图及有向图的应用
图论及其应用

图论及其应用简介图论是计算机科学中的一个重要分支,研究的对象是由边与顶点组成的图形结构以及与其相关的问题和算法。
图论的应用广泛,涵盖了计算机科学、网络科学、物理学、社会学、生物学等多个领域。
本文将介绍图论的基本概念、常用算法以及一些实际的应用案例。
图的基本概念图由顶点(Vertex)和边(Edge)组成,记作G=(V, E),其中V为顶点的集合,E为边的集合。
图可以分为有向图和无向图两种类型。
有向图有向图中的边具有方向性,即从一个顶点到另一个顶点的边有明确的起点和终点。
有向图可以表示一种有序的关系,比如A到B有一条边,但B到A可能没有边。
有向图的表示可以用邻接矩阵或邻接表来表示。
无向图无向图中的边没有方向性,任意两个顶点之间都有相互连接的边。
无向图可以表示一种无序的关系,比如A与B有一条边,那么B与A之间也有一条边。
无向图的表示通常使用邻接矩阵或邻接表。
常用图论算法图论中有许多经典的算法,其中一些常用的算法包括:深度优先搜索(DFS)深度优先搜索是一种用于遍历或搜索图的算法。
通过从起始顶点开始,沿着一条路径尽可能深入图中的顶点,直到无法再继续前进时,返回上一个顶点并尝试下一条路径的方式。
DFS可以用于判断图是否连通,寻找路径以及检测环等。
广度优先搜索(BFS)广度优先搜索也是一种用于遍历或搜索图的算法。
不同于深度优先搜索,广度优先搜索逐层遍历顶点,先访问离起始顶点最近的顶点,然后依次访问与起始顶点距离为2的顶点,以此类推。
BFS可以用于寻找最短路径、搜索最近的节点等。
最短路径算法最短路径算法用于计算图中两个顶点之间的最短路径。
其中最著名的算法是迪杰斯特拉算法(Dijkstra’s A lgorithm)和弗洛伊德算法(Floyd’s Algorithm)。
迪杰斯特拉算法适用于没有负权边的图,而弗洛伊德算法可以处理带有负权边的图。
最小生成树算法最小生成树算法用于找到一个连通图的最小的生成树。
其中最常用的算法是普里姆算法(Prim’s Algorithm)和克鲁斯卡尔算法(Kruskal’s Algorithm)。
电网络理论 第二章图论

电网络理论第二章图论第二章图论图论是电网络理论的重要分支,主要研究对象是图。
图是由节点和边构成的一种抽象模型,被广泛应用于计算机科学、数学和其他相关领域。
本章将介绍图论的基本概念、常用算法以及在电网络中的应用。
1. 图的定义和表示方式图由节点(也称为顶点)和边组成。
节点表示图中的元素,边表示节点之间的关联关系。
图可以分为有向图和无向图两种类型。
有向图中的边有方向性,表示从一个节点到另一个节点的单向关系。
无向图中的边没有方向性,表示节点之间的无序关系。
图可以用邻接矩阵或邻接表来表示。
邻接矩阵是一个二维数组,用于表示节点之间的关系。
邻接表则是由链表构成的数组,每个节点对应一条链表,链表中记录了该节点与其他节点的关系。
2. 图的基本术语和性质图论中有一些基本的术语和性质,包括:- 路径:指从一个节点到达另一个节点所经过的一系列边和节点。
- 简单路径:路径中不含有重复节点的路径。
- 环:起点和终点相同的路径。
- 连通图:图中任意两个节点之间都存在路径的图。
- 强连通图:有向图中任意两个节点之间都存在路径的图。
- 子图:由图中部分节点和对应的边组成的图。
- 度:节点所连接的边的数量。
- 入度和出度:有向图中节点的入边和出边的数量。
3. 常用图论算法图论中有许多重要的算法,下面介绍其中几个常用算法:- 广度优先搜索(BFS):用于查找图中从起点到终点的最短路径,同时可以用于遍历图的所有节点。
- 深度优先搜索(DFS):用于遍历图的所有节点,通过递归的方式沿着路径向前搜索,直到没有未访问的节点。
- 最小生成树(MST):通过连接图中的所有节点,使得生成的树具有最小的总权重。
- 最短路径算法:例如迪杰斯特拉算法和贝尔曼-福特算法,用于查找图中两个节点之间的最短路径。
- 拓扑排序:用于对有向无环图进行排序,使得图中的节点满足一定的顺序关系。
4. 图论在电网络中的应用图论在电网络领域有广泛的应用,包括:- 网络拓扑分析:通过图论算法可以对电网络的拓扑结构进行分析,了解网络中节点之间的连接关系。
数学中的图论及其应用

数学中的图论及其应用图论是一门数学基础理论,用来描述事物之间的关联。
图论主要研究节点之间的连接关系和路径问题。
它的研究对象是图,图是由节点和边组成的,边表示节点之间的连接关系,节点表示事物。
图论是一种十分实用的数学工具,它是计算机科学、物理学、化学、生物学、管理学等领域的重要工具,也是人工智能和网络科学等领域的基础。
一、图论的基本概念1.1 图图是由节点和边组成的,表示事物之间的关系。
节点是图中的基本元素,用点或圆圈表示;边是连接节点的元素,用线或箭头表示。
1.2 有向图和无向图有向图是指边有方向的图,每一条边用有向箭头表示;无向图是指边没有方向的图,每一条边用线表示。
1.3 节点的度和邻居节点节点的度是指与节点相连的边的数量,具有相同度的节点称为同阶节点;邻居节点是指与节点相连的节点。
1.4 遍历和路径遍历是指从起点出发访问图中所有节点的过程;路径是指跨越边连接的节点序列,路径长是指路径中边的数量。
二、图论的应用2.1 网络科学网络科学是研究节点和边之间的关系,以及节点和边之间的动态演化的学科。
网络科学中的图模型是节点和边的结合体,其应用包括社会网络、生物网络和物理网络等。
社会网络是指人们之间的社交网络,它描述了人与人之间的关系。
社交网络可以用图模型表示,节点表示人,边表示人与人之间的互动关系,例如朋友关系、家庭关系等。
生物网络是指由生物分子构成的网络,例如蛋白质相互作用网络、代谢网络等。
在生物网络中,节点可以表示蛋白质或基因,边可以表示蛋白质或基因之间相互作用的联系,这些联系可以进一步探究生物进化和疾病发生的机理。
物理网络是指由物理粒子构成的网络,例如网络电子、量子态等。
在物理网络中,节点可以表示量子比特或电子,边可以表示色散力或超导电性等物理现象。
2.2 计算机科学图论在计算机科学中的应用非常广泛,例如数据结构、算法设计和网络安全等方面。
图论在计算机科学中的经典应用包括最短路径算法、最小生成树算法等。
计算机中图的名词解释

计算机中图的名词解释在计算机领域中,图(Graph)是一种常见的数据结构,用于描述对象之间的关系和相互作用。
图的概念最早由数学家欧拉提出,并且在计算机科学中得到广泛运用。
本文将从图的基本概念和操作开始,逐步介绍计算机中图的相关术语和应用。
1. 图的基本概念图由节点(Node)和边(Edge)组成。
节点表示对象或实体,边表示节点之间的连接关系。
图可以分为有向图(Directed Graph)和无向图(Undirected Graph)。
在有向图中,边具有方向性,表示从一个节点流向另一个节点;而在无向图中,边没有方向性,表示两个节点之间的相互关系。
2. 图的存储方式为了在计算机中表示和处理图,常见的存储方式有邻接矩阵(Adjacency Matrix)和邻接表(Adjacency List)。
邻接矩阵是一个二维数组,其中行和列表示节点,矩阵的值表示节点之间是否有边相连。
邻接表则使用链表的形式来表示节点之间的连接关系,每个节点对应一个链表,链表中存储了与该节点相连的其他节点。
3. 图的遍历图的遍历是指沿着图中的路径,依次访问所有节点的过程。
常见的图遍历算法有深度优先搜索(Depth-First Search)和广度优先搜索(Breadth-First Search)。
深度优先搜索先选择一个起始节点,沿着路径一直深入直到无法继续,然后回溯到其他未访问的节点,继续深入;而广度优先搜索则是从起始节点开始,并逐层扩展,逐层访问。
4. 最短路径算法最短路径算法用于计算两个节点之间的最短路径,即路径上边的权值之和最小。
其中,最常用的最短路径算法是狄克斯特拉算法(Dijkstra Algorithm)。
该算法通过逐步更新节点到其他节点的距离,找到起始节点到目标节点的最短路径。
5. 拓扑排序拓扑排序(Topological Sorting)是一种对有向无环图进行排序的算法。
在有向图中,如果节点 A 的边指向节点 B,那么 B 必须在 A 之后才能出现在排序结果中。
图论及其应用

Prim算法及思想
• • • • • 首先我们将V分成两部分U,S U∩S=∅ U∪S=V 一开始S中只有任意以个节点 每次我们枚举每条U,S之间的边权最小的边S中 这条边的端点 删除并加入U • 我们可以每次更新S中点的这个值不需要每次枚 举边复杂度O(n^2) • 如果使用堆优化可以做到O(nlogn+nlogm)
tarjan算法
tarjan算法
拓扑排序
• 每次选择一个入度为0的点加入队列,然后 删掉这个点的所有出度
小试身手
• APIO2009 atm • 有一个城市有若干条有向道路 • 一个小偷从一个点出发想偷这个城ATM机, 他从一个点出发,最后偷完之后需要到一 个酒吧庆祝,给定道路情况,每个路口atm 的钱数和有没有酒吧,求最多能偷多少钱。 • n<=100000
小试身手
对于n<=1000我们依然可以直接暴力建出图 来进行Dijsktra算法但是对于n<=10000的测 试点,所有边一共有10^10条,我们无法存下 来但是我们发现,只有x坐标相邻和y坐标相 邻的边才有意义(为什么?),然后就可以建出 图来用堆优化的Dij或者spfa过掉
小试身手
• 给你一个n个点的图,小Q有q个询问,每次 询问任意两点之间的最短路 • n<=200,q<=4000000
Байду номын сангаас
最短路算法
• 如果我们需要知道所有的点对之间的最短 路,可以使用floyed的传递闭包方法。 • floyed算法思想: • 我们每次选择一个中间点,然后枚举起点 和终点,用通过中间点的最短路径更新起 点和终点之间的最短路径时间复杂度O(n^3)
floyed代码实现
• 代码非常简单 • 注意枚举顺序
应用离散数学有向图

1 0 0 1 1 0 1 0
6.1有向图概述
定义 设D=<V,E>为有向图, V={v1, v2, …, vn}, 令 ={
称(pij)n n为D地可达矩阵, 记作P(D), 简记为P.
性质: P(D)主对角线上地元素全为1. D强连通当且仅当P(D)地元素全为1.
性质:
(1)
a n (1)
j1 ij
d (vi ),
i 1,2,..., n
(2)
a n (1)
i1 ij
d (v j ),
j 1,2,..., n
(3)
a(1) ij
m
D中长度为
1 的通路数
i, j
(4)
a n (1)
i1 ii
D中长度为
1 的回路数
6.1有向图概述
有向图地邻接矩阵 例:
6.2 最短路径
Dijkstra算法步骤: 1,初始化阶段,设置辅助数组Dist,其中每个分量Dist[k] 表 示当前所求得地从源点到其余各顶点 k 地最短路径。 除了起点A外,所有节点地距离Dist设置为无穷大。 一般情况下,Dist[k] = <源点到顶点 k 地边上地权值>
或者 = <源点到其它顶点地路径长度> + <其它顶点到顶点 k 地边上地权值>。 2,更新邻居地距离。
(3) 1地总个数等于-1地总个数, 且都等于m
(4) 平行边对应地列相同
6.1有向图概述
有向图地邻接矩阵
定义 设有向图D=<V,E>, V={v1, v2, …, vn}, E={e1, e2, …,
em},
图论的基本概念与应用

图论的基本概念与应用图论作为一门理论研究和应用探索的数学学科,不仅在学术和工程领域发挥着巨大作用,而且在现代科技和日常生活中也处处体现。
本文将简单介绍图论的基本概念、应用领域,以及一些相关案例。
一、基本概念图论的研究对象是图。
图是由一些点和连接这些点的线组成的,表示事物之间的某种关系,如网络中的路由、社交网络中的朋友等等。
根据点与线的不同特征,图被分为有向图和无向图。
有向图中的边是有方向的,表示两个节点之间是起点和终点的关系。
无向图中的边没有方向,表示两个节点之间是双向的。
图的另一个重要概念是网络,网络是在边上赋予权值用以表示边的强度或距离的图。
在图论中,我们常用的还有度数和路径的概念。
度数是一个点相邻边的数量,路径是由若干个顶点和它们之间的边所构成的序列,且顶点之间按照连接的顺序排列。
二、应用领域图论被广泛应用于计算机科学、运筹学、生物学、化学、经济学等领域。
在计算机科学中,图论被用于构建搜索引擎、路由算法等多个方面。
在运筹学中,最短路径算法、匹配算法、流量分配算法等问题可通过图论求解。
生物学中,图以蛋白质相互作用网、基因调控网等方式表现生物体内的复杂关系。
在化学中,图被用于描述分子之间的行为和作用。
在经济学中,图常常被用于解决网络流量调度和供应链计算。
三、相关案例1. 社交网络在社交网络中,我们可以将人视为节点,人与人之间的关系视为边,从而构建出一个网络模型。
通过对网络模型的分析,可以发现一些有趣的现象或规律,比如弱连接理论、六度分离理论等,这些理论不仅仅能被应用于社交网络,还可以用于其他领域的研究。
2. 铁路路径优化一个问题是如何生成铁路的最短路径,它既可以被看作是一个有向图问题,也可以看作是一个网络流问题。
由于铁路上存在许多互联的节点,因此在这种情况下,图论技术可以用于优化路径,解决径路选择和路径总长度最小化等问题。
3. 分子结构预测化学家常常利用图论的相关技术来模拟和预测分子的结构。
在这种情况下,节点表示原子,边表示原子之间的化学键。
第8章_有向图

图论及其应用
5
8.1 有向图——习题
10.1.1. 一个简单图有多少个定向图? 10.1.2. 证明: = = 。 10.1.3. 设有向图D中无有向圈,则 d (v ) d (v ) v V v (a) = 0V; (b) 存在一个顶点排序v1,……,v ,使对1 i ,每条 以vi为 头的弧其尾都在{v1,……,vi-1} 中。 10.1.4. 证明:D是双向连通的 D是连通的,且D的每个块 是双向连通的。 10.1.5. D的逆图 是把D中每弧的方向都改为其反向所得的 有向图。试用逆图慨念及习题10.1.3.(a) 来证明: 若有向图D中 无有向圈,则+ = D 。 0 10.1.6. 证明:严格有向图包含长 max{ ,+}的有向路。 10.1.7. 证明:严格有向图中若max{ ,+} = k 1,则 D包含长 k+1 的有向圈。
图论及其应用
第8章 有向图
8.1 有向图
有向图(directed graph;digraph) D =(V,A) V(D) —— 顶点集。 a u v A(D) —— 弧集。 弧a = (u,v):其头为v,其尾为u; 弧a从u连到(join to)v。 有向子图(subdigraph) 有向图D的基础图(underlying graph) 对应于D的无向图G(称D为G的一个定向 (orientation)图)
8.1 有向图
易见,有向图D = (V, A)中顶点间的双向连通性是V上 的一个等价关系,它的等价类确定了V的一个划分 (V1,……,Vm), 使顶点u与v双向连通 u与v 同属某等价类Vi 。 称每个导出子图D[V1],……,D[Vm]为有向图D的一 个双向分支(dicomponent;strong component)。 当D只有一个双向分支时,称D为双向连通的。 易见,D的任二双向分支之间的弧都是同一个方向的。 例
图论的基本概念和应用

图论的基本概念和应用图论是数学中的一个重要分支,研究的是图的性质和图之间的关系。
图论在计算机科学、网络科学、运筹学等领域有着广泛的应用。
本文将介绍图论的基本概念和一些常见的应用。
图的定义图是由节点(顶点)和边组成的一种数据结构。
节点表示对象,边表示对象之间的关系。
图可以分为有向图和无向图两种类型。
有向图有向图中,边是有方向的,表示从一个节点到另一个节点的关系。
如果从节点A到节点B存在一条边,那么我们称节点A指向节点B。
无向图无向图中,边是没有方向的,表示两个节点之间的关系。
如果两个节点之间存在一条边,那么我们称这两个节点是相邻的。
图的表示方法图可以用多种方式进行表示,常见的有邻接矩阵和邻接表两种方法。
邻接矩阵邻接矩阵是一个二维数组,其中行和列分别表示图中的节点,数组元素表示节点之间是否存在边。
如果节点i和节点j之间存在边,则邻接矩阵中第i行第j列的元素为1,否则为0。
邻接表邻接表是一种链表的形式,其中每个节点都有一个链表,链表中存储了与该节点相邻的节点。
邻接表更加节省空间,适用于稀疏图。
图的遍历图的遍历是指从图中的某个节点出发,按照一定规则依次访问图中的所有节点。
常见的图遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索(DFS)深度优先搜索是一种递归的遍历算法,从起始节点开始,沿着一条路径尽可能深入地访问图中的节点,直到无法继续深入为止,然后回溯到上一个节点,继续访问其他未被访问过的节点。
广度优先搜索(BFS)广度优先搜索是一种非递归的遍历算法,从起始节点开始,按照距离起始节点的距离逐层访问图中的节点。
首先访问起始节点,然后访问与起始节点相邻的所有节点,再访问与这些相邻节点相邻的所有未被访问过的节点,以此类推。
图的应用图论在许多领域都有着广泛的应用,下面介绍几个常见的应用场景。
社交网络分析社交网络是一个典型的图结构,其中节点表示用户,边表示用户之间的关系。
通过对社交网络进行图论分析,可以研究用户之间的关系、社区发现、信息传播等问题。
数据结构(C语言版)_第7章 图及其应用

实现代码详见教材P208
7.4 图的遍历
图的遍历是对具有图状结构的数据线性化的过程。从图中任 一顶点出发,访问输出图中各个顶点,并且使每个顶点仅被访 问一次,这样得到顶点的一个线性序列,这一过程叫做图的遍 历。
图的遍历是个很重要的算法,图的连通性和拓扑排序等算法 都是以图的遍历算法为基础的。
V1
V1
V2
V3
V2
V3
V4
V4
V5
图9.1(a)
图7-2 图的逻辑结构示意图
7.2.2 图的相关术语
1.有向图与无向图 2.完全图 (1)有向完全图 (2)无向完全图 3.顶点的度 4.路径、路径长度、回路、简单路径 5.子图 6.连通、连通图、连通分量 7.边的权和网 8.生成树
2. while(U≠V) { (u,v)=min(wuv;u∈U,v∈V-U); U=U+{v}; T=T+{(u,v)}; }
3.结束
7.5.1 普里姆(prim)算法
【例7-10】采用Prim方法从顶点v1出发构造图7-11中网所对 应的最小生成树。
构造过程如图7-12所示。
16
V1
V1
V2
7.4.2 广度优先遍历
【例7-9】对于图7-10所示的有向图G4,写出从顶点A出发 进行广度优先遍历的过程。
访问过程如下:首先访问起始顶点A,再访问与A相邻的未被 访问过的顶点E、F,再依次访问与E、F相邻未被访问过的顶 点D、C,最后访问与D相邻的未被访问过的顶点B。由此得到 的搜索序列AEFDCB。此时所有顶点均已访问过, 遍历过程结束。
【例7-1】有向图G1的逻辑结构为:G1=(V1,E1) V1={v1,v2,v3,v4},E1={<v1,v2>,<v2,v3>,<v2,v4>,<v3,v4>,<v4,v1>,<v4,v3>}
数学中的图论基础

数学中的图论基础图论作为数学中的一个重要分支,研究的是图这种数学结构。
图论不仅在数学理论中有着重要的地位,而且在计算机科学、运筹学、电路设计等领域也有着广泛的应用。
本文将介绍数学中的图论基础知识,包括图的基本概念、性质以及一些经典的应用。
1. 图的基本概念图由节点(顶点)和边组成,是图论研究的基本对象。
图可以分为有向图和无向图两种。
1.1 有向图有向图中的边是有方向的,即从一个节点指向另一个节点。
有向图用表示,其中为节点集合,为有向边的集合。
1.2 无向图无向图中的边是没有方向的,即连接两个节点的边不区分起点和终点。
无向图用表示,其中为节点集合,为无向边的集合。
2. 图的性质图论中有许多重要的性质和定理,这些性质对于研究图的结构和特点具有重要意义。
2.1 连通图在无向图中,如果任意两个节点之间都存在路径相连,则称该图是连通图。
连通图中任意两个节点都是连通的,不存在孤立的节点。
2.2 完全图完全图是一种特殊的图,任意两个节点之间都存在一条边相连。
完全图用表示,其中表示图中节点的个数。
2.3 欧拉图欧拉图是指一条路径经过图中每条边恰好一次的连通图。
欧拉图有一个著名的结论——存在欧拉回路的充要条件是该图所有节点度数为偶数。
2.4 哈密顿图对于一个图,如果存在一条路径经过图中每个节点恰好一次,则称该路径为哈密顿路径。
如果存在一条经过每个节点恰好一次的回路,则称该回路为哈密顿回路。
3. 图论的应用图论在现实生活和学术研究中有着广泛的应用。
以下介绍一些图论在实际问题中的应用场景。
3.1 网络路由在计算机网络中,路由器通过构建网络拓扑图并使用图论算法来选择最佳路径,实现数据的传输和通信。
3.2 交通规划交通规划中的交通流量分析、交通网络设计等问题可以通过图论模型进行建模和求解,帮助优化城市交通系统。
3.3 社交网络分析社交网络中的节点表示个体,边表示个体之间的关系。
通过图论分析社交网络的拓扑结构和节点之间的连接关系,可以帮助推荐系统、信息传播等问题。
图论及其应用

一个最小边割集。
连通度
定义:如果0<k≤λ(G),则称G是k-边连通图。
定理:图G是k-边连通图当且仅当对E(G)的任 意一个子集E1,若|E1|≤k-1,则G\E1仍是连通 图。
连通度
定理:对p 简单图G,有
(1) (G) (G),(G) (G); (2) (G) p 1,等号成立当且仅当G Kp; (3)(G) p 1,等号成立当且仅当G Kp; (4)对G的任意一个顶点u, (G) 1 (G u); (5)对G的任意一条边e,(G) 1 (G e) (G).
(v0-vk)路P,且E(P) E(W ) 。
若P是一条路,x与y为顶点,用
表示这条路。
当G为简单图时,W=v0e1v1e2v2···vk-1ekvk,可简写为 W=v0v1v2···vk-1vk。
路和圈
对于图G中两个给定的顶点u和v,若存在(u-v)路,则 必存在长度最短的(u-v)路P0,称P0的长度为u,v的 距离,记为dG(u,v)或d(u,v)。
Байду номын сангаас
连通图
定理:设D是连通的有向图,则D是强连通的当 且仅当D的每一条弧都含在某一有向圈中。
连通度
定义:设连通图G=(V,E)不是完全图,V1是V(G)的一个
非空真子集,若G\V1非连通,则称V1是G的点割集。若点 割集V1含有k个顶点,也称V1是G的k-点割集。
定义:图G是p 阶连通图,令
(G)
表示n个点的回路。
有向图D的有向途径是指交替地出现点和弧的一个有限非空序列
W=v0a1v1a2v2···akvk ,对于i=1,2,···,k,弧ai的起点是vi1,终点是vi,简称W是一条(v0-vk)有向途径。在严格有向图中, 可用v0v1···vk表示有向途径。
图的概念和应用

图的概念和应用一、引言随着时代的发展和科技的进步,图的概念和应用也越来越广泛。
图是一种抽象的数学模型,可以代表不同的现实问题,如社交网络、道路交通状况、电子电路等等。
图的应用已经渗透到日常生活中的方方面面,为人类生活和工作带来了很多方便和便利。
本文将讨论图的概念和应用,探索其在现实生活中的重要作用。
二、图的概念图是由边和顶点组成的一种抽象数学模型,通常用G(V,E)表示,其中V表示一些点的集合,E表示一些边的集合。
边连接两个点,代表它们之间的关系。
由于图可以很好地表示实际问题,因此在很多领域都有广泛的应用。
以下是有关图的一些基本概念:1.有向图和无向图有向图是一种图,其中边有一个方向,只能从一个顶点到另一个顶点。
而在无向图中,边没有方向,可以从一个顶点到另外一个顶点,也可以反向。
例如,社交网络就可以表示为无向图,因为连接两个用户的关系是相互的,而不是单向的。
2.权值图在一些实际问题中,边不仅表示顶点之间的关系,还可以表示它们之间的距离、费用等。
这种图就被称为带权图或权值图。
例如,在路径规划中,边可以表示两个地点之间的距离,这样可以找到最短路径,以便尽快到达目的地。
3.连通图如果一个图中每个顶点都可以通过一些边连接到其他顶点,则称该图为连通图。
在社交网络中,如果每个用户都有至少一个朋友,则该社交网络是连通的。
如果存在某些顶点无法通过边连接到其他顶点,则称该图为非连通图。
4.带环图和无环图如果图中存在至少一条边形成了一个闭合的环,则称该图为带环图。
带环图常见于电子电路中,因为信号可以沿着电路循环。
而如果图中没有形成环,则称该图为无环图。
例如,家族关系图通常是一个无环图,因为不存在类似于"表亲婚姻"这样的关系会导致一个闭合的环。
三、图的应用图在现实生活中有广泛的应用,这里只列举了一些例子:1.社交网络如前所述,社交网络可以表示为无向图。
用户可以表示为顶点,而他们之间的关系可以表示为边。
关于图的知识点六年级

关于图的知识点六年级图是数学中重要的概念之一,它不仅在数学领域有着广泛的应用,也在生活中随处可见。
图是由节点和边构成的一种数据结构,用于描述不同对象之间的关系。
本文将从基本概念、图的分类、图的表示方法以及图的应用等方面进行讨论,并对六年级学生应该了解的图的知识点进行详细介绍。
一、基本概念图由节点和边组成,节点代表对象,边代表节点之间的关系。
图可以是有向的或无向的,有向图中的边有方向,无向图中的边没有方向。
图中的节点可以相互连接,形成路径。
节点之间的路径可以是直接的,也可以经过其他节点。
图中的节点数量称为图的阶,而边的数量称为图的大小。
二、图的分类根据节点与边的性质,图可以分为无权图和带权图。
无权图中的边没有权重或距离的概念,只表示节点之间的连接关系;而带权图中的边具有权重或距离的属性,可以表示节点之间的距离或其他指标。
根据边的方向性,图可以分为有向图和无向图。
有向图中的边有方向,表示节点之间的单向关系,而无向图中的边没有方向,表示节点之间的双向关系。
三、图的表示方法图可以使用邻接矩阵和邻接表来表示。
邻接矩阵是一个二维矩阵,用来表示节点之间的连接关系,矩阵的行和列分别代表图的节点,矩阵中的元素表示节点之间是否存在边。
邻接表则是使用链表的方式来表示图,每个节点对应一个链表,链表中存储与该节点直接相连的节点信息。
四、图的应用图的应用非常广泛,特别是在计算机科学领域。
其中,最熟悉的应用之一是地图导航系统。
地图可以看作是一个无向带权图,节点表示地点,边表示路径,边的权重表示距离或时间。
通过图的算法,可以实现最短路径的查找,从而帮助人们进行导航。
除此之外,图还可以用于社交网络分析、数据挖掘、电路设计等领域。
五、图的知识点(适用于六年级)在六年级学习图的知识时,以下几个重点需要掌握:1. 了解图的基本概念,能够通过示例理解节点和边的含义,并能够区分有向图和无向图。
2. 掌握图的表示方法,包括邻接矩阵和邻接表的构建与应用,能够根据给定的图结构,正确地绘制对应的邻接矩阵或邻接表。
第8章 有向图

有向图 D
D 的双向分支
图论及其应用 4
8.1 有向图
− 入度(indegree)d D (v ) 。 入度 d+ 出度(outdegree) D (v ) 。 出度 记号 δ+,δ− :最小出、入度; ∆+ , ∆- :最大出、入度。 称有向图D为严格的 严格的(strict) 严格的 ⇔ 无环、且不存在两弧其端点及方向相同。
定理10.1 (Roy,1967; Gallai,1968) 有向图 包含一 有向图D包含一 定理 长为 χ - 1 的有向路。 的有向路
证明:令D’ 为D的极大 极大无有向圈、有向生成子图(注:D’ 可由空生成子 极大 图作为开始,在保持无有向圈的条件下,通过逐步加弧而得) 。令k为D’ 中最长有向路的长。今用色1,2,……,k+1对D’ 进行顶点着色如下: 将v着以色i ⇔ D’ 中以v为起点的最长有向路的长为i 1。 来证这是D的正常(k+1)-顶点着色: 先证,D’ 中任一有向(u,v)-路P的起、终点u与v一定不同色:设v被着以色 i 。则由着色法知,在 D’ 中以v为起点的一最长有向路,设为,Q的长为i - 1 。由于D’ 中无有向圈,PQ为一有向路,起点为u,长 ≥ i 。从而u上的 色j > i。 只要再证,D中任一弧(u,v)的两端一定不同色:当 (u,v)为D’ 中的弧时, 它就是D’ 中的一有向(u,v)-路,从而u与v不同色。 9 图论及其应用
10.2 有向路
当 (u,v)不是D’ 中的弧时,由D′ 之极大性知 D’ + (u,v) 包含一有向圈C。于是, C - (u,v) 是 D’ 中的有向(v,u)-路,从而u与v也不同色。 由上述知,D为(k+1)-可着色的,因此 χ ≤ k+1 ,得k ≥ χ - 1 , 故D中有长为χ - 1 的有向路。 #
数学中的图论与应用

数学中的图论与应用数学中的图论是近年来受到广泛关注的研究领域。
在现代社会中,图论已经成为解决各种实际问题的有力工具,尤其在网络、通讯、计算机科学、运筹学等领域得到了广泛应用。
本文将介绍图论的基本概念和算法,并讨论其在实际中的应用。
一、图论的基本概念图论是一种研究边和点之间关系的数学工具。
图由顶点集和边集两个基本组成部分构成。
顶点是图中的基本元素,边连接两个顶点,表示它们之间的关系。
如果两个顶点之间有边相连,那么它们就是相邻的。
在图论中,有两种基本的图:有向图和无向图。
有向图中的边有方向,表示从一个顶点到另一个顶点的方向,而无向图中的边没有方向,表示两个顶点之间的关系是双向的。
图的表示方式有两种:邻接矩阵和邻接表。
邻接矩阵是一个二维矩阵,其中每一行和每一列表示一个顶点,矩阵中的元素表示相应的两个顶点之间是否有边相连。
邻接表是一种链表结构,每个顶点对应一个链表,在链表中存储该点的所有邻接点。
邻接表适用于表示稀疏图,而邻接矩阵适用于表示稠密图。
二、图的遍历算法在图中,从一个顶点出发,访问到这个图中所有的顶点,就称为图的遍历,其中包括深度优先遍历和广度优先遍历。
深度优先遍历的实现方案为:从图中的一个顶点开始,将其标记为已访问,然后访问其邻接点,对每个未访问的邻接点进行递归遍历。
直到所有与该顶点相邻的顶点都被访问完毕,才回溯到上一个未被访问的节点。
广度优先遍历的实现方案为:从图中的一个顶点开始,做宽度优先遍历,即先将该顶点所有的未被访问的邻接点全部入队,然后从队列中取出一个元素,标记为已经访问,访问其所有未被访问的邻接点,并将这些邻接点入队。
重复这个过程,直到队列为空。
三、最短路径算法在图论中,最短路径算法可以用来解决许多实际问题。
其中,最为经典的算法是 Dijkstra 算法和 Floyd-Warshall 算法。
Dijkstra算法是一种单源最短路径算法,用于计算有向图或者无向图的最短路径。
算法的基本思想是,通过每一次“松弛”操作,在已访问的顶点集和未访问的顶点集之间,尽可能地减小各个顶点到起点之间的距离。
图论基础:图的基本概念和应用

图论基础:图的基本概念和应用图论是数学中的一个分支领域,研究的是图的性质和图上的问题。
图被广泛应用于计算机科学、电子工程、运筹学、社交网络分析等领域。
本文将介绍图论的基本概念和一些常见的应用。
一、图的基本概念1. 顶点和边图是由顶点和边组成的,顶点代表图中的元素,边则代表元素之间的关系。
通常顶点表示为V,边表示为E。
2. 有向图和无向图图可以分为有向图和无向图。
在无向图中,边是没有方向的,顶点之间的关系是双向的;而在有向图中,边是有方向的,顶点之间的关系是单向的。
3. 权重在一些应用中,边可能具有权重。
权重可以表示顶点之间的距离、成本、时间等概念。
有权图是指带有边权重的图,而无权图则是指边没有权重的图。
4. 路径和环路径是指由一系列边连接的顶点序列,路径的长度是指路径上边的数量。
环是一种特殊的路径,它的起点和终点相同。
5. 度数在无向图中,顶点的度数是指与该顶点相关联的边的数量。
在有向图中分为出度和入度,出度是指从该顶点出去的边的数量,入度是指指向该顶点的边的数量。
二、图的应用1. 最短路径问题最短路径问题是图论中的一个经典问题,它研究如何在图中找到两个顶点之间的最短路径。
这个问题有许多实际应用,例如在导航系统中寻找最短驾驶路径,或者在电信网络中找到最短的通信路径。
2. 最小生成树最小生成树是指一个连接图中所有顶点的无环子图,并且具有最小的边权重之和。
这个概念在电力网络规划、通信网络优化等领域有广泛的应用。
3. 路由算法在计算机网络中,路由算法用于确定数据包在网络中的传输路径。
图论提供了许多解决路由问题的算法,如最短路径算法、Bellman-Ford 算法、Dijkstra算法等。
4. 社交网络分析图论在社交网络分析中起着重要的作用。
通过构建社交网络图,可以分析用户之间的关系、信息传播、社区发现等问题。
这些分析对于推荐系统、舆情监测等领域具有重要意义。
5. 电路设计图论在电路设计中也有应用。
通过将电路设计问题转化为图论问题,可以使用图论算法解决电路布线、最佳布局等问题。
有向无环图及其应用

有向树, 图7.15 有向树,DAG图和有向图一例 图和有向图一例
(2)表达式子式共享 ) 例如,下述表达式 例如,下述表达式((a +b ) * (b * (c + d)) + (c + d) * e) * ((c + d) * e),用 , 二叉树表示如图7.16所示,用有向无环图表示如图7.17所示. 所示, 所示. 二叉树表示如图 所示 用有向无环图表示如图 所示 * + * + a b b c * + d 图7.16 用二叉树描述表达式 c + d * e c + d * e
count = 0; while (!StackEmpty (S)) { Pop (S, i); printf (i, G.vertices[i].data); //输出 号顶点并计数 输出i号顶点并计数 输出 ++ count; for (p = G.vertices[i].firstarc; p; p = p->nextarc) { - k = p->adjvex; //对i号顶点的每个邻接点的入度减 号顶点的每个邻接点的入度减1 - 对 号顶点的每个邻接点的入度减 if (!(――indegree[k])) Push (S, k); //若入度减为 ,则入栈 若入度减为0, 若入度减为 } // for } // while if (count < G.vexnum) return ERROR; //该有向图有回路 该有向图有回路 } // TopologicalSort
v6 → v1 → v 4 → v3 → v 2 → v5
£7.5.3 关键路径
(1)定义 ) 关键路径( ):在 网中有些活动可以并行的进行, 关键路径(Critical Path):在AOE-网中有些活动可以并行的进行, ): 网中有些活动可以并行的进行 所以完成工程的最短时间是从开始点到完成点的最长路径的长度( 所以完成工程的最短时间是从开始点到完成点的最长路径的长度(路径 长度是指路径上各活动持续时间之和,而不是路径上弧的数目). ).这个 长度是指路径上各活动持续时间之和,而不是路径上弧的数目).这个 路径长度最长的路径叫关键路径. 路径长度最长的路径叫关键路径. 关键活动: 的活动. 关键活动:l(i) = e(i)的活动.即活动的最早开始时间=最迟开始时间. 的活动 即活动的最早开始时间=最迟开始时间. 显然,关键路径上的所有活动都是关键活动. 显然,关键路径上的所有活动都是关键活动. (2)AOE-网 ) 网 AOE-网(Activity On Edge):即边表示活动的网.AOE-网是一个 网 ):即边表示活动的网 ):即边表示活动的网. 网是一个 带权的有向无环图.其中,顶点表示事件(Event),弧表示活动,权 带权的有向无环图.其中,顶点表示事件( ),弧表示活动, ),弧表示活动 表示活动持续的时间. 表示活动持续的时间.
图论的基本概念及其应用

图论的基本概念及其应用图论是离散数学中的一个重要分支,研究的是图的性质和图之间的关系。
图由节点和连接节点的边组成,以解决现实生活中的许多问题。
本文将介绍图论的基本概念,并探讨它在不同领域中的应用。
一、图的基本概念1. 节点和边图由节点(顶点)和边组成,节点代表某个实体或概念,边表示节点之间的关系。
节点和边可以有不同的属性,如权重、方向等。
2. 有向图和无向图有向图中,边有固定的方向,表示节点之间的单向关系;无向图中,边没有方向,节点之间的关系是相互的。
3. 连通图和非连通图连通图是指图中任意两个节点之间都存在路径;非连通图则存在至少一个节点无法到达其它节点。
4. 网络流每条边上有一个容量限制,网络流通过边传输,满足容量限制的条件下尽可能多地进行。
二、图论在计算机科学中的应用1. 最短路径通过图论中的最短路径算法,可以计算出两个节点之间的最短路径。
最短路径在无人驾驶、物流配送等领域中具有重要的应用价值。
2. 最小生成树最小生成树算法用于寻找连接图中所有节点的最小总权重的树形结构。
在通信网络、电力输送等领域中,最小生成树被广泛应用。
3. 网络流问题图论中的网络流算法可以用于解决诸如分配问题、路径规划等优化问题。
例如,在医疗资源调度中,网络流算法可以帮助医院优化资源分配。
三、图论在社交网络分析中的应用1. 社交网络社交网络可以用图模型来表示,节点代表个体,边表示个体之间的联系。
利用图论分析社交网络,可以发现用户群体、影响力传播等信息。
2. 中心性分析中心性分析用于评估节点在网络中的重要性,衡量指标包括度中心性、接近中心性等。
中心节点的识别对于广告投放、信息传播等决策具有指导意义。
3. 社团检测社团检测可以发现社交网络中具有紧密联系的节点群体,进一步分析社交群体的行为模式、用户偏好等。
四、图论在物流优化中的应用1. 供应链管理供应链中的各个环节可以用图模型表示,通过图论算法优化物流路径,提高物流效率。
2. 仓库位置问题通过图论中的最短路径算法和最小生成树算法,可以找到最佳的仓库位置,使物流成本最小化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单源最短路径问题是:给定带权有向图G=(V, E)和源点s∈V,找出从源点s到V 中其他各顶点的最短路径
迪杰斯特拉(Dijkstra)算法求单源最短路径
Dijkstra算法如下所示:
Dijkstra(G,D,s)
{
//用Dijkstra算法求有向网G的源点s到各顶点的最短路径长度
//以下是初始化操作
S={s};D[s]=0;
//设置初始的红点集及最短距离
for( all i∈ V-S )do
//对蓝点集中每个顶点i
D[i]=G[s][i];
//设置i初始的估计距离为w<s,i>
//以下是扩充红点集
for(i=0;i<n-1;i++)do
{
//最多扩充n-1个蓝点到红点集
D[k]=min{D[i];all i V-S};//在当前蓝点集中选估计距离最小的顶点k
基本术语:
1. 路径(Path) 在无向图G中,如果存在一个顶点序列vp, vi1, vi2, …, vim, vq,使得(vp, vi1),(vi1, vi2),…,(vim, vq)都属于E(G),则称顶点vp到vq存在一条路径(Path)
2. 简单路径 如果一条路径上除vp和vq外,其余顶点均不相同,则称此路径为一条简单路
径(这里vp和vq可以相同也可以不同)
3. 简单回路 起点和终点都相同的简单路径称为简单回路(Cycle)。
4. 有根图和图的根 在一个有向图中,如果存在一个顶点v,从v可以到达图中 其他所有顶点,则称此有向图为有根图,其中v称作图的根。
5. 连通图和连通分量 在无向图中,如果从顶点V到顶点V′有路径,则称V和V′ 是连通的。如果对于图中的任意两个顶点Vi和Vj都是连通的,则称G为连通图
8. 哈密顿图 若图G中存在一条通过图中所有顶点一次且仅一次的回路, 则称此回路为图的哈密顿回路;具有哈密顿回路的图称为哈密顿图
4.2 图的存储结构
4.2.1 图的邻接矩阵表示法
1. 图的邻接矩阵表示法
在图的邻接矩阵表示法中,用一个顺序表来存储顶点信息,用邻接矩阵来表示顶点间的相邻关 系。
2. 邻接矩阵(Adacency Matrix)
设G=(V, E)是具有n个顶点的图,则G4的.2邻.2接邻矩接阵表是表一个示n法阶方阵:
Vi,Vj 是E(G)中的边 若(Vi,V j)或 Vi,Vj 不是E(G)中的边
4.2.2 邻接表表示法
图的邻接表表示法类似于树的孩子链表表示法
邻接表的类型定义如下:
#define MaxVerNum 100
//最大顶点数为100
typedef struct node
{
//边表结点
int adjvex;
//邻接点域
struct node *next;
//链域
//若要表示边上的权,则应增加一个数据域
}EdgeNode;
typedef struct vnode
6. 强连通图和强连通分量 在有向图G中,若对于V(G)中任意两个不同 的顶点vi和vj,都存在从vi到vj以及从vj到vi的路径,则称G是强连通图。 有向图的极大强连通子图称为G的强连通分量。
7. 欧拉图 如果图中存在一条通过图中每条边一次且仅一次的回路,则 称此回路为欧拉回路,具有欧拉回路的图称为欧拉图
: 搜索过程
(a)无向图 G
(b)G 的深度优先搜索过程
4.3.2 广度优先搜索
特点:尽可能优先对横向搜索 基本思想是:从图中某个顶点v1出发,访问了v1之后依次访问v1的所有邻接点;然
后分别从这些邻接点出发按深度优先搜索遍历图的其他顶点,直至所有顶点都被 访问到
: 广度优先搜索的过程
4.4 单源最短路径问题
{
//顶点表结点
VertexType vertex;
//顶点域
EdgeNode *firstedge;
//边表头指针
}VertexNode;
typedef VertexNode AdjList[MaxVertexNum]; //AdjList是邻接表类型
typedef struct
{
AdjList adjlist;
//给二维数组d赋初值,等于邻接矩阵G for(i=0;i<n;i++)
for(j=0;j<n;j++) d[i][j]=G[i][j];
D[j]=D[k]+G[k][j];
}
}
4.5 顶点对之间最短路径
为了求出每一对顶点之间的最短路径,可以应用dijkstra算法,分别以每 个顶点为源点,求出从源点到各个顶点最短路径,除此之外,还可以应 用另一种算法,称为floyd算法
floyd算法的具体过程如下 : void Floeyd(adjmatrix G,adjmatrix d,int n) //利用弗洛伊德算法求图GA每对顶点间的最短长度,对应存于二维数组A中 { int i,j,k;
4.1 基本定义与术语
基本定义:
图的二元组定义:图G由两个集合V和E组成,记为: G=(V, E)
其中:V是顶点的有穷非空集合,E是V中顶点偶对(称为边)的有穷集 有向图还是无向图,顶点数n、边数e和度数之间有如下关系:
1 n
e 2 i1 D(vi )
其中:n为图中的顶点数,e为图中的边数,D(Vi)为图中的第i顶点的度数
if(D[k]==∞)
return; 路径不存在
//蓝点集中所有蓝点的估计距离均为∞时,表示这些顶点的最短
S=S∪{k};
//将蓝点k涂红后扩充到红点集
for( all j∈V-S )do
//调整剩余蓝点的估计距离
if(D[j]>D[k]+G[k][j])
//新红点k使原D[j]值变小时,用新路径的长度修改D[j],使j离s更近
//邻接表
int n,e; 图中当前顶点数和边数
}ALGraph; AdjList类型
//对于简单的应用,无须定义此类型,可直接使用
4.3 图的遍历
图的遍历基本方法有两种:深度优先搜索和广度优先搜索,这两种
方法都适用于有向图和无向图的遍历
4.3.1 深度优先搜索
特点:尽可能先对纵深方向进行搜索。 基本思想是:以图中某个顶点v1为出发点,先访问v1,然后选一个v1的邻 接点v2,以v2为新的出发点继续进行深度优先搜索,直至图中所有顶点都被访 问过。