一般称为四格表,对于四格表教材里给出了一个更简洁的公式:公式中,a、b、c、d的规定要求是a和d必须呈对角线。
该公式的含义非常明确,即当对角线单元格中的次数差异越大时,卡方检验越容易显著,自然也就意味着两变量间的关联越密切。
掌握了一般的R*C表计算后,四格表计算相对简单地多。