泵的汽蚀余量和安装高度计算
泵的安装高度和汽蚀余量的关系
![泵的安装高度和汽蚀余量的关系](https://img.taocdn.com/s3/m/297bccfc294ac850ad02de80d4d8d15abf23004b.png)
泵的安装高度和汽蚀余量的关系1. 泵的基本概念首先,咱们得搞清楚“泵”是什么。
简单来说,泵就是一种用来移动液体的机器,想象一下,像你家里的水龙头,它的工作原理就像泵一样,把水从地下抽上来。
而泵的“安装高度”就是指泵的进水口和水源之间的高度差,通常用来衡量泵的有效工作范围。
你想象一下,如果泵的位置高高在上,而水源在下面,它就得拼命往上抽水,压力得大得吓人。
2. 汽蚀余量的神秘面纱2.1 什么是汽蚀?那么,什么是汽蚀余量呢?这是个听起来有点吓人的术语,其实就是指泵在工作过程中,液体压力低到让液体变成气泡的那种状态。
就好比你喝可乐,瓶子里突然冒出很多气泡,你以为是可乐在开party,其实那是气泡的形成。
泵在运行的时候,如果出现汽蚀,不仅会让工作效率降低,还可能导致泵的损坏,真是个麻烦。
2.2 汽蚀余量与安装高度的关系而且,这汽蚀余量跟泵的安装高度关系密切。
高度越高,泵的工作压力就越低,导致汽蚀的风险也就越大。
说白了,泵越高,越容易“抽风”,气泡就像蚊子一样飞出来,真是让人心烦。
所以,在选择泵的安装高度时,得考虑到这一点,不能盲目追求高大上,最后把自己搞得一团糟。
3. 如何选择合适的安装高度3.1 计算汽蚀余量那咱们该如何选择合适的安装高度呢?首先,得计算一下汽蚀余量。
这个过程可不是随便算算就完事的,得考虑泵的类型、液体的特性、工作条件等一系列因素。
如果你觉得这个计算麻烦,不妨借助一些工具,省时省力。
记得,汽蚀余量要大于零,才能确保泵能够稳定工作,否则就别怪泵跟你“闹别扭”了。
3.2 安装高度的实际案例再来给你讲个小故事,之前有个朋友家里装了个泵,心想着越高越好,结果一装好,泵就开始“咕咕”叫,液体根本上不来,差点把他气得跳脚。
后来请了专业人士一看,发现泵的安装高度太高了,根本达不到有效的汽蚀余量。
最后,重新调整高度,结果泵就像换了个新机器,水流畅通无阻,朋友也是松了一口气,真是个成功的转折。
4. 小结总之,泵的安装高度与汽蚀余量的关系就像你我生活中的那些小细节,忽视了可就麻烦大了。
泵的汽蚀余量计算公式
![泵的汽蚀余量计算公式](https://img.taocdn.com/s3/m/c4abd00ef011f18583d049649b6648d7c1c7081d.png)
泵的汽蚀余量计算公式以泵的汽蚀余量计算公式为标题,我们来探讨一下这个重要的计算公式。
泵的汽蚀余量是指泵在运行过程中能够承受的最大汽蚀程度,它是衡量泵运行安全性的重要指标。
当泵的汽蚀程度超过其汽蚀余量时,就会发生汽蚀现象,导致泵的性能下降甚至损坏。
因此,准确计算泵的汽蚀余量对于确保泵的正常运行至关重要。
泵的汽蚀余量计算公式如下:汽蚀余量 = H - Hs其中,H为泵的静水头,也就是泵入口处的液位高度;Hs为泵的汽蚀余量,是泵性能曲线上的汽蚀余量值。
在实际计算中,我们需要先测量或估算出泵的静水头H,这个值可以通过测量液位高度或使用水泵选型软件来获取。
而泵的汽蚀余量Hs则需要根据泵的性能曲线来确定。
泵的性能曲线是描述泵的性能参数随流量变化的曲线图,通常由泵的制造商提供。
性能曲线上的汽蚀余量值Hs对应着不同流量点上泵的汽蚀余量。
我们可以根据泵的性能曲线,找到所需流量下的汽蚀余量值Hs,然后代入计算公式即可得到泵的汽蚀余量。
在实际应用中,我们通常会将泵的汽蚀余量与泵的工作点进行比较,以判断泵是否存在汽蚀风险。
如果泵的汽蚀余量大于工作点对应的汽蚀程度,那么泵的运行是安全的。
反之,如果汽蚀余量小于工作点的汽蚀程度,就需要采取相应的措施,例如改变泵的进口高度、增加进口管道直径等,以减小汽蚀风险。
需要注意的是,泵的汽蚀余量并不是一个固定的数值,它随着泵的工况和运行条件的变化而变化。
因此,在不同的工作条件下,我们需要重新计算泵的汽蚀余量,并根据计算结果来调整泵的运行参数,以确保泵的安全运行。
泵的汽蚀余量计算公式是一种重要的工具,它能够帮助我们评估泵的运行安全性。
通过准确计算泵的汽蚀余量,并与实际工作点进行比较,我们可以及时发现并解决汽蚀问题,确保泵的正常运行。
希望本文能够对读者理解泵的汽蚀余量计算公式有所帮助。
汽蚀余量计算方法和例子
![汽蚀余量计算方法和例子](https://img.taocdn.com/s3/m/7862483de3bd960590c69ec3d5bbfd0a7956d5cf.png)
汽蚀余量【1 】[编辑本段]根本概念泵在工作时液体在叶轮的进口处因必定真空压力下会产生汽体,汽化的气泡在液体质点的撞击活动下,对叶轮等金属概况产生剥蚀,从而损坏叶轮等金属,此时真空压力叫汽化压力,汽蚀余量是指在泵吸进口处单位重量液体所具有的超出汽化压力的充裕能量.单位用米标注,用(NPSH)r.吸程即为必须汽蚀余量Δh:即泵许可吸液体的真空度,亦即泵许可的装配高度,单位用米.吸程=尺度大气压(10.33米)-临界汽蚀余量-安然量(0.5米)尺度大气压能压管路真空高度10.33米.[编辑本段]汽蚀现象液体在必定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡.把这种产朝气泡的现象称为汽蚀.汽蚀时产生的气泡,流淌到高压处时,其体积减小乃至幻灭.这种因为压力上升气泡消掉在液体中的现象称为汽蚀溃灭.泵在运转中,若其过流部分的局部区域(平日是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开端汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡四周的高压液体致负气泡急剧地缩小以至决裂.在气泡凝聚决裂的同时,液体质点以很高的速度填充空穴,在此刹时产生很强烈的水击感化,并以很高的冲击频率打击金属概况,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,轻微时会将壁厚击穿.在水泵中产朝气泡和蔼泡决裂使过流部件遭遇到损坏的进程就是水泵中的汽蚀进程.水泵产生汽蚀后除了对过流部件会产生损坏感化以外,还会产生噪声和振动,并导致泵的机能降低,轻微时会使泵中液体中止,不克不及正常工作.[编辑本段]汽蚀余量指泵进口处液体所具有的总水头与液体汽化时的压力头之差,单位用米(水柱)标注,用(NPSH)暗示,具体分为如下几类:NPSHa——装配汽蚀余量又叫有用汽蚀余量,越大越不轻易汽蚀;NPSHr——泵汽蚀余量,又叫必须的汽蚀余量或泵进口动压降,越小抗汽蚀机能越好;NPSHc——临界汽蚀余量,是指对应泵机能降低必定值的汽蚀余量;[NPSH]——许用汽蚀余量,是肯定泵运用前提用的汽蚀余量,平日取[NPSH]=(1.1~1.5)NPSHc. NPSH----实际汽蚀余量.NPS H≥NPSHr离心泵运转时,液体压力沿着泵进口到叶轮进口而降低,在叶片进口邻近的K点上,液体压力pK最低.此后因为叶轮对液体作功,液体压力很快上升.当叶轮叶片进口邻近的压力pK小于液体输送温度下的饱和蒸汽压力pv时,液体就汽化.同时,使消融在液体内的气体逸出.它们形成很多汽泡.当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡又从新凝聚溃灭形成空穴,刹时内四周的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增长(有的可达数百个大气压).如许,不但阻碍液体正常流淌,尤为轻微的是,假如这些汽泡在叶轮壁面邻近溃灭,则液体就像很多个小弹头一样,持续地打击金属概况.其撞击频率很高(有的可达2000~3000Hz),于是金属概况因冲击疲惫而剥裂.如若汽泡内搀杂某种活性气体(如氧气等),它们借助汽泡凝聚时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐化感化,加倍速了金属剥蚀的损坏速度.上述这种液体汽化.凝聚.冲击.形成高压.高温.高频冲击负荷,造成金属材料的机械剥裂与电化学腐化损坏的分解现象称为气蚀.离心泵最易产朝气蚀的部位有:a.叶轮曲率最大的前盖板处,接近叶片进口边沿的低压侧;b.压出室中蜗壳隔舌和导叶的接近进口边沿低压侧;c.无前盖板的高比转数叶轮的叶梢外圆与壳体之间的密封间隙以及叶梢的低压侧;d.多级泵中第一级叶轮.[编辑本段]进步离心泵抗气蚀机能措施(1)改良泵的吸进口至叶轮邻近的构造设计.增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加快与降压;恰当削减叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以削减绕流叶片头部的加快与降压;进步叶轮和叶片进口部分概况光洁度以减小阻力损掉;将叶片进口边向叶轮进口延长,使液流提前接收作功,进步压力.(2)采取前置引诱轮,使液流在前置引诱轮中提前作功,以进步液流压力.(3)采取双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增长一倍,进口流速可削减一倍.(4)设计工况采取稍大的正冲角,以增大叶片进吵嘴,减小叶片进口处的曲折,减小叶片壅塞,以增大进口面积;改良大流量下的工作前提,以削减流淌损掉.但正冲角不宜过大,不然影响效力.(5)采取抗气蚀的材料.实践标明,材料的强度.硬度.韧性越高,化学稳固性越好,抗气蚀的机能越强.(1)增长泵前贮液罐中液面的压力,以进步有用气蚀余量.(2)减小吸上装配泵的装配高度.(3)将上吸装配改为倒灌装配.(4)减小泵前管路上的流淌损掉.如在请求规模尽量缩短管路,减小管路中的流速,削减弯管和阀门,尽量加大阀门开度等.以上措施可依据泵的选型.选材和泵的运用现场等前提,进行分解剖析,恰当加以运用. [编辑本段]盘算公式什么叫气蚀余量?什么叫吸程?各自计量单位及暗示字母?答:泵在工作时液体在叶轮的进口处因必定真空压力下会产生液体汽体,汽化的气泡在液体质点的撞击活动下叶轮等金属概况产生剥落,从而损坏叶轮等金属,此时真空压力叫汽化压力,气蚀余量是指在泵吸进口处单位重量液全所具有的超出汽化压力的充裕能量.单位为米液柱,用(NPSH)r暗示.吸程即为必须气蚀余量Δ/h:即泵许可吸液体的真空度,亦即泵许可几何装配高度.单位用米.吸程=尺度大气压(10.33米)--气蚀余量--安然量(0.5)尺度大气压能压上管路真空高度10.33米例如:某泵必须气蚀余量为4.0米,求吸程Δh (早5.67米高度内可防止汽蚀)●例子:1公斤的压力下,水的饱和温度为100度,超出100度,部分水要气化,变成水蒸汽, 此时的水假如流进泵的进口,因为管阻力的原因,压力削减为0.8公斤,水将产生汽化,为了不汽化,将进水压力由1公斤增压到1.5公斤,这时泵进口压力为1.3公斤,●必须汽蚀余量:单位重量液体从泵吸进口截面至泵压强最低点的压降.这个参数反应的是泵本身的汽蚀特征.泵吸进口压强必定的话,必须汽蚀余量越大,证实泵压强最低点压强越低,泵就越轻易汽化.有用汽蚀余量:在泵的进口处,单位重量液体具有的超出汽化压强的充裕能量.这个参数越大,泵汽蚀的可能性就越小.装配汽蚀余量=有用汽蚀余量,两者是一个意思●汽蚀余量主如果权衡泵吸上才能的一个参数.我们都知道一个尺度大气压约等于10m水柱,也就是说假如把泵放到一个很深的水池子上面,水面与大气是相通的,这时让泵将水向外排,泵最大的可能性是使水面降低到与泵轴线垂直距离10m的地方,假如泵持续运转,这时的水面也不成能再降低了.泵也无法向外持续送水,其排出的将是气,这种状况,我们把它叫汽蚀.但实际上泵是无法完整让水面降低到与其轴线垂直10m距离,若干会剩下一部分.剩下这部分水假如也以m为单位来盘算的话,就是这台泵的汽蚀余量,也叫泵的必须汽蚀余量NPSHr,平日这个值是泵厂以20℃清水在泵的额定流量下测定的,单位是米.NPSHr越小解释泵的吸上机能越好. 但在实际工况中,泵不都是垂直安顿在液面上的,泵进口的阻力平日是因为进口管路的摩擦力.进口弯头.阀门的阻力造成的,而不是由泵吸入管内的液体的垂直重力造成的,即由泵以外的装配体系肯定的.这种装配汽蚀余量NPSHa,也叫有用汽蚀余量或可用汽蚀余量,单位也是米.其数值是即定的,也就是管路装配肯定了,其NPSHa也就肯定了. 那么,既然装配汽蚀余量NPSHa肯定了,若何包管泵正常工作,不产生汽蚀呢?那就必须使泵的必须汽蚀余量NPSHr和装配汽蚀余量NPSHa间有一个安然裕量S,即知足NPSHa-NPSHr≥S.对于一般离心泵,S平日取0.6~1.0m.●许可吸上真空度与临界汽蚀余量的关系解释如下:许可吸上真空度是将实验得出的临界吸上真空度换算到大气压为0.101325MPa和水温为20°C的尺度状况下,减去0.3m的安然裕量后的数值.临界汽蚀余量与许可吸上真空度之间的关系按下式盘算:(NPSH)c=(Pb-Pv)×106/pg+v21/2g-Hsc=(Pb-Pv)×106/pg+v21/2g-(Hsa+0.3) 式中:(NPSH)c——临界汽蚀余量,m; Pb——大气压力(绝对),MPa; Pv——汽化压力(绝对),MPa;p——被输送液体的密度,kg/m3;g——自由落体加快度,m/s2(取9.81);V1——进口断面处平均速度,m/s;Hsc——临界吸上真空度,m; Hsa——许可吸上真空度,m.•管道离心泵的装配症结技巧:水泵装配高度即吸程选用一.离心泵的症结装配技巧管道离心泵的装配技巧症结在于肯定水泵装配高度(即吸程).这个高度是指水源水面到水泵叶轮中间线的垂直距离,它与许可吸上真空高度不克不及混为一谈,水泵产品解释书或铭牌上标示的许可吸上真空高度是指水泵进水口断面上的真空值,并且是在1尺度大气压下.水温20摄氏度情形下,进行实验而测定得的.它并没有斟酌吸水管道配套今后的水流状况.而水泵装配高度应当是许可吸上真空高度扣除了吸水管道损掉扬程今后,所剩下的那部分数值,它要战胜实际地形吸水高度.水泵装配高度不克不及超出盘算值,不然,水泵将会抽不上水来.别的,影响盘算值的大小是吸水管道的阻力损掉扬程,是以,宜采取最短的管路安插,并尽量少装弯优等配件,也可斟酌恰当配大一些口径的水管,以减管内流速. 应当指出,管道离心泵装配地点的高程和水温不合于实验前提时,如当地海拔300米以上或被抽水的水温超出20摄氏度,则盘算值要进行修改.即不合海拔高程处的大气压力和高于20摄氏度水温时的饱和蒸汽压力.但是,水温为20摄氏度以下时,饱和蒸汽压力可疏忽不计. 从管道装配技巧上,吸水管道请求有严厉的密封性,不克不及漏气.漏水,不然将会损坏水泵进水口处的真空度,使水泵出水量削减,轻微时甚至抽不上水来.是以,要卖力地做好管道的接口工作,包管管道衔接的施工质量. 二.离心泵的装配高度Hg盘算许可吸上真空高度Hs是指泵进口处压力p1可许可达到的最大真空度.而实际的许可吸上真空高度Hs值其实不是依据式盘算的值,而是由泵制作厂家实验测定的值,此值附于泵样本中供用户查用.位应留意的是泵样本中给出的Hs值是用清水为工作介质,操纵前提为20℃及及压力为1.013×105Pa时的值,当操纵前提及工作介质不合时,需进行换算.(1) 输送清水,但操纵前提与实验前提不合,可依下式换算Hs1=Hs+(Ha-10.33) -(Hυ-0.24)(2) 输送其它液体当被输送液体及反派人物前提均与实验前提不合时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H΄s 2 汽蚀余量Δh对于油泵,盘算装配高度时用汽蚀余量Δh来盘算,即泵许可吸液体的真空度,亦即泵许可的装配高度,单位用米.用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定.若输送其它液体,亦需进行校订,详查有关书本.吸程=尺度大气压(10.33米)-汽蚀余量-安然量(0.5米)尺度大气压能压管路真空高度10.33米.例如:某泵必须汽蚀余量为4.0米,求吸程Δh?解:Δh=10.33-4.0-0.5=5.83米从安然角度斟酌,泵的实际装配高度值应小于盘算值.当盘算之Hg 为负值时,解释泵的吸进口地位应在贮槽液面之下.例2-3 某离心泵从样本上查得许可吸上真空高度Hs=5.7m.已知吸入管路的全体阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可疏忽.试盘算:(1) 输送20℃清水时泵的装配;(2) 改为输送80℃水时泵的装配高度.解:(1) 输送20℃清水时泵的装配高度已知:Hs=5.7m Hf0-1=1.5m u12/2g≈0当地大气压为9.81×104Pa,与泵出厂时的实验前提基底细符,所以泵的装配高度为Hg=5.7-0-1.5=4.2 m.(2) 输送80℃水时泵的装配高度输送80℃水时,不克不及直接采取泵样本中的Hs值盘算装配高度,需按下式对Hs时行换算,即Hs1=Hs+(Ha-10.33) -(Hυ-0.24)已知Ha=9.81×104Pa≈10mH2O,由附录查得80℃水的饱和蒸汽压为47.4kPa.Hv=47.4×103 Pa=4.83 mH2O Hs1=5.7+10-10.33-4.83+0.24=0.78m将Hs1值代入式中求得装配高度Hg=Hs1-Hf0-1=0.78-1.5=-0.72m Hg为负值,暗示泵应装配在水池液面以下,至少比液面低0.72m.•sunpengyu1 (2008-4-30 09:39:56)PVC管上有孔,在退潮时不是有空气么,那就吸不出水了啊•pumpvalve (2008-4-30 13:37:26)水泵的装配高度重要有两方面的影响,其一是影响安然性,其二是影响经济性.一.先说对安然性的影响,装配高度会影响水泵进口的真空度和管路体系的水击.1.装配高度会影响水泵进口的真空度,我们知道水泵进口的真空度是一个十分重要的参数,对机能影响特别大,进口的真空度太小的话,水泵打不上水;真空度太大的话,管路部分担段汽化或泵进口汽化引起汽蚀.(1)进口的真空度太小的话,水泵打不上水,主如果因为大气压和进口的真空度的压差缺少以战胜管路损掉和进步能头;(2)太大的话,泵进口汽化引起汽蚀,这个也轻易懂得,汽蚀本来就和进口压强有关;(3)太大的话,管路部分担段汽化,只要低于汽化压力就汽化,这个也轻易懂得,主如果管路部分担段汽化对管路体系机能曲线的影响,这个很少有人存眷,这个影响和汽化的程度以及汽化的不合阶段有关(本质是两相流情形下的机能曲线),机能曲线消失摇动外形,使之和泵机能曲线有多个交点,从而激发管路体系流淌摇动和振动,甚至诱发汽蚀(和(2)中所说汽蚀照样有点区此外).2.装配高度和水击有关,依据水泵装配地位不合,可能消失正或负水击,只要搞水泵的人,这一点照样都知道的.二.装配高度对经济性的影响装配高度对经济性的影响重要表如今变速调节方面,装配高度较低的话,管路体系的静装配扬程低,从而使变速调节在全部调节规模内保持高效.三.对于一些特别情形,比方没有进口管路,只有进口肘形段的水泵,还须要斟酌装配高度和进口旋涡之间的关系,目标是在进入泵叶轮前清除进口旋涡,电厂中的轮回水泵,以及一些取水泵站用泵属于这种情形.四.其它不罕有情形不在此多说,若有这方面问题的同伙还可以持续交换,只要我有时光.。
泵的汽蚀余量和安装高度计算
![泵的汽蚀余量和安装高度计算](https://img.taocdn.com/s3/m/1c7ed68143323968001c923d.png)
泵的汽蚀余量和安装高度的计算一、气蚀的发生过程液体汽化时的压力称为汽化压力(饱和蒸汽压力),液体汽化压力的大小和温度有关,温度越高,由于分子运动更剧烈,其汽化压力越大。
20℃清水的汽化压力为233.8Pa,而100℃水的汽化压力为101296Pa(一个大气压)。
可见,一定温度下的压力是促成液体汽化的外界因素。
液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡,把这种产生气泡的现象称为气蚀。
气蚀时产生的气泡,流动到高压处时,其体积减小以至破灭。
这种压力上升,气泡消失在液体中的现象称为气蚀的溃灭。
为保证泵不汽蚀,泵叶轮进口处单位重量的液体所必须具有的超过汽化压力的富余能量。
浅释如下:当离心泵的吸入高度过大和液体温度较高时,以致使吸入口压强小于或等于液体饱和蒸汽压,则液体会在泵进口处沸腾汽化,在泵壳形成一个充满蒸汽的空间,随着泵旋转,气泡进入高压区,由于压差的作用,气泡受压破裂而重新凝结,在凝结的一瞬间,质点互相撞击,产生了很高的局部压力,如果这些气泡在金属表面附近破裂而凝结,则液体质点就象无数小弹头一样,连续击打在金属表面,使金属表面产生裂纹,甚至局部产生剥落现象,使叶轮表面呈蜂窝状,同时气泡中的某些活泼气体如氧气等进入到金属表面的裂纹中,借助气泡凝结时放出的热量,使金属受到化学腐蚀作用,上述现象即为汽蚀。
汽蚀现象产生时,泵将产生噪音和振动,使泵的扬程、流量、效率的性能急剧下降,同时加速了材料的损坏,缩短了机件的使用寿命,因此,必须限制泵的吸入高度,防止液体大量汽化,以免发生汽蚀现象。
一台泵在运转中发生了气蚀,但在完全相同的条件下换上另一台泵可能就不会发生气蚀,这说明是否发生气蚀和泵本身的抗气蚀性能有关。
反之,同一台泵在某一条件下(如吸上高度7米)使用发生气蚀,改变使用条件(如吸上高度5米)则不会发生气蚀,这说明是否发生气蚀还与使用条件有关。
这就是泵汽蚀余量或必需气蚀余量NPSHr(又称必需的净正压头)和装置气蚀余量或有效气蚀余量NPSHa(又称有效的净正压头).二、泵安装高度的计算:泵之所以吸上液体,是因为叶轮旋转在叶轮进口造成真空,吸入液面的压力P0把液体压入泵的结果。
自吸泵汽蚀余量与自吸高度
![自吸泵汽蚀余量与自吸高度](https://img.taocdn.com/s3/m/f16f5e56793e0912a21614791711cc7931b77828.png)
自吸泵汽蚀余量与自吸高度自吸泵是一种常见的离心泵,具有自吸能力,可以在无液状态下启动,自动吸入液体并将其输送到所需位置。
但是,自吸泵在使用过程中可能会出现汽蚀现象,影响其正常工作。
因此,了解自吸泵汽蚀余量和自吸高度的概念和计算方法对于保证自吸泵的正常运行非常重要。
自吸泵汽蚀余量是指自吸泵在吸入液体时,液体中所含气体的最大体积分数。
当自吸泵吸入液体时,液体中的气体会在泵内形成气泡,随着液体的继续吸入,气泡会逐渐增大,直到达到一定大小时,气泡会破裂,产生气蚀现象。
汽蚀余量的大小取决于自吸泵的结构和工作条件,一般来说,汽蚀余量越大,自吸泵的抗汽蚀能力越强。
自吸高度是指自吸泵能够自动吸入液体的最大高度。
自吸高度的大小取决于自吸泵的结构和工作条件,一般来说,自吸高度越大,自吸泵的吸入能力越强。
自吸泵汽蚀余量和自吸高度的计算方法如下:1.汽蚀余量的计算方法汽蚀余量=(液体中所含气体的体积/液体的体积)×100%其中,液体中所含气体的体积可以通过实验测量得到,液体的体积可以通过液体的密度和质量计算得到。
2.自吸高度的计算方法自吸高度=(大气压力-液体蒸汽压力-泵内压力损失)/液体密度×重力加速度其中,大气压力和液体蒸汽压力可以通过气压计和蒸汽压力表测量得到,泵内压力损失可以通过泵的性能曲线和实验测量得到,液体密度可以通过实验测量得到,重力加速度为9.81m/s²。
总之,自吸泵汽蚀余量和自吸高度是自吸泵正常工作的重要参数,需要在设计和使用过程中进行合理计算和控制。
通过合理选择自吸泵的结构和工作条件,可以提高自吸泵的抗汽蚀能力和吸入能力,保证自吸泵的正常运行。
泵汽蚀余量计算方法及计算公式
![泵汽蚀余量计算方法及计算公式](https://img.taocdn.com/s3/m/1b4b69be9f3143323968011ca300a6c30c22f1d2.png)
泵汽蚀余量计算方法及计算公式
泵汽蚀余量是指泵在工作时避免因汽蚀而造成设备损坏的安全
余量。
计算泵汽蚀余量的方法和公式如下:
1. 根据NPSHr值计算,NPSHr(净正吸入压力余量)是指泵在
额定工况下所需的最小净正吸入压力,通常由泵的性能曲线给出。
NPSHr值可以通过实验测定或者由泵的制造商提供。
计算泵汽蚀余
量时,需要首先确定工作条件下的NPSHr值,然后结合系统设计工
况和液体性质等因素,计算出泵的实际NPSHa(净正吸入压力)值。
泵汽蚀余量即为NPSHa与NPSHr之差,通常建议保留一定的安全余量,以确保泵在工作时不会发生汽蚀。
2. 计算公式:泵汽蚀余量可以用以下公式进行计算:
NPSH余量 = NPSHa NPSHr.
在实际工程中,为了保证泵的正常运行和延长设备的使用寿命,通常建议在计算得到的泵汽蚀余量基础上增加一定的安全余量,具
体数值可根据实际情况和经验进行确定。
同时,还需要注意在计算
过程中考虑液体的温度、气体含量、管道阻力等因素对NPSH的影响,
以确保计算结果的准确性和可靠性。
总之,泵汽蚀余量的计算方法和公式是基于NPSH的理论和实验数据,通过对泵的实际工况和系统参数进行综合考虑,以确保泵在工作时不会受到汽蚀的影响,从而保证设备的安全运行。
汽蚀余量计算方法和例子
![汽蚀余量计算方法和例子](https://img.taocdn.com/s3/m/dd5ceb520740be1e650e9aab.png)
汽蚀余量计算方法和例子汽蚀余量[]基本概念泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。
单位用米标注,用(NPSH)r。
吸程即为必需汽蚀余量Δh:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。
吸程=标准大气压(10.33米)-临界汽蚀余量-安全量(0.5米)标准大气压能压管路真空高度10.33米。
[]汽蚀现象液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。
把这种产生气泡的现象称为汽蚀。
汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。
这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。
泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍抽送液体的绝对压力降低到当时温度下的因为某种原因,后的某处).汽蚀余量计算方法和例子液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。
在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。
在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。
水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体xx,不能正常工作。
[]汽蚀余量指泵入口处液体所具有的总水头与液体汽化时的压力头之差,单位用米(水柱)标注,用(NPSH)表示,具体分为如下几类:NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量;汽蚀余量计算方法和例子[NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。
汽蚀余量和泵的安装高度的关系
![汽蚀余量和泵的安装高度的关系](https://img.taocdn.com/s3/m/1359b6040a4e767f5acfa1c7aa00b52acfc79c76.png)
汽蚀余量和泵的安装⾼度的关系先说⼀下各种汽蚀余量的概念:NPSH,汽蚀余量,是⽔泵进⼝的⽔流能量相对汽化压⼒的富余⽔头。
要谈允许汽蚀余量的由来,⾸先讲NPSH的⼀种:有效汽蚀余量NPSHa(NPSH available,也有以Δha表⽰),取决于进⽔池⽔⾯的⼤⽓压强、泵的吸⽔⾼度、进⽔管⽔头损失和⽔流的⼯作温度,这些因素均取决于⽔泵的装置条件,与⽔泵本⾝性能⽆关,所以也有叫装置汽蚀余量的。
NPSHr(NPSH required,Δhr),必需汽蚀余量。
由上所述,在⼀定装置条件下,有效汽蚀余量Δha为定值,此时对于不同的泵,有些泵发⽣了汽蚀,有些泵则没有,说明是否汽蚀还与泵的性能有关。
因为Δha仅说明泵进⼝处有超过汽化压⼒的富余能量,并不能保证泵内压⼒最低点(与泵性能有关)的压⼒仍⾼于汽化压⼒。
将泵内的⽔⼒损失和流速变化引起的压⼒降低值定义为必须汽蚀余量Δhr,也就是说要保证泵不发⽣汽蚀,必要条件是Δha>Δhr。
Δhr与泵的进⽔室、叶轮⼏何形状、转速和流量有关,也就是与泵性能相关,⽽与上述装置条件⽆关。
⼀般来讲Δhr不能准确计算,所以通常通过试验⽅法确定。
这时就引⼊临界汽蚀余量NPSHc (NPSH critical,Δhc),即试验过程泵刚好开始汽蚀时的汽蚀余量,此时Δha=Δhc=Δhr,这样即可确认Δhr。
⽽由于临界状况很难判断(因为此时性能可能并⽆⼤变化),按GB7021-86规定,临界Δhc这样确定:在给定流量情况下,引起扬程或效率(多级泵则为第⼀级叶轮)下降(2+k/2)%时的Δha值;或在给定扬程情况下,引起流量或效率下降(2+k/2)%时的Δha值。
k为⽔泵的型式数。
⽽以上均为理论值。
要保证⽔泵不发⽣汽蚀,引⼊允许汽蚀余量([NPSH],[Δh]),是根据经验⼈为规定的汽蚀余量,对于⼩泵[Δh]=Δhc+0.3m,⼤型⽔泵[Δh]=(1.1~1.3)Δhc。
最后⽔泵运⾏不产⽣汽蚀的必要条件是:装置有效汽蚀余量不得⼩于允许汽蚀余量,即Δha>=[Δh]。
汽蚀余量计算方法和例子
![汽蚀余量计算方法和例子](https://img.taocdn.com/s3/m/8b91a00b0b4c2e3f572763ce.png)
汽蚀余量[]基本概念泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。
单位用米标注,用(NPSH)r。
吸程即为必需汽蚀余量Δh:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。
吸程=标准大气压(10.33米)-临界汽蚀余量-安全量(0.5米)标准大气压能压管路真空高度10.33米。
[]汽蚀现象液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。
把这种产生气泡的现象称为汽蚀。
汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。
这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。
泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。
在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。
在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。
水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体xx,不能正常工作。
[]汽蚀余量指泵入口处液体所具有的总水头与液体汽化时的压力头之差,单位用米(水柱)标注,用(NPSH)表示,具体分为如下几类:NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量;[NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。
泵的几何安装高度计算
![泵的几何安装高度计算](https://img.taocdn.com/s3/m/807f8ac78bd63186bcebbcb8.png)
泵的实际安装高度值允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度。
而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。
位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。
1 输送清水,但操作条件与实验条件不同,可依下式换算Hs’=Hs+Ha- Hυ-10.33 +0.24=Hs+Ha-Hv-10.09Hs’-修正后的允许汽蚀余量Hs——水泵样本提供的允许汽蚀余量2 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H΄s2 汽蚀余量Δh对于油泵,计算安装高度时用汽蚀余量Δh来计算,即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。
用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。
若输送其它液体,亦需进行校正,详查有关书籍。
吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)标准大气压能压管路真空高度10.33米。
例如:某泵必需汽蚀余量为4.0米,求吸程Δh?解:Δh=10.33-4.0-0.5=5.83米从安全角度考虑,泵的实际安装高度值应小于计算值。
当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。
例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。
已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。
试计算:1 输送20℃清水时离心泵的安装;2 改为输送80℃水时离心泵的安装高度。
解:1 输送20℃清水时泵的安装高度已知:Hs=5.7mHf0-1=1.5mu12/2g≈0当地大气压为9.81×104Pa,与泵出厂时的实验条件基本相符,所以泵的安装高度为Hg=5.7-0-1.5=4.2 m。
汽蚀余量和水泵安装高度计算
![汽蚀余量和水泵安装高度计算](https://img.taocdn.com/s3/m/a3ee22bd6394dd88d0d233d4b14e852458fb39c5.png)
WK——叶轮内压力最低点的相对速度
5
添加标题
运动参数在一定转速和流量 下由几
添加标题
体,在一定转速和流量下流 过泵进口,
添加标题
关。NPSHr越小,表示压力 降小,要求
添加标题
何参数决定的。这就是说 NPSHr是由泵
添加标题
液面与大气连通,为泵使用 地的大气
添加标题
——吸水管路阻力损失(m)
添加标题
压力水头(m)
添加标题
∴
添加标题
入装置提的,与装置参数 (Pc、hg、hc)及液体性
添加标题
质( ρ、pV)有关。
4
泵汽蚀余量NPSHr量 定义:NPSHr表征泵进口部分的压力降,其物理 意义表示液体在泵进口部分压力下降的程度。 泵汽蚀余量与装置参数无关,只与泵进口部分 的运动参数V0、W0、WK有关。其中
许
,
拔
9
——入口管路损失, 与入口管路长度及管
1
图及“水的饱和压力 表”查得。
6
——汽化压力,与介 质温度有关,可从附
5
2
路附件多少有关,可 按附件“钢管的
3
磨擦损失”及附表 “管附属管件的相
4
当直管长度”计算。
10
11
K——安全余量, K=(0.1~0.5)NPSHr
○ 应用以上计算公式, ○ 计算所得的hg值为: ○ 正值,泵可在最大吸 ○ 上高度hg情况下运行; ○ 负值,必须有一最小进 ○ 口压力hg水头。
∵ ∴
8
—— ——
能 性量 流流 泵
统 为和 高详 高
汽蚀余量计算方法和例子
![汽蚀余量计算方法和例子](https://img.taocdn.com/s3/m/949c95940c22590102029df6.png)
汽蚀余量[编辑本段]基本概念泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。
单位用米标注,用(NPSH )r。
吸程即为必需汽蚀余量Ah:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。
吸程=标准大气压(10.33米)-临界汽蚀余量-安全量(0.5米)标准大气压能压管路真空高度10.33米。
[编辑本段]汽蚀现象液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。
把这种产生气泡的现象称为汽蚀。
汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。
这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。
泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。
在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。
在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。
水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。
[编辑本段]汽蚀余量指泵入口处液体所具有的总水头与液体汽化时的压力头之差,单位用米(水柱)标注,用(NPSH )表示,具体分为如下几类:NPSHa 装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;NPSHr ------- 泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc ――临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量;[NPSH]――许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]= (1.1 〜1.5 ) NPSHc。
(五)泵的气蚀余量及安装高度
![(五)泵的气蚀余量及安装高度](https://img.taocdn.com/s3/m/b153367c9b6648d7c1c7469e.png)
450-600 0.12
10
20
30
6.5
6.0
5.0
H安裕=0.6m
(4)压力单位 1标大气压 =17K6g0fm/mcHmg2==71306.m m1Hmgm=H1g0=mH20=98 =11m3H.2O6=m7m3H.2O6=m1m3H g1=KPa=7.5mmHg =10磅.1/0时1MH2O= 21=时6.895KPa H1g口=3.尺386KPa =30、.3泵05扬m程=H 吸入高+H排出
(五)泵的气蚀余量及安装高度
泵出厂时,一般标明:扬程、流量、允许吸入高度和必须汽蚀余量。必须气蚀余量是泵转速流量比转数的函数:
h 20
(n
Vd S
)
(米)
#DIV/0!
n=1450RPM
允许吸入高度 6-8M
必须汽蚀余量1-3.2m
1、泵选型时 注(意1):物料性 质:腐蚀性, 固(2体)流悬量浮:物最,大 流量=泵额定 流正量常×流0量.8=m泵3/h 额定流量× 0最.7小m流3/h量(=高流效 量×扬程× 1.86×10(3)扬程=吸入 高差+吸入阻 力+出口阻力+ 出口高差+出 口压=
0.080 33
0.600 57
0.100 35
0.700 59
0.125 37
0.800 61
0.150 39
1.000 64
0.2 43 1.200 66
0.25 46
1.400 67
D=
1.600
C=
69
1.800 70
2.000 71
实际设计安装
高度应小于计 H安裕=
=
2.1 1.2
水泵的汽蚀余量和安装高度
![水泵的汽蚀余量和安装高度](https://img.taocdn.com/s3/m/43420ca64693daef5ff73d3b.png)
水泵的汽蚀余量和安装高度一、气蚀的发生过程:液体汽化时的压力称为汽化压力(饱和蒸汽压力),液体汽化压力的大小和温度有关,温度越高,由于分子运动更剧烈,其汽化压力越大。
20℃清水的汽化压力为233.8Pa,而100℃水的汽化压力为101296Pa(一个大气压)。
可见,一定温度下的压力是促成液体汽化的外界因素。
液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡,把这种产生气泡的现象称为气蚀。
气蚀时产生的气泡,流动到高压处时,其体积减小以至破灭。
这种压力上升,气泡消失在液体中的现象称为气蚀的溃灭。
为保证泵不汽蚀,泵叶轮进口处单位重量的液体所必须具有的超过汽化压力的富余能量。
浅释如下:当离心泵的吸入高度过大和液体温度较高时,以致使吸入口压强小于或等于液体饱和蒸汽压,则液体会在泵进口处沸腾汽化,在泵壳内形成一个充满蒸汽的空间,随着泵旋转,气泡进入高压区,由于压差的作用,气泡受压破裂而重新凝结,在凝结的一瞬间,质点互相撞击,产生了很高的局部压力,如果这些气泡在金属表面附近破裂而凝结,则液体质点就象无数小弹头一样,连续击打在金属表面,使金属表面产生裂纹,甚至局部产生剥落现象,使叶轮表面呈蜂窝状,同时气泡中的某些活泼气体如氧气等进入到金属表面的裂纹中,借助气泡凝结时放出的热量,使金属受到化学腐蚀作用,上述现象即为汽蚀。
汽蚀现象产生时,泵将产生噪音和振动,使泵的扬程、流量、效率的性能急剧下降,同时加速了材料的损坏,缩短了机件的使用寿命,因此,必须限制泵的吸入高度,防止液体大量汽化,以免发生汽蚀现象。
一台泵在运转中发生了气蚀,但在完全相同的条件下换上另一台泵可能就不会发生气蚀,这说明是否发生气蚀和泵本身的抗气蚀性能有关。
反之,同一台泵在某一条件下(如吸上高度7米)使用发生气蚀,改变使用条件(如吸上高度5米)则不会发生气蚀,这说明是否发生气蚀还与使用条件有关。
这就是泵汽蚀余量或必需气蚀余量NPSHr(又称必需的净正压头)和装置气蚀余量或有效气蚀余量NPSHa(又称有效的净正压头).。
汽蚀余量与安装高度计算
![汽蚀余量与安装高度计算](https://img.taocdn.com/s3/m/1b250428793e0912a21614791711cc7931b77809.png)
汽蚀余量与安装高度计算
汽蚀是指泵在运行过程中,由于压力变化而产生的蒸汽和气泡,造成流体流动的异常现象。
在泵的工作过程中,如果压力低于沸点压力,液体会快速蒸发形成气泡,气泡沿着流体流动的方向运动,当气泡进入高压区域时又会瞬间坍塌形成冲击波,这种冲击波会使金属表面受损。
这就是汽蚀现象的产生。
汽蚀余量是指泵进口压力与沸点压力之间的差值。
计算汽蚀余量的公式如下:
汽蚀余量=泵进口压力-沸点压力
安装高度是指泵进口与介质液面的相对高度,也可以理解为泵的吸入深度。
安装高度的计算需要考虑介质液面的位置和泵的位置。
如果介质液面高于泵的位置,安装高度是正值,反之则为负值。
在计算安装高度时,需要考虑以下几个因素:
1.介质液面的高度:介质液面高于泵位置时,安装高度为正值;反之为负值。
2.泵的位置:泵的位置越高,安装高度越低。
3.引水管道的长度和形式:长管道、管道形状变化或者有阻塞物会增加泵的吸入阻力,从而使安装高度增加。
根据以上因素
安装高度=介质液面高度-泵的位置-泵引水管道的压力损失
其中,泵引水管道的压力损失需要通过管道流体力学公式和管道摩擦系数来计算,这一部分的计算比较复杂,需要具体的管道参数,包括管道直径、长度、介质的流量和粘度等。
在实际工程中,通常需要进行模型试验或者借助计算机软件来进行精确的计算。
汽蚀和安装高度的计算对于泵的正常运行非常重要。
如果汽蚀余量较大或者安装高度过大,可能会导致泵的性能下降、易产生震动,甚至造成气蚀破坏。
因此,在选型和设计泵的时候,需要综合考虑介质的性质、泵的工作条件等因素,以确保泵的安全运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泵的汽蚀余量和安装高度的计算
一、气蚀的发生过程
液体汽化时的压力称为汽化压力(饱和蒸汽压力),液体汽化压力的大小和温度有关,温度越高,由于分子运动更剧烈,其汽化压力越大。
20℃清水的汽化压力为233.8Pa,而100℃水的汽化压力为101296Pa(一个大气压)。
可见,一定温度下的压力是促成液体汽化的外界因素。
液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡,把这种产生气泡的现象称为气蚀。
气蚀时产生的气泡,流动到高压处时,其体积减小以至破灭。
这种压力上升,气泡消失在液体中的现象称为气蚀的溃灭。
为保证泵不汽蚀,泵叶轮进口处单位重量的液体所必须具有的超过汽化压力的富余能量。
浅释如下:
当离心泵的吸入高度过大和液体温度较高时,以致使吸入口压强小于或等于液体饱和蒸汽压,则液体会在泵进口处沸腾汽化,在泵壳内形成一个充满蒸汽的空间,随着泵旋转,气泡进入高压区,由于压差的作用,气泡受压破裂而重新凝结,在凝结的一瞬间,质点互相撞击,产生了很高的局部压力,如果这些气泡在金属表面附近破裂而凝结,则液体质点就象无数小弹头一样,连续击打在金属表面,使金属表面产生裂纹,甚至局部产生剥落现象,使叶轮表面呈蜂窝状,同时气泡中的某些活泼气体如氧气等进入到金属表面的裂纹中,借助气泡凝结时放出的热量,使金属受到化学腐蚀作用,上述现象即为汽蚀。
汽蚀现象产生时,泵将产生噪音和振动,使泵的扬程、流量、效率的性能急剧下降,同时加速了材料的损坏,缩短了机件的使用寿命,因此,必须限制泵的吸入高度,防止液体大量汽化,以免发生汽蚀现象。
一台泵在运转中发生了气蚀,但在完全相同的条件下换上另一台泵可能就不会发生气蚀,这说明是否发生气蚀和泵本身的抗气蚀性能有关。
反之,同一台泵在某一条件下(如吸上高度7米)使用发生气蚀,改变使用条件(如吸上高度5米)则不会发生气蚀,这说明是否发生气蚀还与使用条件有关。
这就是泵汽蚀余量或必需气蚀余量NPSHr(又称必需的净正压头)和装置气蚀余量或有效气蚀余量NPSHa(又称有效的净正压头).
二、泵安装高度的计算:
泵之所以吸上液体,是因为叶轮旋转在叶轮进口造成真空,吸入液面的压力P0把液体压入泵的结果。
即外因P0通过内因(真空)而起作用,二者缺一不可。
最理想的情况是在叶轮造成真空,不计流动过程的损失,泵在标准大气压下只能吸上10.33米,实际泵的吸上高度均在10米以下。
叶片入口处的压强P2和被输送液体在操作温度下的饱和蒸汽压Pv可用下面的等式表示:
----------1
ρ—被输送液体在操作温度下的密度,kg/m3
g—重力加速度,=9.81m/s2
△ha—气蚀安全量,一般取0.3米
在泵入口1和叶片2间作能量恒算:
移项得
左边3项为NPSHa, 有效气蚀余量,即NPSHa=
右边2项为NPSHr, 必需气蚀余量,即NPSHr=
把公式1代入:
移项得:
-----------2
在液面0和泵入口1间作能量恒算:
Hg-------安装高度,m
Hf--------0-1之间的管道阻力损失
移项得安装高度的计算公式:
把2代入,得
在实验条件下,P0为一个工程大气压,即P0=9.81*10000Pa,并以20℃清水为介质进行实验,密度为998.2kg/m3,饱和蒸汽压力Pv=2334.6Pa.若条件改变时这些参数均须改变。
代入上面公式:
=10-0.24-NPSHr-0.3-Hf
=9.46- NPSHr-Hf
为了确保离心泵正常操作,将所测得(NSPH)c值加上一定的安全量作为必需汽蚀余量(NSPH)r,并列入泵产品样本,或绘于泵的特性曲线上。
1、根据装置的布置、地形条件、水位条件、运转条件、经济方案比较等多方面因素
2、考虑选择卧式、立式和其它型式(管道式、直角式、变角式、转角式、平行式、垂直式、直立式、潜水式、便拆式、液下式、无堵塞式、自吸式、齿轮式、充油式、充水温式)。
卧式泵拆卸装配方便,
3、易管理、但体积大,
4、需很大占地面积;立式泵,
5、很多情况下叶轮淹没在水中,
6、任何时候可以启动,
7、便于自动盍或远程控制,
8、并且紧凑,
9、安装面积小,10、价格较便宜。
3 、根据液体介质性质,确定清水泵,热水泵还油泵、化工泵或耐腐蚀泵或杂质泵,或者采用不堵塞泵。
安装在爆炸区域的泵,应根据爆炸区域等级,采用防爆电动机。
4.振动量分为:气动、电动(电动分为220v电压和380v电压)。
5、根据流量大小,选单吸泵还是双吸泵:根据扬程高低,选单吸泵还是多吸泵,高转速泵还是低转速泵(空调泵)、多级泵效率比单级泵低,当选单级泵和多级泵同样都能用时,宜选用单级泵。
6、确定泵的具体型号,采用什么系列的泵选用后,就可按最大流量,放大5%——10%余量后的扬程这两个性能主要参数,在型谱图或系列特性曲线上确定具体型号。
利用泵特性曲线,在横坐标上找到所需流量值,在纵坐标上找到所需扬程值,从两值分别向上和向右引垂线或水平线,两线交点正好落在特性曲线上,则该泵就是要选的泵,但是这种理想情况一般不会很少,通常会碰上下列几种情况:
A、第一种:交点在特性曲线上方,这说明流量满足要求,但扬程不够,此时,若扬程相差不多,或相差5%左右,仍可选用,若扬程相差很多,则选扬程较大的泵。
或设法减小管路阻力损失。
B、第二种:交点在特性曲线下方,在泵特性曲线扇状梯形范围内,就初步定下此型号,然后根据扬程相差多少,来决定是否切割叶轮直径,若扬程相差很小,就不切割,若扬程相差很大,就按所需Q、H、,根据其ns和切割公式,切割叶轮直径,若交点不落在扇状梯形范围内,应选扬程较小的泵。
选泵时,有时须考虑生产工艺要求,选用不同形状Q-H特性曲线。
通常把表示主要性能参数之间关系的曲线称为离心泵的性能曲线或特性曲线,实质上,离心泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。
特性曲线包括:流量-扬程曲线(Q-H),流量-效率曲线(Q-η),流量-功率曲线(Q-N),流量-汽蚀余量曲线(Q-(NPSH)r),性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点。
一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。
在实践选效率区间运行,即节能,又能保证泵正常
工作,因此了解泵的性能参数相当重要。