频谱分析仪知识
频谱分析仪基础知识-性能指标及实用技巧
频谱分析仪基础知识性能指标及实用技巧频谱分析仪是用来显示频域信号幅度的仪器,在射频领域有“射频万用表”的美称。
在射频领域,传统的万用表已经不能有效测量信号的幅度,示波器测量频率很高的信号也比较困难,而这正是频谱分析仪的强项。
本讲从频谱分析仪的种类与应用入手,介绍频谱分析仪的基本性能指标、操作要点和使用方法,供初级工程师入门学习;同时深入总结频谱分析仪的实用技巧,对频谱分析仪的常见问题以Q/A的形式进行归纳,帮助高级射频的工程师和爱好者进一步提高。
频谱分析仪的种类与应用频谱分析仪主要用于显示频域输入信号的频谱特性,依据信号处理方式的差异分为即时频谱分析仪和扫描调谐频谱分析仪两种。
完成频谱分析有扫频式和FFT两种方式:FFT适合于窄分析带宽,快速测量场合;扫频方式适合于宽频带分析场合。
即时频谱分析仪可在同一时间显示频域的信号振幅,其工作原理是针对不同的频率信号设置相对应的滤波器与检知器,并经由同步多工扫瞄器将信号输出至萤幕,优点在于能够显示周期性杂散波的瞬时反应,但缺点是价格昂贵,且频宽范围、滤波器的数目与最大多工交换时间都将对其性能表现造成限制。
扫瞄调谐频谱分析仪是最常用的频谱分析仪类型,它的基本结构与超外差式接收器类似,主要工作原理是输入信号透过衰减器直接加入混波器中,可调变的本地振荡器经由与CRT萤幕同步的扫瞄产生器产生随时间作线性变化的振荡频率,再将混波器与输入信号混波降频后的中频信号放大后、滤波与检波传送至CRT萤幕,因此CRT萤幕的纵轴将显示信号振幅与频率的相对关系。
基于快速傅立叶转换(FFT)的频谱分析仪透过傅立叶运算将被测信号分解成分立的频率分量,进而达到与传统频谱分析仪同样的结果。
新型的频谱分析仪采用数位方式,直接由类比/数位转换器(ADC)对输入信号取样,再经傅立叶运算处理后而得到频谱分布图。
频谱分析仪透过频域对信号进行分析,广泛应用于监测电磁环境、无线电频谱监测、电子产品电磁兼容测量、无线电发射机发射特性、信号源输出信号品质、反无线窃听器等领域,是从事电子产品研发、生产、检验的常用工具,特别针对无线通讯信号的测量更是必要工具。
频谱分析仪知识概述
频谱分析仪知识一、概述(一)用途频谱分析仪是频域测试领域使用最广泛的一类仪器,可以测量连续波、脉冲及调制等多种信号的频谱,可以测试信号的频率、功率、带宽、调制等参数,增加选件可以进行相位噪声、噪声系数、信道功率、矢量信号、网络参数、故障定位、电磁兼容等测试分析,广泛应用于通信、雷达、导航、频谱管理、信号监测、信息安全等测试领域,还可以用于电子元器件、部件和设备的科研、生产、测试、试验以及计量等。
(二)分类与特点频谱分析仪按其工作原理可分为非实时频谱分析仪和实时频谱分析仪两大类。
●非实时频谱分析仪特点非实时频谱分析仪按工作原理分为扫描调谐型、超外差型等,它们首先对输入信号按时间顺序进行扫描式调谐变频,然后对变频后的信号进行中频滤波、包络检波、视频滤波等处理,最终得到信号的频谱信息。
这种扫描式频谱分析仪在某一瞬间只能“观看”一个频率,逐次“观看”待测信号的全部频率范围,因此,它们只能分析在规定时间内频谱几乎不变化的周期重复信号。
但是,扫本振型超外差式频谱分析仪具有频率范围宽、选择性好、灵敏度高、动态范围大等多项优点,是目前用途最广泛的一类频谱分析仪。
●实时频谱分析仪特点实时频谱分析仪通过FFT变换,能同时观测显示其规定频率范围内所有频率分量,而且保持了两个信号间的时间关系(相位关系),使得它不仅能分析周期信号、随机信号,而且能分析瞬时信号和猝发信号。
实时触发、无缝捕获和多域分析是实时频谱分析仪的几个主要特点。
实时频谱分析仪可以很好地解决现代雷达和通信系统中出现的脉冲压缩、捷变频、直扩、跳频、码分多址和自适应调制等各种复杂信号的测试需求。
频谱分析仪按其结构形式可分为台式、便携式、手持式和模块(VXI、PCI、PXI、LXI等总线形式)等类型产品。
(三)产品国内外现状国内生产频谱分析仪的厂家主要有:中国电子科技集团41所、成都前锋电子、天津德力、北京普源精电、安泰信电子、苏州同创电子等单位。
中国电子科技集团41所拥有台式、便携式、手持式和模块产品,频率范围覆盖3Hz~50GHz(通过外扩频方式可到110GHz)。
频谱分析仪原理
频谱分析仪原理
频谱分析仪是一种用于分析信号频谱特性的测量仪器。
它可以将复杂的信号分解成不同频率的成分,并以图形的方式显示出来。
频谱分析仪的原理是基于信号的傅里叶变换。
傅里叶变换是一种将时域信号转换为频域信号的数学方法。
通过对信号进行傅里叶变换,可以将信号分解成各个不同频率的正弦波或余弦波成分。
频谱分析仪中最常用的测量方法是快速傅里叶变换(FFT)。
FFT是一种高效的算法,可以快速地计算出信号的频谱。
它将连续的信号按一定的时间窗口进行采样,并对采样数据进行离散傅里叶变换,得到信号的频谱图。
在频谱分析仪中,采集到的信号首先经过放大器进行增益放大,然后通过模数转换器(ADC)将连续的模拟信号转换为离散
的数字信号。
接着,数字信号经过FFT算法进行处理,得到
信号的频谱数据。
频谱分析仪通常使用显示器来显示信号的频谱图。
频谱图通常以频率为横轴,以信号的幅度或功率为纵轴。
通过观察频谱图,可以分析信号的频率分布情况,了解信号的频率成分和强度。
除了显示频谱图外,频谱分析仪还可以对信号进行其他的测量和分析。
例如,可以测量信号的谐波失真、信噪比、频率稳定性等指标,以评估信号的质量和稳定性。
总之,频谱分析仪通过对信号进行傅里叶变换,将信号分解成不同频率的成分,并以图形的方式显示出来。
它是一种重要的工具,用于分析和评估各种信号的频谱特性。
频谱分析仪基础知识
频谱分析仪基础知识一、频谱分析仪概述频谱分析仪是一种用于测量信号频率和功率的仪器。
它可以将输入信号转换为频率谱,以图形方式显示信号的频率成分。
频谱分析仪广泛应用于电子、通信、雷达、声音和医疗等领域。
二、频谱分析仪工作原理频谱分析仪的工作原理是将输入信号通过混频器与本振信号进行混频,得到中频信号,再经过中频放大器放大后送入检波器进行解调,最后通过显示器将频率谱显示出来。
三、频谱分析仪主要技术指标1、频率范围:指频谱分析仪能够测量的频率范围。
2、分辨率带宽:指能够分辨出的最小频率间隔。
3、扫描时间:指从低频到高频一次扫描所需的时间。
4、灵敏度:指能够检测到的最小信号幅度。
5、非线性失真:指由于仪器内部非线性元件所引起的信号失真。
6、动态范围:指能够同时测量到的最大和最小信号幅度。
7、抗干扰能力:指仪器对外部干扰信号的抵抗能力。
四、频谱分析仪使用注意事项1、使用前应检查仪器是否正常,如发现异常应立即停止使用。
2、避免在强电磁场中使用,以免影响测量结果。
3、使用过程中应注意避免信号源与仪器之间的干扰。
4、使用完毕后应关闭仪器,并妥善保管。
五、总结频谱分析仪是电子、通信等领域中非常重要的测量仪器之一。
它可以将输入信号转换为频率谱,以图形方式显示信号的频率成分。
在使用频谱分析仪时,应注意检查仪器是否正常、避免在强电磁场中使用、避免信号源与仪器之间的干扰以及使用完毕后应关闭仪器等事项。
了解频谱分析仪的工作原理及主要技术指标,对于正确使用它进行测量和调试具有重要意义。
随着科技的快速发展,频谱分析在电子、通信、航空航天等领域的应用越来越广泛。
频谱分析仪作为频谱分析的核心工具,在科研和工业生产中发挥了重要的作用。
本文将介绍频谱分析原理、频谱分析仪使用技巧,以及如何根据输入的关键词和内容撰写文章。
频谱分析是指将信号分解成不同频率的正弦波成分,并分析这些成分的幅度、相位、频率等特性的一种方法。
频谱分析可以用于测量信号的频率范围、识别信号中的谐波成分、了解信号的调制方式和判断信号的来源等。
史上最好的频谱分析仪基础知识(收藏必备)
频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。
信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。
频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。
利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。
现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。
新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。
在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。
有两种技术方法可完成信号频域测量(统称为频谱分析)。
1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。
这种仪器同样能分析周期和非周期信号。
FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。
2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。
v1.0 可编辑可修改图1 信号的频域分析技术快速傅立叶变换频谱分析仪快速傅立叶变换可用来确定时域信号的频谱。
信号必须在时域中被数字化,然后执行FFT算法来求出频谱。
一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。
频谱分析仪基础解析
1.频谱分析的基本概念 2. 频谱分析仪的基本原理 3. 频谱分析仪的基本指标 4. 影响频谱分析仪性能的因素
信号与频谱分析基本概念
信号的波形信息
信号的频域信息
信号的矢量域信息
2Hale Waihona Puke 示波器实现时域信号的实时测量,可以测量信 号的幅度,峰峰值,有效值,平均值,上升时 间,下降时间,周期,频率,脉冲宽度,脉冲 周期,脉冲超调量,振铃,稳态幅度,数字信 号的眼图,以及其它一些波形细节参数,是宽 带测量仪器,示波器的带宽,数字示波器的AD 采样频率决定了测量信号的最大带宽。
相位噪声显示和分辨率带宽RBW的设置有关。
本振相位噪声在频域上表现为信号频谱的噪声边带
2020/11/7
频谱仪测试的灵敏度
2020/11/7
影响频谱仪灵敏度的主要因素
衰减器设置
衰减器设置值 越大,噪声电 平越高。
2020/11/7
影响频谱仪灵敏度的主要因素
RBW
噪声电平随RBW按照
10logRBW1/RBW2
幅度
测量输入信号的动态范围- 可以测量的最大信号和最小信号 20log10(Vmax/Vmin)或者10log10(Pmax/Pmin)
灵敏度-可以检测的最小信号的功率 内部失真-可以检测的最大信号的功率
测试精度 幅度精度 频率精度
扫描速度
2020/11/7
频谱仪的主要性能指标
2020/11/7
频谱仪的主要参数设置
2020/11/7
非线性引起失真信号的变化规律
为减小频谱仪内部失真,混频器应尽量工作在低电平,应加大衰减 值。
2020/11/7
无失真测试动态范围
在内部失真和噪声电平之间进行折中。
射频基础知识点
一、频谱分析仪部分什么是频谱分析仪?频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。
我们现在所用的频谱仪大部分是扫频调谐超外差频谱分析仪.频谱仪工作原理输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF).LO的频率由扫频发生器控制。
随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。
然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。
随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。
该迹线示出了输入信号在所显示频率范围内的频率成分。
输入衰减器保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真.混频器完成信号的频谱搬移,将不同频率输入信号变换到相应中频.在低频段(<3G Hz)利用高混频和低通滤波器抑制镜像干扰;在高频段(>3GHz)利用带通跟踪滤波器抑制镜像干扰。
本振(LO)它是一个压控振荡器,其频率是受扫频发生器控制的。
其频率稳定度锁相于参考源。
扫频发生器除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。
扫频宽度(Span)是从左fstart到右fstop10格的频率差,例如:Span=1MHz,则100kHz/div.中频放大器其增益和衰减器设置值连动工作,即当输入衰减10dB时,则中频增益同时增加10dB,使输入信号电平保持不变。
屏幕顶格线参考电平间接设置中频增益值.当参考电平↑(或↓)10dB,则增益↓(或↑)使信号↓移(或↑移)10dB,即改变信号显示位置,但信号幅度保持不变。
频谱仪原理及使用方法
频谱仪原理及使用方法频谱仪是一种用来分析信号频谱的仪器,它能够将信号的频谱分解为不同频率成分的幅度或相位信息,从而提供了对信号频谱特性的详细了解。
频谱仪广泛应用于无线通信、音频处理、雷达系统、天文观测等领域。
一、频谱仪原理:频谱分析基于信号的傅里叶分析原理,将时域中的信号转换为频域中的频谱信息。
频谱仪的工作原理主要包括三个步骤:采样、转换和显示。
1.采样:频谱仪通过将信号进行采样,将连续的时域信号转化为离散的时序数据。
采样定理要求采样率必须大于信号的最大频率,以确保不会发生混叠现象。
2.转换:采样的信号需要通过电子转换器进行模拟到数字的转换。
最常见的转换方式是快速傅里叶变换(FFT),它可以将时域信号转换为频域信号。
3.显示:转换后的频域数据通过显示单元在频谱仪的屏幕上进行显示。
频谱仪通常可以显示频谱的幅度信息或相对相位信息,用户可以根据实际需要选择不同的显示模式。
二、频谱仪使用方法:1.连接设备:首先将待分析的信号源与频谱仪相连,可以通过电缆连接、无线连接等方式进行。
2.设置参数:根据需要设置频谱仪的采样率、带宽、分辨率等参数。
采样率和带宽的选择需根据信号的特点进行调整,以保证能够正确捕获信号的频谱信息。
3.观测目标:确定待测信号的特点和需求,如频率范围、幅度范围等。
根据实际需求选择适当的显示模式和触发模式,并调整触发电平、触发延时等参数。
4.分析信号:开始对信号进行分析,根据实际需要选择合适的时间窗口、分辨率、峰值保持等参数,以获取准确的频谱信息。
5.解读结果:根据频谱仪显示的频谱图,观察信号的频率分布和幅度特征。
可以通过缩放、平移、峰值等功能,对结果进行详细的分析和解读。
6.数据处理:对采集到的频谱数据进行处理,可以进行谱线拟合、峰值提取、频偏校正等操作,得到更准确的频谱信息。
7.存储和输出:频谱仪通常具有数据存储和输出功能,可以将频谱数据保存到存储器中,并通过接口将数据输出到计算机或其他设备进行后续处理或记录。
频谱分析仪的几大技术指标及解决方案
频谱分析仪的几大技术指标及解决方案频谱分析仪的几大技术指标频谱分析仪用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。
频谱分析仪的几大技术指标1、输入频率范围指频谱仪能够正常工作的最大频率区间,以HZ表示该范围的上限和下限,由扫描本振的频率范围决议,现代频谱仪的频率范围通常可从低频段至射频段,甚至微波段,如1KHz~4GHz,这里的频率是指中心频率,即位于显示频谱宽度中心的频率。
2、辨别力带宽指辨别频谱中两个相邻重量之间的最小谱线间隔,单位是HZ,它表示频谱仪能够把两个彼此靠得很近的等幅信号在规定低点处辨别开来的本领,在频谱仪屏幕上看到的被测信号的谱线实际是一个窄带滤波器的动态幅频特性图形(仿佛钟形曲线),因此,辨别力取决于这个幅频生的带宽,定义这个窄带滤波器幅频特性的3dB带宽为频谱仪的辨别力带宽。
3、灵敏度指在给定辨别力带宽、显示方式和其他影响因素下,频谱仪显示最小信号电平的本领,以dBm、dBu、dBv、V等单位表示,超外差频谱仪的灵敏度取决于仪器的内噪声,当测量小信号时,信号谱线是显示在噪声频谱之上的,为了易于从噪声频谱中看清楚信号谱线,一般信号电平应比内部噪声电平高10dB,另处,灵敏度还与扫频速度有关,扫频速度赶快,动态幅频特性峰值越低,导致灵敏度越低,并产生幅值差。
4、动态范围指能以规定的精准度测量同时显现在输入端的两个信号之间的最大差值,动态范围的上限爱到非线性失真的制约,频谱仪的幅值显示方式有两种:线性的对数,对数显示的优点是在有限的屏幕有效的高度范围内,可获得较大的动态范围,频谱仪的动态范围一般在60dB以上,有时甚至达到100dB以上。
5、频率扫描宽度(Span)另有分析谱宽、扫宽、频率量程、频谱跨度等不同叫法。
通常指频谱仪显示屏幕最左和最右垂直刻度线内所能显示的响应信号的频率范围(频谱宽度),依据测试需要自动调整,或人为设置,扫描宽度表示频谱仪在一次测量(也即一次频率扫描)过程中所显示的频率范围,可以小于或等于输入频率范围,频谱宽度通常又分为三种模式:①全扫频:频谱仪一次扫描它的有效频率范围;②每格扫频:频谱仪一次只扫描一个规定的频率范围,用每格表示的频谱宽度可以更改;③零扫频频率宽度为零,频谱仪不扫频,变成调谐接收机;6、扫描时间(Sweep Time,简作ST)即进行一次全频率范围的扫描、并完成测量所需的时间,也叫分析时间,通常扫描时间越短越好,但为保证测量精度,扫描时间必需适当,与扫描时间相关的因素紧要有频率扫描范围、辨别率带宽、视频滤波,现代频谱仪通常有多档扫描时间可选择,最小扫描时间由测量通道的电路响应时间决议。
《频谱分析仪讲》课件
航空航天
在航空航天领域, 频谱分析仪被广泛 应用于飞行器通信 和雷达系统的频谱 分析和故障诊断。
电磁兼容性 测试
频谱分析仪可以用 于评估电磁兼容性, 检测和分析电子设 备之间的干扰情况。
音频分析
音频分析包括音频 信号的频谱分布、 谐波失真、杂散和 噪声等特性的分析。
五、频谱分析仪的市场现状与趋势
1 全球频谱分析仪市
分析范围不足
分析范围可以通过选用具有更大频率范围的 频谱分析仪来解决。
信号干扰
信号干扰可能会影响频谱分析结果,可以通 过优化测量环境、屏蔽干扰源等方式来解决。
校准问题
频谱分析仪的校准非常重要,可以定期进行 校准或选择具备自动校准功能的仪器。
七、总结与展望
频谱分析仪的发展 历程
频谱分析仪经过多年的发展, 已经成为电子测量领域中不 可或缺的重要工具。
未来发展方向
未来频谱分析仪将继续向更 高频率、更高精度、更智能 化的方向发展。
重点关注领域
未来频谱分析仪在5G通信、 物联网、射频芯片等领域将 发挥重要作用。
Res BW、VID BW、 RBW
Res BW指的是分辨带宽, VID BW指的是视频带宽, RBW指的是实时带宽。
信噪比、动态范围、 相位噪声
这些参数描述了频谱分析 仪的性能,包括信号与噪 声的比例、动态范围以及 相位噪声水平。
四、频谱分析仪的典型应用
无线电通信
频谱分析仪用于无 线电通信系统的频 谱监测、无线电干 扰分析等应用。
《频谱分析仪讲》PPT课 件
#ห้องสมุดไป่ตู้频谱分析仪讲
一、频谱分析仪的基本概念
频谱分析仪的定义
频谱分析仪是一种测量电信号频谱分布的仪器,用于分析信号的幅度和频率特性。
频谱分析仪培训资料
2023-11-10contents •频谱分析仪基础知识•频谱分析仪操作方法•频谱分析仪高级应用•频谱分析仪维护与保养•常见问题及解决方案•实际应用案例分享目录频谱分析仪基础知识频谱分析仪简介频谱分析仪是一种用于测量信号频率、幅度和相位等参数的电子测试仪器。
它能够将输入信号按照频率进行分解,并测量每个频率分量的幅度和相位等信息。
频谱分析仪广泛应用于雷达、通信、电子对抗、电子侦察等领域。
频谱分析仪的工作原理将输入信号通过混频器与本振信号进行混频,得到一系列中频信号,再经过中放和检波等处理后得到频域数据。
通过FFT技术对中频信号进行处理,得到频域数据,从而得到输入信号的频率、幅度和相位等信息。
频谱分析仪通常采用快速傅里叶变换(FFT)技术对输入信号进行频谱分析。
频谱分析仪的种类和用途频谱分析仪按照工作原理可以分为实时频谱分析仪和扫频式频谱分析仪等。
实时频谱分析仪可以实时监测信号的变化,适用于雷达、通信等领域的信号监测和分析。
扫频式频谱分析仪可以对一定范围内的频率进行扫描测量,适用于电子对抗、电子侦察等领域。
频谱分析仪操作方法连接设备030201启动频谱分析仪调整设置选择测量模式根据测试需求,设置合适的扫描范围、分辨率带宽等参数。
设置扫描参数设置显示参数观察实时数据在显示器上观察实时测量数据,记录需要的数据。
开始测量按下测量按钮,开始进行信号测量。
分析数据根据测量结果,进行分析和计算,得出结论。
记录和分析数据频谱分析仪高级应用频率范围分辨率带宽设置频率范围和分辨率带宽信号质量信号稳定性观察信号的质量和稳定性频率分析对信号进行频率分析,包括频率成分、谐波分量、调制频率等参数的测量和分析。
模式识别通过对信号的特征提取和模式识别,对信号进行分类和鉴别,对于未知信号,可以通过模式识别技术进行信号源的判断和识别。
进行频率分析和模式识别频谱分析仪维护与保养清洁和保养内部部件检查和更换部件检查射频系统检查机械部件检查光学系统03避免极端温度存储和运输注意事项01存储环境02运输防护常见问题及解决方案如何解决无法启动的问题?电源故障检查电源插头是否牢固连接在电源插座上,确保电源线不损坏。
频谱仪
(实验一)频谱分析仪的原理与使用1、工作原理及应用:A、频谱分析仪是关于信号的频域的测量,在它的显示屏幕上,它的横座标显示的是信号的频率,而纵座标显示的是信号的强度值,一台高性能的频谱分析仪能够测量电路中或空间电信号的频率及强弱,信号的质量,是否失真(主要是通过观测信号的谐波成份),B、而示波器是关于信号的时域范围的测量,它可以测量信号的不同时刻的轨迹(波形)。
那么,在电子测量中,频谱分析仪在那种情况使用呢。
由于频谱分析仪测量灵敏度高(例A T5010最低能测到2.24uv,甚至更低,一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。
),基于这一特点,它广泛应用于无线通信设备的检测和维修上。
C、例如,政府的无线电管理委员会为了管理城市的无线电波的频率、功率(他们的工作被称为空间无线信道的交警),经常开着安装有频谱仪的工作车在城市里测量各单位的无线设备的频率是否合法、功率、谐波是否超标,而各移动通信公司也用频谱仪来测量发射设备的工作是否正常.D、通讯发射机以及干扰信号的测量和频谱的监测,器件的特性分析(如发射器材中的功率放大器、调制解调器、各种滤波器及振荡电路)等等,各行各业、各个部门对频谱分析仪应用的侧重点也不尽相同。
F、在维修手机不入网故障时,经常需要测量手机主电路板的13MHz基本时钟信号。
一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。
然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。
同时它还可以判断信号,特别是VCO信号是否纯净。
可见频谱分析仪在手机维修过程中是十分重要的。
2.性能指标(1)频率频率范围:0.15—1050MHz中心频率显示精度:士lOOkHz频率显示分辨率:lOOkHz扫频宽度:100kHz/格—100MHz/格中频带宽(一3dB):400kHz和20kHz扫描速度:43Hz(2)幅度幅度范围:一100~+13dBm屏幕显示范围:80dBm(10dB/格)参考电平:一27-13dBm(每级10dB)平均噪声电平:一99dBm3.安泰5011+ 频谱分析仪功能介绍安泰5010频谱分析仪面板功能示意图如图4-4所示。
频谱分析仪使用方法说明书
频谱分析仪使用方法说明书一、引言频谱分析仪是一种用于分析信号频谱的仪器,广泛应用于无线通信、电子设备测试、音频视频处理等领域。
本说明书旨在详细介绍频谱分析仪的使用方法,帮助用户正确操作并快速掌握相关知识。
二、仪器概述频谱分析仪由主机和附件组成,主机包含显示屏、控制按钮和接口等。
附件包括电源适配器、电缆和天线等。
在使用前,请确保已正确连接各部分,并确认仪器处于正常工作状态。
三、基本操作1. 打开仪器电源:将电源适配器插入电源插座,然后将电源线与仪器连接。
按下电源按钮,等待仪器启动完成。
2. 调整显示参数:通过屏幕上的触控按钮或旋钮,设置显示模式、分辨率、屏幕亮度等参数,以满足实际需求。
3. 设置信号源:将待测信号源通过电缆连接至仪器的输入接口。
根据信号源的特性,设置输入衰减、频率范围等参数。
4. 进行测量:点击仪器界面上的测量按钮开始频谱分析。
在分析过程中,可以通过调整参数、切换模式等进行实时监测和分析。
5. 结果保存:测量完成后,可以将结果保存至仪器内部存储器或外部存储设备中。
按照仪器的操作指南,选择存储路径和文件名,并确认保存。
四、高级功能1. 信号捕获与回放:频谱分析仪具备信号捕获和回放功能,可以捕获待测信号并进行离线分析,或回放已保存的信号数据进行再次分析。
2. 频谱监测与报警:设置仪器的频谱监测功能,即可实时监测特定频段内的信号活动,并设置相应的报警条件和方式,以便及时发现异常情况。
3. 扩展功能:根据具体型号和配置,频谱分析仪还可提供其他扩展功能,例如无线通信协议解码、频率校准等。
请参照相关文档和操作指南,了解和使用这些功能。
五、常见问题与解决方法1. 仪器无法启动:检查电源适配器和电源线是否接触良好,确认电源插座是否正常工作。
2. 仪器无法检测到信号:检查信号源的连接是否正确,确认输入接口的设置是否符合信号源的要求。
3. 测量结果不准确:可能是由于环境干扰、输入参数设置错误等原因导致。
频谱仪的原理与使用
•
SAVE:存储.状态与轨迹.
•
RECALL:取回.
•
MEAS/USER:用户测量中,有一个功能能快速测出
•
3dB带宽.在 N dB PTS ON OFF中可直
•
接测出 N dB 带宽读数.
34
2.15 HP8594E操作手册
• 使用注意事项: • A. HP8594E配两个N(J)/BNC(f)转接头.保护仪器N型接头. • 附带一根BNC(M)--BNC(M)连线,用于校准用.
REF LVE,直到信号显示在参考电平下一格为宜.
31
2.12 HP8594E操作手册
• 5.跟踪源输出电平:
•
选择仪器右边上面AUX CTRL,再选TRACK GEN,之后选SRC PWR ON OFF,
屏幕显示SRC POWER -10dBm.即TG输出为-10dBm.改变数值即可改变TG输出值.
•
marker 1 on off,more 1 of 2-
• TIP
marker trace Auto ABC ,marker read F
• MKR : CF , REF Lvl, cf step, span, minium
• MKR FCTN:Trace on off,mak count on off,mak table on off,
• B.仪器最大输入功率为+30dBm,但在使用时,INPUT 端口务必外接相应衰减器.RF OUT端口也应接衰减器.
• • C.一般来说,当RES BW.VBW,设置为自动时,读数较为准确.当RES BW,VBW及
SPAN改变时,会带来相应不确定度.本仪器RBW改变时不确定度+0.5dB,当测量时请 注意这一点. • • D.本公司为仪器配置测试线BNC(J)--N(J)1.1米两根.30dB衰减器两个.请注意爱护.
频谱分析仪培训
频谱分析仪培训标题:频谱分析仪培训引言频谱分析仪是一种用于信号分析和频谱测量的电子测试设备,广泛应用于无线通信、电子工程、雷达系统等领域。
为了提高工程师和技术人员在实际工作中的频谱分析仪操作技能,本培训旨在提供全面、系统的频谱分析仪知识,帮助学员熟练掌握频谱分析仪的使用方法和技巧。
第一章:频谱分析仪的基本原理1.1 频谱分析仪的定义频谱分析仪是一种用于测量和分析电磁波频谱特性的电子测试设备,能够显示信号的幅度、频率、相位等参数。
1.2 频谱分析仪的工作原理频谱分析仪通过接收输入信号,对其进行频率分析,并将分析结果以图形或数据形式显示出来。
其核心部分包括:射频前端、本振、混频器、滤波器、检波器、显示单元等。
第二章:频谱分析仪的操作与使用2.1 频谱分析仪的硬件连接(1)连接射频电缆:将待测信号通过射频电缆连接至频谱分析仪的输入端口。
(2)连接外部设备:如计算机、打印机等,以便于数据传输和结果打印。
2.2 频谱分析仪的软件设置(3)设置中心频率:根据待测信号的频率范围,设置合适的中心频率。
(4)设置分辨率带宽:选择合适的分辨率带宽,以获得所需的频谱分辨率。
(5)设置参考电平:根据待测信号的幅度,设置合适的参考电平。
2.3 频谱分析仪的测量与数据分析(6)进行频谱测量:启动频谱分析仪,对输入信号进行测量。
(7)分析测量结果:观察频谱分析仪显示的频谱图,分析信号的幅度、频率、相位等参数。
第三章:频谱分析仪的应用实例3.1 无线通信系统测试利用频谱分析仪对无线通信系统的信号进行测试,分析信号的频率、幅度、调制方式等参数,以确保通信系统的正常运行。
3.2 雷达系统测试利用频谱分析仪对雷达系统的发射和接收信号进行测试,分析信号的频率、幅度、相位等参数,以评估雷达系统的性能。
3.3 电子设备干扰分析利用频谱分析仪对电子设备产生的干扰信号进行测试,分析干扰信号的频率、幅度等参数,以找出干扰源并进行整改。
第四章:频谱分析仪的维护与保养4.1 保持设备清洁:定期清洁频谱分析仪的外壳和接口,防止灰尘和污垢影响设备性能。
频谱分析仪原理
频谱分析仪原理
频谱分析仪是一种用来测量信号频谱分布的仪器。
它基于傅里叶变换的原理,将时域信号转换为频域上的能量分布。
其工作原理主要包括以下几个步骤:
1. 采样:首先,频谱分析仪对待测信号进行采样,将连续的信号转换为离散的样本点。
2. 加窗:为了避免频谱泄露和干扰,对采样得到的样本数据进行窗函数处理。
窗函数可以减少信号末端样本的突变,提高频谱分辨率。
3. 傅里叶变换:采用傅里叶变换算法,将时域信号转换为频域上的能量分布。
这可以通过离散傅里叶变换(DFT)或快速傅里叶变换(FFT)实现。
4. 数据处理:对傅里叶变换的结果进行幅度和相位的计算,得到频谱图。
通常,频谱图以频率为横轴,能量或幅度为纵轴进行表示。
5. 显示和分析:最后,频谱分析仪将频谱图以图形的形式显示出来,便于用户对信号频谱进行直观的观察和分析。
用户可以根据频谱图上不同频率分量的能量分布,进行信号的频率测量、信号波形恢复、噪声干扰分析等应用。
总的来说,频谱分析仪的工作原理是通过采样、加窗和傅里叶变换等步骤,将时域信号转换为频域上的能量分布,从而实现
对信号频谱分布的测量与分析。
通过频谱分析,可以获取信号在不同频率上的能量分布情况,为用户提供有关信号特性和干扰情况的重要信息。
频谱分析仪基础知识-史上最好的
史上最好的频谱分析仪基础知识(收藏必备)前言频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。
信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。
频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。
利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。
现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。
新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。
在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。
有两种技术方法可完成信号频域测量(统称为频谱分析)。
1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。
这种仪器同样能分析周期和非周期信号。
FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。
2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。
图1 信号的频域分析技术快速傅立叶变换频谱分析仪快速傅立叶变换可用来确定时域信号的频谱。
信号必须在时域中被数字化,然后执行FFT算法来求出频谱。
一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Increase input attenuate will add noise floor
Local oscillator (LO)
Frequency sweeping Modern Spectrum Analyzers use YIG(Ytrium Iron Garnet) circuits as the 1st Local Oscillator A ramp is used to control the oscillator frequency ( I F ) and horizontal sweep of CRT
Input filter
IF Filter
Effects of RBW on Signal & Noise Floor
When selectivity = 15
When selectivity = 15
When selectivity = 10
Three stages of IF converter
實驗項目: 實驗項目 Video filter Bandwidth , VBW
Change Video filter Bandwidth : A wide video filter , the variance in the noise is quite large . With a narrower video filter , the variance is reduced considerably . Note that the average value of the measured noise remains the same , only the variation in the noise is different . While video filering does not lower the average noise level , the reduction in the variance does reduce the peak noise level and may expose low-level signals that cannot be observed with a wider bandwidth
Why Need Three Stages of IF Converter?
Detector
Detector
Detection mode: Pos. Peak, Neg. Peak, Sample
Detection mode: Normal
Video Filter
Video Filter
Span
You may call it “Screen BW” Span= (Stop Freq) –(Start Freq) It also controls RBW, VB, and ST
Amplitude
Reference Level (top of the Horizontal scale) It also controls the Input Attenuator Combines with Input Att., trying to let RF becoming a suitable level into Mixer
Principle of Spectrum Analyzer
Non-sweeping or real-time method Sweeping or scanning method
Non-sweeping or real-time method
Spectrum Analyzer Block Diagram
Amplitude Units
Number to dB Conversion Roughly
Sweep Time
Sweep Time> k ( 1 / RBW ) * ( Span / RBW ) , k >1
Log amplifier
Markers
Measure AM signal with multi-markers
頻譜分析儀
示波器 VS 頻譜分析儀
示波器量測可得到信號時間的相位及信號與時間 的關係,但無法獲知信號失真的數據,亦即無法 獲知信號諧波分量的分佈情況,同時量測微波領 域信號時,基於設備電子元件功能的限制、輸入 端雜散電容等因素,量測的結果無可避免地將產 生信號失真及衰減 頻譜分析儀的主要功能是量測信號的頻率響應, 橫軸代表頻率,縱軸代表信號功率或電壓的數值, 可用線性或對數刻度顯示量測的結果
RF 輸入
頻譜分析儀 待測件 75 75 歐姆 歐姆
R2 R
1
阻抗 匹配 50 歐姆 50 歐姆
Z 1 =75歐姆
Z 2 =50歐姆
實驗項目: 實驗項目 Noise
The wider the resolution bandwidth , the more noise that gets included in the measurement at the detector . Because the resolution bandwidth of the analyzer is usually narrow , the noise can be considered constant or white across its passband.
Frequency Span Amplitude RBW Sweep time VBW Attenuator Counter Markers
Frequency
CF (center frequency) Start Frequency and Stop Frequency Frequency Readings of Markers are related to CF It’d better to set CF as target frequency for most accuracy
Mixer
Mixer
利用本地振盪之諧波信號拓展信號頻率
f IN
ƒIN=n⋅ƒLO±ƒIF
=1, 2, 3.......
延伸輸入範圍 到諧波頻率
n=+2
n=+1 n=-2 正常的 輸入範圍 n=-1
f L O o sc . sw eep
f LO
Low-pass filter
The low-pass filter at the input of the block diagram is known as the image filter. If this filter were not include, undesirable frequencies could enter the mixer and be translated down to the IF frequency, corrupting the measurement. Suppose the wave analyzer is still tuned to 5 MHz. If a 45MHz signal made its way into the mixer, it would mix with the LO frequency(25MHz) and produce sum and difference frequencies of 20 MHz and 70 MHz. The 70 MHz signal would be ignored , but the 20 MHz signal would fall directly on the IF filter and would be included in the measurement. Without an image filter the wave analyzer could not distinguish between the desired 5MHz signal and the 45 MHz image fr儀之系統架構及原理
Mixer Low-pass filter IF filter Detector Video filter
實驗項目
RBW VBW AM FM
Frequency versus Time Domain
How to represent electrical signals
Input Attenuator
Limit the power of the input signal to the normal operation range of the Mixer. Change attenuate value also change Pre-amplifier gain to equal the total gain.
Counter with 1 Hz resolution
匹配因素
信號反射,傳輸纜線上產生駐波。 雜訊增大。 降低信號輸出功率。 影響系統頻率的穩定。 影響量測值之準確度。
實驗項目: 實驗項目 Resolution Bandwidth, RBW
實驗項目: 實驗項目 Change Resolution Bandwidth
A signal cannot be displayed as an infinitely narrow line. It has some width associated with it. This shape is the analyzer's tracing of its own IF filter shape as it tunes past a signal. Thus, if we change the filter bandwidth, we change the idth of the displayed response. This concept enforces the idea that it is the IF filter bandwidth and shape that determines the resolvability between signals.