几何概型2

合集下载

《几何概型》教学设计2

《几何概型》教学设计2

《几何概型》教学设计教学内容:人教版《数学必修3》第三章第三节几何概型。

学情分析:学生学习了概率的含义以及古典概型的计算方式,对概率有了一定的了解,对概率的求法也有了一定的方法。

现在进行几何概型的学习,可以通过对比进行学习,通过分辨两种概型的区别与联系,可以达到学习几何概型的目的。

教学目标知识与技能目标1.初步体会几何概型及其基本特点;2.会运用几何概型的概率计算公式,求简单的几何概型的概率问题;3.让学生初步学会把一些实际问题化为几何概型;过程与方法目标1.通过游戏、案例分析,体会几何概型与古典概型的区别;会用类比的方法学习新知识,提高学生的解题分析能力;2.经历将一些实际问题转化为几何概型的过程,探求正确应用几何概型的概率计算公式解决问题的方法,增强几何概型在解决实际问题中的应用意识;情感、态度与价值观目标通过对几何概型的研究,感知生活中的数学,体会数学文化,培养学生的数学素养。

教学重点:初步体会几何概型,将求未知量的问题转化为几何概型求概率的问题教学难点:将求未知量的问题转化为几何概型求概率的问题,准确确定几何区域D和与事件A对应的区域d,并求出它们的测度。

教学过程:一、复习引入T1:计算随机事件概率的方法有哪些?T2:古典概型的特征是什么?T3:如何计算古典概型的概率?二、创设情景,引入新课1.玩转盘游戏游戏规则:甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.数据的统计:1)请每一位同学以左边的转盘,做20次试验,统计指针指向B的次数,并计算指针指向B的频率。

2)教师以右边的转盘,分别做100、200、400、700次试验,统计指针指向B的次数,并计算指针指向B的频率。

2.学生活动(分组讨论)分析下列三个题目,回答问题:1)如图,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜. 求甲获胜的概率?2)射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色。

高中数学第3章概率3.3几何概型(2)教案苏教版必修3

高中数学第3章概率3.3几何概型(2)教案苏教版必修3

3.3 几何概型第2课时导入新课设计思路一:〔问题导入〕以下图是卧室与书房地砖示意图,图中每一块地砖除颜色外完全一样,小猫分别在卧室与书房中自由地走来走去.在哪个房间里,小猫停留在黑砖上概率大?卧室〔书房〕设计思路二:〔情境导入〕在概率论开展早期,人们就已经注意到只考虑那种仅有有限个等可能结果随机试验是不够,还必须考虑有无限多个试验结果情况.例如一个人到单位时间可能是8:00 至9:00之间任何一个时刻;往一个方格中投一个石子,石子可能落在方格中任何一点……这些试验可能出现结果都是无限多个.推进新课新知探究对于导入思路一:由于地砖除颜色外完全一样,小猫自由地走来走去,因此,小猫可能会停留在任何一块地砖上,而且在任何一块地砖上停留可能性一样,对于这样一个随机事件概率,有如下结论:对于一个随机试验,如果我们将每个根本领件理解为从某特定几何区域内随机地抽取一点,而该区域内每一点被取到时机都一样,这样就可以把随机事件与几何区域联系在一起.如果每个事件发生概率只与构成该事件区域长度〔面积或体积〕成比例,那么称这样概率模型为几何概率模型,简称几何概型.几何概型与古典概型一样也是一种等可能事件概率模型,它特点是:〔1〕试验中所有可能出现结果,也就是根本领件有无限多个. 〔2〕根本领件出现可能性相等.实际上几何概型是将古典概型中有限性推广到无限性,而保存等可能性,这就是几何概型.几何概型概率计算方法如下:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内〞为事件A ,那么事件A 发生概率为P(A)= .这里要求D 测度不为0,其中“测度〞意义依D 确定,当D 分别是线段、平面图形与立体图形时,相应“测度〞分别是长度、面积与体积等.对于导入思路二:〔1〕几何概率模型:如果每个事件发生概率只与构成该事件区域长度〔面积或体积〕成比例,那么称这样概率模型为几何概率模型.〔2〕几何概型概率公式:P 〔A 〕=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . 〔3〕几何概型特点:1°试验中所有可能出现结果〔根本领件〕有无限多个.2°每个根本领件出现可能性相等.应用例如思路1例1 取一个边长为2a 正方形及其内切圆〔如下图〕,随机向正方形内丢一粒豆子,求豆子落入圆内概率.分析:由于是随机丢豆子,故可以认为豆子落入正方形内任意一点都是时机均等,这符合几何概型条件,可以看成几何概型.于是利用几何概型求概率公式,豆子落入圆中概率应该等于圆面积与正方形面积比.解:记“豆子落入圆内〞为事件A ,那么 P(A)=4422ππ==a a 正方形面积圆的面积. 答:豆子落入圆内概率为4π.点评:在解题时,首先要区分是古典概型还是几何概型,这两种随机事件概率类型虽然每一个事件发生都是等可能,但是几何概型是有无数个根本领件情形,古典概型是有有限个根本领件情形.此外,本例可以利用计算机模拟,过程如下:〔1〕在Excel 软件中,选定A1,键入“=〔rand 〔〕-0.5〕*2”. 〔2〕选定A1,按“ctrl+C〞.选定A2~A1 000,B1~B1 000,按“ctrl+V〞.此时,A1~A1 000,B1~B1 000均为[-1,1]区间上均匀随机数.〔3〕选定D1,键入“=power 〔A1,2〕+ power 〔B1,2〕〞;再选定D1,按“ctrl+C〞;选定D2~D1 000,按“ctrl+V〞,那么D列表示A2+B2.〔4〕选定F1,键入“=IF〔D1>1,1,0〕〞;再选定F1,按“ctrl+C〞;选定F2~F1 000,按“ctrl+V〞,那么如果D列中A2+B2>1,F列中值为1,否那么F列中值为0.〔5〕选定H1,键入“FREQUENCY〔F1:F10,0.5〕〞,表示F1~F10中小于或等于0.5个数,即前10次试验中落到圆内豆子数;类似,选定H2,键入“FREQUENCY〔F1:F20,0.5〕〞,表示前20次试验中落到圆内豆子数;选定H3,键入“FREQUENCY 〔F1:F50,0.5〕〞,表示前50次试验中落到圆内豆子数;选定H4,键入“FREQUENCY〔F1:F100,0.5〕〞,表示前100次试验中落到圆内豆子数;选定H5,键入“FREQUENCY〔F1:F500,0.5〕〞,表示前500次试验中落到圆内豆子数;选定H6,键入“FREQUENCY〔F1:F1 000,0.5〕〞,表示前1 000次试验中落到圆内豆子数.〔6〕选定I1,键入“H1*4/10〞,表示根据前10次试验得到圆周率π估计值;选定I2,键入“H2*4/10〞,那么I2为根据前20次试验得到圆周率π估计值;类似操作,可得I3为根据前50次试验得到圆周率π估计值,I4为根据前100次试验得到圆周率π估计值,I5为根据前500次试验得到圆周率π估计值,I6为根据前1 000次试验得到圆周率π估计值.如图:例2 如图,在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC概率.分析:在线段AB上取一点C′,使得线段AC′长度等于线段AC长度.那么原问题就转化为求AM小于AC′概率.所以,当点M 位于以下图中线段AC′上时,AM<AC,故线段AC′即为区域d.区域d测度就是线段AC′长度,区域D测度就是线段AB长度.解:在AB上截取AC′=AC.于是P(AM<AC)=P(AM<AC′)=.2.答:AM小于AC′概率为2变式训练:假设将例2改为:如以下图,在等腰直角三角形ABC 中,过直角顶点C在∠ACB内部任作一条射线CM,与线段AB交于点M,求AM小于AC概率.解:此时,应该看作射线CM落在∠ACB内部是等可能.公式中区域D是∠ACB〔内部〕,而区域d求法应该与原题是一样,即在线段AB上取一点C′,使得线段AC′长度等于线段AC长度〔如图〕,那么区域d就是∠ACC′〔内部〕.从而区域d测度就是∠ACC′度数,区域D测度就是∠ACB度数.∠ACC′==67.5°,所以所求事件概率为.点评:由此可见,背景相似问题,当等可能角度不同时,其概率是不一样.此题可参考习题3.3第6题.例3 (会面问题)甲、乙二人约定在12 点到下午5 点之间在某地会面,先到者等一个小时后即离去.设二人在这段时间内各时刻到达是等可能,且二人互不影响.求二人能会面概率.分析:两人相约时间都是5小时,设X ,Y 分别表示甲、乙二人到达时刻,因此,0≤X≤5,0≤Y≤5,这样两人到达时刻就构成一个正方形,而两人能会面必须满足|X -Y|≤1,而这个不等式所表示是一个带状,位于正方形内图形,由于两人到达时刻是随机,而且,在每一个时刻到达可能性是一样,因此,符合几何概型所具有特点,可以运用几何概型概率计算方法来计算.解:记A={二人能会面}.以 X ,Y 分别表示甲、乙二人到达时刻,于是0≤X≤5,0≤Y≤5,即点M 落在图中阴影局部.所有点构成一个正方形,即有无穷多个结果.由于每人在任一时刻到达都是等可能,所以落在正方形内各点是等可能,符合几何概型条件.二人会面条件是:|X -Y|≤1,故正方形面积为5×5=25,阴影局部面积为5-2×21×42259. 点评: 建立适当数学模型,是解决几何概型问题关键.对于“碰面问题〞可以模仿此题建立数学模型.例4 如图,随机投掷一个飞镖扎在靶子上,假设飞镖既不扎在黑色靶心,也不扎在两个区域之间,更不会脱靶,求飞镖扎在以下区域概率:(1)编号为25区域;(2)编号在6到9之间区域;(3)编号为奇数区域.〔每一个小区域面积一样〕分析:由于飞镖是随机投掷到靶子上,并且落在靶子每一个位置可能性一样,因此,符合几何概型特点.解: 假设靶子每一个区域面积为1个单位,那么靶子所在圆面积为28个单位.〔1〕记事件A 为“飞镖扎在编号为25区域〞,那么P(A)= 281. 〔2〕记事件B 为“飞镖扎在编号为6到9之间区域〞,那么P(B)= .〔3〕记事件C 为“飞镖扎在编号为奇数区域〞,那么P(C)=.答:〔1〕飞镖扎在编号为25区域概率为281;(2)飞镖扎在编号在6到9之间区域概率为71;(3)飞镖扎在编号为奇数区域概率为21. 点评:仔细研读题目,从题目提供信息进展分析,寻找适当解题方法,是解决此题要害所在.思路2例1 在1 L 高产小麦种子中混入了一粒带麦锈病种子,从中随机取出10 mL ,含有麦诱病种子概率是多少分析:病种子在这1 L 种子中分布可以看作是随机,取得10 mL 种子可视为区域d ,所有种子可视为区域D.解:取出10 mL 麦种,其中“含有病种子〞这一事件记为A ,那么 P(A)=1001100010==所有种子的体积取出种子的体积. 答:含有麦诱病种子概率为1001. 点评:由于病种子是随机地处在容器中,它可以位于容器任何一个位置,而且在每一个位置可能性一样,符合几何概型特点,所以运用几何概型概率计算方法来解决此题.例2 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去工作时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)概率是多少?分析:由于两人到达与离开时刻是随机,而且,在每一个时刻到达或离开可能性是一样,因此,符合几何概型所具有特点,可以运用几何概型概率计算方法来计算.解:如图,以横坐标x表示报纸送到时间,纵坐标y表示父亲离家时间建立平面直角坐标系,假设随机试验落在方形区域内任何一点是等可能,所以符合几何概型条件.根据题意,只要点落到阴影局部,就表示父亲在离开家前能得到报纸,即事件A发生,所以P(A)==87.5%.点评:建立适当数学模型,该模型符合几何概型特点,这是解答此题关键所在.另外我们还可以运用计算机产生随机数来模拟该试验.设X是0到1之间均匀随机数,Y也是0到1之间均匀随机数.如果Y+7>X+6.5,即Y>X-0.5,那么父亲在离开家前能得到报纸.计算机模拟方法:〔1〕选定A1,键入函数“=rand〔〕〞;〔2〕选定A1,按“ctrl+C〞,选定A2~A50,B1~B50,按“ctrl+V〞.此时,A1~A50,B1~B50均为[0,1]区间上均匀随机数.用A列数加7表示父亲离开家时间,B列数加6.5表示送报人送到报纸时间.如果A+7>B+6.5,即A-B>-0.5,那么表示父亲在离开家前能得到报纸.〔3〕选定D1,键入“=A1-B1”;再选定D1,按“ctrl+C〞,选定D2D50,按“ctrl+V〞.〔4〕选定E1,键入函数“=FREQUENCY〔D1:D50,-0.5〕〞,E1表示统计D列中小于或等于-0.5数个数,即父亲在离开家前不能得到报纸频数.〔5〕选定F1,键入“=〔50-E1〕/50.F1表示统计50次试验中,父亲在离开家前能得到报纸频率.下面是我们在计算机上做50次试验,得到结果是P(A)=0.88,如图:例3 假设一个直角三角形两直角边长都是0到1之间随机数,试求斜边长小于34事件概率.分析:由于直角边长是0到1之间随机数,因此设两直角边长分别为x,y,而x,y满足0≤x≤1,0≤y≤1,斜边长=,x,y可以落在0≤x≤1,0≤y≤1所表示图形任何一个位置,而且在每个位置可能性一样,满足几何概型特点.解:设两直角边长分别为x,y,那么0≤x≤1,0≤y≤1,斜边长=,如右图,样本空间为边长是1正方形区域,而满足条件事件所在区域面积为.因此,所求事件概率为P=.点评:根据条件,构造满足题目条件数学模型,再运用几何概型概率计算方法来计算某个事件发生概率,是一种常用求解概率问题方法.例4 甲、乙两人相约于中午12点到13点之间在某一个地方碰面,并约定先到者等候20分钟后可以离开,试设计模拟方法估计两人能碰面概率.分析:当两人到达碰面地点时间相差在20分钟之内时,两人能碰面.我们可以用两个转盘来模拟两人到达碰面地点时间.解: 运用转盘模拟方法.具体步骤如下:〔1〕做两个带指针〔分针〕转盘,标上刻度在0到60来表示时间,如右图;〔2〕每个转盘各转m 次,并记录转动得到结果,以第一个转盘结果x 表示甲到达碰面地点时间,以第二个转盘结果y 表示乙到达碰面地点时间;〔3〕统计两人能碰面〔满足|x -y|<20〕次数n ;〔4〕计算m n 值,即为两人能碰面概率近似值〔理论值为95〕. 点评:实施模拟方法除了转盘模拟方法外,还可以运用现代信息技术即计算机来模拟,具体操作如下:〔1〕新建一个电子表格文件,在A1位置输入:=RAND( )60,产生一个0到60随机数x ;〔2〕将A1位置处表达式复制到B1处,这样又产生一个0到60随机数y ;〔3〕在C1位置处输入:=IF 〔A1-B1<=-20,0,IF 〔A1-B1<20,1,0〕,判断两人能否碰面〔即是否满足|x -y|<20〕,如果是,就返回数值1,否那么返回数值0;〔4〕将第一行三个表达式复制100行,产生100组这样数据,也就是模拟了100次这样试验,并统计每次结果;〔5〕在C101处输入:=SUM(C1:C100)/100统计这100次重复试验中正好两人能碰面频率,即事件“两人能碰面〞发生概率近似值.知能训练课本本节练习4、5.解答:4.设A={射线OA落在∠xOT内}.因为射线OA落在∠xOT内是随机,也就是射线OA可以落在∠xOT内任意一个位置,这符合几何概型条件,区域d测度是60,区域D测度是360,根据几何概型概率计算公式,得P(A)=.5.运用计算机模拟结果大约为2.7左右.点评:根据实际问题背景,判断是否符合几何概型特点,如是那么选择符合题意“测度〞,运用求几何概型概率方法来解决问题,此外我们还可以设计符合问题模拟方法来模拟得到问题近似解.课堂小结在这节课上我们主要是运用几何概型求解一些问题概率,以及运用模拟方法求某一个事件概率近似值.结合上节课内容可以知道,几何概型概率问题仍然是随机事件概率,与古典概型区别是古典概型所含根本领件个数是有限个,而几何概型所包含根本领件个数是无限.对于几何概型我们着重研究如下几种类型:〔1〕与长度有关几何概型;〔2〕与面积有关几何概型;〔3〕与体积有关几何概型;(4)与角度有关几何概型.其中我们对与面积有关几何概型与与体积有关几何概型要求重点掌握.作业课本习题3.3 4、5、6.设计感想几何概型是区别于古典概型又一随机事件概率模型,在解决实际问题时首先根据问题背景,判断该事件是属于古典概型还是几何概型,这两者区别在于构成该事件根本领件个数是有限个还是无限个.在使用几何概型概率计算公式时,一定要注意其适用条件:每个事件发生概率只与构成该事件区域长度成比例.随机数在日常生活中,有着广泛应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣量〔如概率值、常数〕有关,然后设计适当试验,并通过这个试验结果来确定这些量.这种方法也是我们研究问题常用方法.习题详解1.记A={灯与两端距离都大于2 m}.因为把一盏灯挂在绳子上位置是随机,也就是说灯挂在绳子上位置可以是绳子上任意一点,这符合几何概型条件,根据P=,得P(A)= .答:灯与两端距离都大于2 m概率为13.2.记A={所投点落入小正方形内}.由于是随机投点,故可以认为所投点落入大正方形内任意一点都是时机均等,这符合几何概型条件,可以看成几何概型.于是利用几何概型求概率公式,所投点落入小正方形内概率应该等于小正方形内面积与大正方形面积比,即 P(A)=943222==大正方形面积小正方形面积. 答:所投点落入小正方形内概率为94.3.记A={所投点落在梯形内部}.由于是随机投点,故可以认为所投点落入矩形内任意一点都是时机均等,这符合几何概型条件,可以看成几何概型.于是利用几何概型求概率公式,所投点落入梯形内部概率应该等于梯形面积与矩形面积比,即 P(A)=125)2131(21=⨯⨯+⨯=b a b a a 矩形面积梯形面积. 答:所投点落在梯形内部概率为125. 4.设A={该点落在正方形内}.因为该点落在正方形内是随机,也就是该点可以落在正方形内任意一个位置,这符合几何概型条件,根据几何概型求概率计算公式,得P(A)=. 答:乘客到达站台立即乘上车概率为π21. 5.分析:直接求“硬币落下后与格线有公共点〞概率比拟困难,可以考虑先求“硬币落下后与格线无公共点〞概率,再求“硬币落下后与格线有公共点概率〞.解:因为直径等于2 cm 硬币投掷到正方形网格上是随机,也就是硬币可以落在正方形网格上任意一个位置,这符合几何概型条件.要求“硬币落下后与格线无公共点〞概率,根据几何概型求概率计算公式:P(A)=,因为每个小正方形边长都等于6 cm ,硬币直径为2 cm ,设有n 个小正方形,那么区域d 测度为n·π·12,区域D 测度n·62,故“硬币落下后与格线无公共点〞概率为,而事件“硬币落下后与格线有公共点〞是“硬币落下后与格线无公共点〞对立面,所以事件“硬币落下后与格线有公共点〞概率为1-36π.答:硬币落下后与格线有公共点概率为1-36π.6.贝特朗算出了三种不同答案,三种解法似乎又都有道理.人们把这种悖论称为概率悖论,或贝特朗奇怪论.贝特朗解法如下:解法一:任取一弦AB ,过点A 作圆内接等边三角形〔如图1〕.因为三角形内角A 所对弧,占整个圆周31.显然,只有点B 落在这段弧上时,AB 弦长度才能超过正三角形边长a ,故所求概率是31.解法二:任取一弦AB ,作垂直于AB 直径PQ.过点P 作圆内接等边三角形,交直径于N ,并取OP 中点M 〔如图2〕.容易证明QN=NO=OM=MP.我们知道,弦长与弦心距有关.一切与PQ 垂直弦,如果通过MN 线段,其弦心距均小于QN ,那么该弦长度就大于等边三角形边长,故所求概率是21.解法三:任取一弦AB.作圆内接等边三角形内切圆〔如图3〕,这个圆是大圆同心圆,而且它半径是大圆21,它面积是大圆4141. 图1 图2 图3细细推敲一下,三种解法前提条件各不一样:第一种假设了弦端点在四周上均匀分布;第二种假设弦中点在直径上均匀分布;第三种假设弦中点在小圆内均匀分布.由于前提条件不同,就导致三种不同答案.这是因为在那时候概率论一些根本概念〔如事件、概率及可能性等〕还没有明确定义,作为一个数学分支来说,它还缺乏严格理论根底,这样,对同一问题可以有不同看法,以致产生一些奇谈怪论.。

几何概型

几何概型

几何概型1.几何概型向平面上有限区域(集合)G 内随机地投掷点M ,若点M 落在子区域G 1G 的概率与G 1的面积成正比,而与G 的形状、位置无关,即P (点M 落在G 1)=G 1的面积G 的面积,则称这种模型为几何概型.2.几何概型中的G 也可以是空间中或直线上的有限区域,相应的概率是体积之比或长度之比.3.借助模拟方法可以估计随机事件发生的概率. 概念方法微思考1.古典概型与几何概型有什么区别?提示 古典概型与几何概型中基本事件发生的可能性都是相等的,但古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.2.几何概型中线段的端点、图形的边框是否包含在内影响概率值吗? 提示 几何概型中线段的端点,图形的边框是否包含在内不会影响概率值.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)在一个正方形区域内任取一点的概率是零.( √ )(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ )(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √ ) (4)随机模拟方法是以事件发生的频率估计概率.( √ ) (5)与面积有关的几何概型的概率与几何图形的形状有关.( × ) (6)从区间[1,10]内任取一个数,取到1的概率是P =19.( × )题组二 教材改编2.在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A.12 B.13 C.14 D.1 答案 B解析 坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为13.3.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )答案 A解析 ∵P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).4.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4 B.π-22C.π6D.4-π4答案 D解析 如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D 的面积为4,而阴影部分(不包括AC )表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4,故选D.题组三 易错自纠5.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.答案 3解析 由|x |≤m ,得-m ≤x ≤m .当0<m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3.故m =3.6.在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为________. 答案 23解析 设AC =x cm(0<x <12),则CB =(12-x )cm ,则矩形的面积S =x (12-x )=12x -x 2(cm 2).由12x -x 2<32,即(x -8)(x -4)>0,解得0<x <4或8<x <12. 在数轴上表示,如图所示.由几何概型概率计算公式,得所求概率为812=23.题型一 与长度、角度有关的几何概型例1 在等腰Rt △ABC 中,直角顶点为C . (1)在斜边AB 上任取一点M ,求|AM |<|AC |的概率;(2)在∠ACB 的内部,以C 为端点任作一条射线CM ,与线段AB 交于点M ,求|AM |<|AC |的概率.解 (1)如图所示,在AB 上取一点C ′,使|AC ′|=|AC |,连接CC ′.由题意,知|AB |=2|AC |.由于点M 是在斜边AB 上任取的,所以点M 等可能分布在线段AB 上,因此基本事件的区域应是线段AB . 所以P (|AM |<|AC |)=|AC ′||AB |=|AC |2|AC |=22. (2)由于在∠ACB 内以C 为端点任作射线CM ,所以CM 等可能分布在∠ACB 内的任一位置(如图所示),因此基本事件的区域应是∠ACB ,所以P (|AM |<|AC |)=∠ACC ′∠ACB=π-π42π2=34.思维升华 求解与长度、角度有关的几何概型的概率的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同,解题的关键是构建事件的区域(长度或角度).跟踪训练1 (1)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为____________. 答案 23解析 方程x 2+2px +3p -2=0有两个负根, 则有⎩⎪⎨⎪⎧Δ≥0,x 1+x 2<0,x 1x 2>0,即⎩⎪⎨⎪⎧4p 2-4(3p -2)≥0,-2p <0,3p -2>0,解得p ≥2或23<p ≤1,又p ∈[0,5],则所求概率为P =3+135=1035=23.(2)如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.答案 13解析 因为在∠DAB 内任作射线AP ,所以它的所有等可能事件所在的区域是∠DAB ,当射线AP 与线段BC 有公共点时,射线AP 落在∠CAB 内,则区域为∠CAB ,所以射线AP 与线段BC 有公共点的概率为∠CAB ∠DAB =30°90°=13.题型二 与面积有关的几何概型命题点1 与面积有关的几何概型的计算例2 (1)(2017·全国Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4 答案 B解析 不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知,所求概率P =S 黑S 正方形=π24=π8.(2)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率为________.答案512解析 由题意知,阴影部分的面积S =ʃ21(4-x 2)d x =⎝⎛⎭⎫4x -13x 3|21=53, 所以所求概率P =S S 矩形ABCD =531×4=512.命题点2 随机模拟例3 (1)如图所示,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆为96颗,以此试验数据为依据估计椭圆的面积为()A.7.68B.8.68C.16.32D.17.32答案 C解析 由随机模拟的思想方法,可得黄豆落在椭圆内的概率为300-96300=0.68.由几何概型的概率计算公式,可得S 椭圆S 矩形=0.68,而S 矩形=6×4=24,则S 椭圆=0.68×24=16.32.(2)若采用随机模拟的方法估计某运动员射击击中目标的概率.先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该运动员射击4次至少击中3次的概率为________. 答案 0.4解析 根据数据得该运动员射击4次至少击中3次的数据分别为7527 9857 8636 6947 4698 8045 9597 7424,共8个,所以该运动员射击4次至少击中3次的概率为820=0.4.思维升华 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.跟踪训练2 (1)(2016·全国Ⅱ)从区间[0,1]内随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2n m C.4m n D.2m n答案 C解析 由题意得(x i ,y i )(i =1,2,…,n )在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41=mn,∴π=4mn,故选C.(2)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.答案2e 2解析 由题意知,所给图中两阴影部分面积相等,故阴影部分面积为S =2ʃ10(e -e x )d x =2(e x -e x )|10=2[e -e -(0-1)]=2.又该正方形的面积为e 2,故由几何概型的概率公式可得所求概率为2e 2.题型三 与体积有关的几何概型例4 已知在四棱锥P -ABCD 中,P A ⊥底面ABCD ,底面ABCD 是正方形,P A =AB =2,现在该四棱锥内部或表面任取一点O ,则四棱锥O -ABCD 的体积不小于23的概率为________.答案2764解析 当四棱锥O -ABCD 的体积为23时,设O 到平面ABCD 的距离为h ,则13×22×h =23,解得h =12.如图所示,在四棱锥P -ABCD 内作平面EFGH 平行于底面ABCD ,且平面EFGH 与底面ABCD 的距离为12.因为P A ⊥底面ABCD ,且P A =2, 所以PE P A =34,所以四棱锥O -ABCD 的体积不小于23的概率P =V 四棱锥P -EFGH V 四棱锥P -ABCD =⎝⎛⎭⎫PE P A 3=⎝⎛⎭⎫343=2764.思维升华 求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.跟踪训练3 在一个球内有一棱长为1的内接正方体,一动点在球内运动,则此点落在正方体内部的概率为( ) A.6π B.32π C.3π D.233π 答案 D解析 由题意可知这是一个几何概型,棱长为1的正方体的体积V 1=1,球的直径是正方体的体对角线长,故球的半径R =32,球的体积V 2=43π×⎝⎛⎭⎫323=32π, 则此点落在正方体内部的概率P =V 1V 2=233π.1.已知函数f (x )=x 2-x -2,x ∈[-3,3],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A.13 B.23 C.12 D.16 答案 C解析 由f (x 0)≤0,可得-1≤x 0≤2,所以D =3-(-3)=6,d =2-(-1)=3,故由几何概型的概率计算公式可得所求概率为P =d D =12,故选C.2.在区间[-1,3]上随机取一个数x ,若x 满足|x |≤m 的概率为12,则实数m 为( )A.0B.1C.2D.3 答案 B解析 区间[-1,3]的区间长度为4. 不等式|x |≤m 的解集为[-m ,m ],当1<m ≤3时,由题意得m +14=12,解得m =1(舍),当0<m ≤1时,由2m 4=12,则m =1.故m =1.3.若正方形ABCD 的边长为4,E 为四边上任意一点,则AE 的长度大于5的概率等于( ) A.132 B.78 C.38 D.18 答案 D解析 设M ,N 分别为BC ,CD 靠近点C 的四等分点,则当E 在线段CM ,CN (不包括M ,N )上时,AE 的长度大于5,因为正方形的周长为16,CM +CN =2,所以AE 的长度大于5的概率为216=18,故选D.4.在如图所示的圆形图案中有12片树叶,构成树叶的圆弧均相同且所对的圆心角为π3,若在圆内随机取一点,则此点取自树叶(即图中阴影部分)的概率是( )A.2-33πB.4-63πC.-13-32πD.23答案 B解析 设圆的半径为r ,根据扇形面积公式和三角形面积公式得阴影部分的面积S =24⎝⎛⎭⎫16πr 2-34r 2=4πr 2-63r 2,圆的面积S ′=πr 2,所以此点取自树叶(即图中阴影部分)的概率为S S ′=4-63π,故选B.5.如图,矩形ABCD 的四个顶点的坐标分别为A (0,-1),B (π,-1),C (π,1),D (0,1),正弦曲线f (x )=sin x 和余弦曲线g (x )=cos x 在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是( )A.1+2πB.1+22πC.1πD.12π答案 B解析 根据题意,可得曲线y =sin x 与y =cos x 围成的区域的面积为ππππ44(sin cos )d (cos sin )|x x x x x ⎰-=--=1-⎝⎛⎭⎫-22-22=1+ 2.又矩形ABCD 的面积为2π,由几何概型概率计算公式得该点落在阴影区域内的概率是1+22π.故选B.6.(2018·郑州模拟)我国古代数学家赵爽在《周髀算经》一书中给出了勾股定理的绝妙证明.如图所示是赵爽的弦图.弦图是一个勾股形(即直角三角形)之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积称为朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实=弦2,化简得:勾2+股2=弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷1 000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()A.866B.500C.300D.134答案 D解析 设勾为a ,则股为3a ,所以弦为2a ,小正方形的边长为3a -a ,所以题图中大正方形的面积为4a 2,小正方形的面积为(3-1)2a 2,所以小正方形与大正方形的面积比为(3-1)24=1-32,所以落在黄色图形(小正方形)内的图钉数大约为⎝⎛⎭⎫1-32×1 000≈134. 7.记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________. 答案 59解析 设事件“在区间[-4,5]上随机取一个数x ,则x ∈D ”为事件A , 由6+x -x 2≥0,解得-2≤x ≤3, ∴D =[-2,3].如图,区间[-4,5]的长度为9,定义域D 的长度为5,∴P (A )=59.8.在等腰直角三角形ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 因为点M 在直角边BC 上是等可能出现的,所以“区域”是长度.设BC =a ,则所求概率P =33a a =33.9.如图,在长方体ABCD —A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A —A 1BD 内的概率为______.答案 16解析 因为11A A BD A ABD V V =--=13AA 1×S △ABD=16×AA 1×S 矩形ABCD =16V 长方体, 故所求概率为11.6A A BD V V =-长方体10.正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图所示.若将一个质点随机投入到正方形ABCD 中,则质点落在图中阴影区域的概率是______.答案 23解析 正方形内空白部分面积为ʃ1-1[x 2-(-x 2)]d x=ʃ1-12x 2d x =23·x 3|1-1=23-⎝⎛⎭⎫-23=43, 阴影部分面积为2×2-43=83,所以所求概率为834=23.11.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率; (2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36, 由a ·b =-1,得-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个. 故满足a ·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为 Ω={(x ,y )|1≤x ≤6,1≤y ≤6}.满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0}. 画出图像如图所示,矩形的面积为S 矩形=25, 阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.12.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出, 当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上, 即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成的集合Ω为边长是24的正方形及其内部. 所求概率为P (A )=A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576=1 0131 152.13.在长为1的线段上任取两点,则这两点之间的距离小于12的概率为________.答案 34解析 设任取两点所表示的数分别为x ,y ,则0≤x ≤1,且0≤y ≤1,如图所示,则总事件所占的面积为 1.记这两点之间的距离小于12为事件A ,则A ={(x ,y )||x -y |<12,0≤x ≤1,0≤y ≤1},如图中阴影部分所示,空白部分所占的面积为2×12×12×12=14,所以所求两点之间的距离小于12的概率P (A )=1-141=34.14.向圆C :(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率为________. 答案 16-34π解析 如图所示,连接CA ,CB ,依题意,圆心C 到x 轴的距离为3,所以弦AB 的长为2.又圆的半径为2,所以∠ACB =60°,所以S 圆C =π×22=4π,所以S 弓形ADB =60°×π×22360°-12×2×3=2π3-3,所以向圆C 内随机投掷一点,则该点落在x 轴下方的概率P =2π3-34π=16-34π.15.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≥13”的概率,p 2为事件“|x -y |≤13”的概率,p 3为事件“xy ≤13”的概率,则( )A.p 1<p 2<p 3B.p 2<p 3<p 1C.p 3<p 1<p 2D.p 3<p 2<p 1答案 B解析 因为x ,y ∈[0,1],所以事件“x +y ≥13”表示的平面区域如图(1)阴影部分(含边界)S 1,事件“|x -y |≤13”表示的平面区域如图(2)阴影部分(含边界)S 2,事件“xy ≤13”表示的平面区域如图(3)阴影部分(含边界)S 3,由图知,阴影部分的面积满足S 2<S 3<S 1,正方形的面积为1×1=1,根据几何概型概率计算公式可得p 2<p 3<p 1.16.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,求此点取自空白部分的概率.解 设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC .不妨令OA =OB =2, 则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝⎛⎭⎫π4-12×1×1=1, 所以整个图形中空白部分面积S 2=2. 又因为S 扇形OAB =14×π×22=π,所以P =2π.。

2022版高考数学大一轮复习第11章概率第2讲古典概型与几何概型2

2022版高考数学大一轮复习第11章概率第2讲古典概型与几何概型2

第十一章概率第二讲古典概型与几何概型1。

[2021长春市第一次质量监测]张老师居住的一条街上,行驶着甲、乙两路公交车,这两路公交车的数目相同,并且都是每隔十分钟就到达车站一辆(即停即走)。

张老师每天早晨都是在6:00到6:10之间到达车站乘车到学校,这两条公交线路对他是一样的,都可以到达学校,甲路公交车的到站时间是6:09,6:19,6:29,6:39,…,乙路公交车的到站时间是6:00,6:10,6:20,6:30,…,则张老师乘坐上甲路公交车的概率是() A.10%B。

50%C。

60%D。

90%2。

[2021安徽省示范高中联考]在以正五边形ABCDE的顶点为顶点的三角形中,任取一个,是钝角三角形的概率()A。

12B.13C。

14D.233。

[2021石家庄质检]北京冬奥会将于2022年2月4日到2022年2月20日在北京和张家口举行.申奥成功后,中国邮政陆续发行多款邮票,图案包括冬奥会会徽“冬梦”、冬残奥会会徽“飞跃”、冬奥会吉祥物“冰墩墩”、冬残奥会吉祥物“雪容融”、多种冰上运动等.现从2枚会徽邮票、2枚吉祥物邮票、1枚冰上运动邮票共5枚邮票中任取3枚,则恰有1枚吉祥物邮票的概率为()A.310B.12C。

35D。

7104。

[2021晋南高中联考]把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为 ( )A.23B .13C 。

35D 。

145。

[2021贵阳四校第一次联考][条件创新]在区间[-2,2]内随机取一个数x ,则事件“y ={2x ,x ≤0,x +1,x >0,且y ∈[12,2]”发生的概率为( )A.78B 。

58C 。

38D 。

126。

[2021广东珠海模拟][与音乐结合]现有8位同学参加音乐节演出活动,每位同学都会拉小提琴或吹长笛,已知5人会拉小提琴,5人会吹长笛,现从这8人中随机选一人上场演出,恰好选中两种乐器都会演奏的同学的概率是 ( )A.14B 。

古典概型与几何概型大学数学教案2

古典概型与几何概型大学数学教案2

第三节 古典概型与几何概型引例 一个纸桶中装有10个大小、形状完全相同的球. 将球编号为1—10.把球搅匀, 蒙上眼睛从中任取一球. 因为抽取时这些球被抽到的可能性是完全平等的, 所以我们没有理由认为这10个球中的某一个会比另一个更容易抽得, 也就是说,这10个球中的任一个被抽取的可能性均为101. 这样一类随机试验是一类最简单的概率模型, 它曾经是概率论发展初期主要的研究对象.内容分布图示★ 引例★ 古典概型★ 计算古典概率的方法 ★ 例1★ 例2 ★ 例3 ★ 例4★ 例5 ★ 例6 ★ 几何概型★ 例7★ 例8 ★ 内容小结★ 课堂练习★ 习题1-3内容要点:一、古典概型我们称具有下列两个特征的随机试验模型为古典概型。

1. 随机试验只有有限个可能的结果;2. 每一个结果发生的可能性大小相同.因而古典概型又称为等可能概型.在概率论的产生和发展过参程中,它是最早的研究对象,且在实际中也最常用的一种概率模型。

它在数学上可表述为:在古典概型的假设下,我们来推导事件概率的计算公式. 设事件A 包含其样本空间S 中k 个基本事件, 即},{}{}{21ki i i e e e A = 则事件A 发生的概率.)()()(11中基本事件的总数包含的基本事件数S A n k e P e P A P kj i k j i j j ====∑== 称此概率为古典概率.这种确定概率的方法称为古典方法. 这就把求古典概率的问题转化为对基本事件的计数问题.二、 计算古典概率的方法基本计数原理:1. 加法原理:设完成一件事有m 种方式,其中第一种方式有1n 种方法,第二种方式有2n 种方法,……,第m 种方式有m n 种方法,无论通过哪种方法都可以完成这件事,则完成这件事的方法总数为m n n n +++ 21.2. 乘法原理:设完成一件事有m 个步骤,其中第一个步骤有1n 种方法,第二个步骤有2n 种方法,……,第m 个步骤有m n 种方法;完成该件事必须通过每一步骤才算完成,则完成这件事的方法总数为 m n n n ⨯⨯⨯ 21.3. 排列组合方法(1) 排列公式:(2) 组合公式; (3) 二项式公式.三、几何概型古典概型只考虑了有限等可能结果的随机试验的概率模型. 这里我们进一步研究样本空间为一线段、平面区域或空间立体等的等可能随机试验的概率模型—几何概型.a) 设样本空间S 是平面上某个区域, 它的面积记为)(S μ;b) 向区域S 上随机投掷一点,这里“随机投掷一点”的含义是指该点落入S 内任何部分区域A 的可能性只与区域A 的面积)(A μ成比例, 而与区域A 的位置和形状无关. 向区域S 上随机投掷一点, 该点落在区域A 的的事件仍记为A ,则A 概率为)()(A A P λμ=, 其中λ为常数,而)()(S S P λμ=,于是得)(1S μλ=,从而事件A 的概率为)()()(S A A P μμ= 几何概率 )(* 注: 若样本空间S 为一线段或一空间立体, 则向S “投点”的相应概率仍可用)(*式确定, 但)(⋅μ应理解为长度或体积.例题选讲:例1 (讲义例1) 一个袋子中装有10个大小相同的球, 其中3个黑球, 7个白球, 求(1) 从袋子中任取一球, 这个球是黑球的概率;(2) 从袋子中任取两球, 刚好一个白球一个黑球的概率以及两个球全是黑球的概率. 解 (1) 10个球中任取一个, 共有10110=C 种.从而根据古典概率计算, 事件A :“取到的球为黑球”的概率为)(A P 11013C C =.103= (2) 10球中任取两球的取法有210C 种, 其中刚好一个白球, 一个黑球的取法有1713C C ⋅种取法, 两个球均是黑球的取法有23C 种, 记B 为事件“刚好取到一个白球一个黑球”, C 为事件“两个球均为黑球”, 则。

几何概型课件(公开课)(28张PPT)

几何概型课件(公开课)(28张PPT)
1比赛靶面直径为122cm,靶心直径为12.2cm,随机射箭,
假设每箭都能中靶,射中黄心的概率
P( A)
A对应区域的面积 试验全部结果构成区域的面积
1 100
2 500ml水样中有一只草履虫,从中随机取出2ml水样放
在显微镜下观察,发现草履虫的概率
P(
A)
A对应区域的体积 试验全部结果构成区域的体积
= A C '= A C = 2 AB AB 2
则AM小于AC的概率为2
2
解:如图,当P所在的区域为正方形ABCD的内部(含边界), 满足x2+y2≥4的点的区域为以原点为圆心,2为半径的圆的外 部(含边界). 故所求概率
练习 5.在半径为1的圆上随机地取两点,连成一条线,则
其长超过圆内等边三角形的边长的概率是多少?
2 500
1 250
某人在7:00-8:00任一时刻随机到达单位, 问此人在7:00-7:10到达单位的概率?
设“某人在7:10-7:20到达单位”为事件A
P( A)
A对应区域的长度 试验全部结果构成区域的长度
1 6
不是古典概 型!
问此人在7:50-8:00到达单位的概率?
类比古典概型,这些实验有什么特点? 概率如何计算?
2a
解: 记“豆子落在圆内”为事件A,
P(A)
圆的面积 πa2 正方形面积 4a2
π 4
答 豆子落入圆内的概率为π4 .
应用巩固:
(1)在区间(0,10)内的所有实数中随机.
(2) 在1万平方千米的海域中有40平方千米的与大面陆积架成储比藏例 着石油,如果在海域中任意点钻探,钻到油层面的概率 .
F
E B
P=2/9

几何概型1,2

几何概型1,2

(3)在区域D内随机取点是指:该点落在 D内任何一
处都是等可能的,落在任何部分的可能性只与该部分
的测度成正比而与其形状位置无关.
数学应用
例1.在1L高产小麦种子中混入了一粒带麦锈病的 种子,从中随机取出10mL,含有麦锈病种子的概率 是多少?
解 取出10ml麦种,其中“含有病种子”这一事件记为A.则
卧室
书房
问题情境2
1.取一根长度为30cm的绳子,拉直后在任意位置剪断,那 么剪得两段的长度都不小于10cm的概率有多大?
基本事件:
从30cm的绳子上的每一个位置剪断. 记“剪得两段绳长都不小于10cm”为事件A. 把绳子三
等分,于是当剪断位置处在中间一段上时,事件A发生.由于
中间一段的长度等于绳长的1/3.
如果向正方形内撒 n 颗豆子,其中落在圆内的
豆子数为
m ,那么当 n 很大时,比值
m n

即频率应接近与 P( A) ,于是有

2a
P( A) m . n
由此可得 4m
n
数学拓展:计算机随机模拟方法问题
E
P( A) 1
则“弦长超过圆内3接等边三角形的边长”的概率为13
例4:
若A满足: 0≤x ≤4 0≤y≤4
B满足(x-4)2+(y-4)2≤4
(1)若点P在区域A内,则P在B内的概率为多少?
几何概型
16
(2)若点P(x,y)(x,y∈Z)在区域A内,则P在 B内的概率为多少?
6
古典概型
25
练一练:
13
8
5.有一杯1升的水,其中含有1个大肠杆菌, 用一个小杯从这杯水中取出0.1升,求小杯水
中含有这个细菌的概率.

3.3.1几何概型(2)

3.3.1几何概型(2)

分析:因为电台每隔1小时报时一次,他在0~60之 间任何一个时刻打开收音机是等可能的,但0~60之 间有无穷个时刻,不能用古典概型的公式计算随机 事件发生的概率。所以他在哪个时间段打开收音机 的概率只与该时间段的长度有关,而与该时间段的 位置无关,这符合几何概型的条件。
解:
设A= 等待的时间不多于10分钟
3.3.1 几何概型(2)
1、几何概型
复习回顾
如果每个事件发生的概率只与构成该事件区域的长度 (面积或体积)成比例,则称这样的概率模型为几何概率模型, 简称为几何概型. 2、几何概型的特点: (1)试验中所有可能出现的结果(基本事件)有无限多个. (2)每个基本事件出现的所在扇形的面积 10 1 P( A) ; 整个圆的面积 60 6
1 答:等待的时间不多于10分钟的概率为 6
例1 某人午觉醒来,发现表停了,他打开收音机,想听 电台报时,求他等待的时间不多于10分钟的概率.
解:设A={等待的时间不多于10分钟}.事件A恰好 是打开收音机的时刻位于[50,60]时间段内发生。
则事件A发生恰好是打开收音机的 时刻位于[50,60]时间段内,因此 由几何概型的求概率公式得
P(A)=
60-50 60
=
1 6
即“等待报时的时间不多于10分钟”的概率为
1 6
.
例1 某人午觉醒来,发现表停了,他打开收音机,想听 电台报时,求他等待的时间不多于10分钟的概率. 解:设A={等待的时间不多于10分钟}.事件A恰好 是打开收音机的时刻位于[50,60]时间段内发生。 法二:(利用[50,60]时间段所占的面积):
法三:(利用利用[50,60]时间段所占的弧长):
A所在扇形区域的弧长 1 P( A) ; 整个圆的弧长 6

几何概型2

几何概型2

你父亲离开家去工作的时间在 早上7:00—8:00之间
问你父亲在离开家前能得到报纸 (称为事件A)的概率是多少?
6:30—7:30之间 报纸送到你家 7:00—8:00之间 父亲离开家 问你父亲在离开家前能得到报纸(称为事件A)的概率 是多少? 提示: 如果用X表示报纸送到时间 用Y表示父亲离家时间 那么X与Y之间要满足哪些关系呢?
(2)D的测度不为0,当D分别是线段、平面图形 立体图形时,相应的“测度”分别是长度、面 积和体积.
例 1. (会面问题)甲、乙二人约定在 12 点到 17点之 间在某地会面,先到者等一个小时后即离去设二人在 这段时间内的各时刻到达是等可能的,且二人互不影 响.求二人能会面的概率. 解: 以 X , Y 分别表示甲乙二人到达的时刻,于是 y 即 点 M 落在图中的阴影部 5 分.所有的点构成一个正方 4 形,即有无穷多个结果.由 3 .M(X,Y) 于每人在任一时刻到达都是 2 等可能的,所以落在正方形 1 内各点是等可能的. 0 1 2 3 4 5 x
(第二课时)
ห้องสมุดไป่ตู้
一 概念:对于一个随机试验,我们将每个基本事件理解为
从某个特定的几何区域内随机地取一点,该区域中的每一 个点被取到的机会都一样,而一个随机事件的发生则理解 为恰好取到上述区域内的某个指定区域中的点.这里的区 域可以是线段、平面图形、立体图形等.用这种方法处理 随机试验,称为几何概型.
几何概型的特点:
二人会面的条件是:| X Y | 1,
P ( A) 阴影部分的面积
y
y-x =1 y-x =-1
正方形的面积 1 2 25 2 4 9 2 25 25.
答:两人会面的概率等于 25
5 4 3 2 1 9 0

人教版高中数学必修三第三章第3节 3.3.1 几何概型 课件(共17张PPT)

人教版高中数学必修三第三章第3节 3.3.1 几何概型  课件(共17张PPT)

【变式2】:圆O是边长为2的正方
形的内切圆 , 向这个正方形中随机
地投一点M,设M落在正方形中任一
点的可能性是相同的,试求点M落圆
O中的概率.
O
4
•M
知识探究(二):几何概型的概率
【变式3】一只小虫在一个棱长为20cm盛满 水的正方体容器中游动, 假设小虫出现在容 器中的任意一个位置均为等可能的, 记“它 所在的位置距离正方体中心不超过10cm”为 事件A, 那么事件A发生的概率是多少?
B
N
N
B
B
N
BB
N
N
B
知识探究(一):几何概型的概念
思考 3:上述每个扇形区域对应的圆弧的长度(或 扇形的面积)和它所在位置都是可以变化的,从 结论来看,甲获胜的概率与字母 B 所在扇形区域 的哪个因素有关?
B
N
N
B
B
N
BB
N
N
B
与扇形的弧长(或面积)有关.
知识探究(一):几何概型的概念 思考 4:如果每个事件发生的概率只与构成该事 件区域的长度(面积或体积)成比例,则称这样 的概率模型为几何概型. 参照古典概型的特性, 几何概型有哪两个基本特征?
所有基本事件构成 的区域是什么?
事件A构成的区域 是什么?
在线段AB上任取一
3m

A
B
3m
取到线段AB上某一点 A
B
3m
线段AB(除两端外) A
B
线段CD
1m
AC DB
知识探究(二):几何概型的概率
【变式1】:在等腰直角三角形 ABC中,在斜边AB上任取一点M,
求AM的长大于AC的长的概率.
知识探究(二):几何概型的概率

3.3几何概型(2)

3.3几何概型(2)

解 在AB上截取 AC` AC .于是
AC` AC 2 P AM AC P AM AC` . AB AB 2 2 答 AM 的长小于 AC 的长的概率为 . 2
我们知道,当试验次数很大时可以用事件A , 产生的频率作为 A的近似值, 而在本书前 P 两章中已经介绍了产生 随机数和利用随机 数对频率进行估计的方 , 例1中的" EXCEL" 法 栏目就是利用随机数产 生随机点进行模拟 试验的 .
见 P40 "随机数表的制作 和 曲 y 1 线 y , x 1, x 2 和 y 0 所围 x 成的图形的面积 . 分析 在直角坐标系中画出正方 形 ( x 1, x 2, y 0, y 1 所围成 x 的部分), 用随机模拟的方法可以 得到它的面积的近似值 . 解 1利用计算器或计算机产生两组 0到1区间上的随机数 a1 RAND, b RAND ; 2进行平移变换 a a1 1; (其中a, b分别为随机点的横坐标 和纵坐标 ) 3数 出落在阴影内的 点数 N1 , 用几何概型公式计算阴影部 分的面积 . 例如, 做1000 次试验, 即N 1000, 模拟得到 N1 689, 所以 S N1 / N 0.689 .
3.3 几 何 概 型(2)
学习目标: 进一步掌握几何概率的求法
例 3 在等腰 RtABC中, 在线 段斜边AB上取一点M , 求 AM 的长小于AC 的长的概率.
C
A
M
C`
B
分析 点 M 随机地落在线段 AB 上, 故线段 AB 为区域 D .当点M位于图中的线段AC` 上时, AM AC, 故线段AC`即为区域 d .
1 O 1 2
分层训练: 必做题:P103 练习 4

高二数学几何概型2

高二数学几何概型2
二次构造柱泵:https://
ห้องสมุดไป่ตู้
[单选]移植肾动态显像,肾既无血流灌注,也无摄取,静态显像为放射性缺损区,提示()。A.血管栓塞B.急性肾小管坏死C.尿漏D.尿路梗阻E.环孢菌素A中毒 [填空题]()是当地太阳位于正南向的瞬时为正午12时的计时方式。 [单选]小儿水肿脾肾阳虚证的治法是()A.疏风利水B.淡渗利湿C.泻肺逐水D.温肾健脾E.辛开苦降 [单选]关先生以0.2元每股的价格买入行权价为20元的甲股票认购期权(合约单位为10000股),则股票在到期日价格为多少事,王先生能获得2000的利润()。A、19.8B、20C、20.2D、20.4 [单选]从下列城市中没有提出申请举办2010年世博会()A、中国上海B、韩国丽水C、葡萄牙里斯本D、俄罗斯莫斯科 [单选,A2型题]用森田机制解释恐怖症的说法中,不正确的是()A.恐怖症患者多具有神经质性格倾向B.正常人出现一过性恐怖情绪时,如不特别在意,常可自行消逝C.有神经质倾向的人往往对自己的恐怖感觉特别注意D.恐怖症患者所害怕的是引起恐怖感觉的事件E.治疗方法就是让患者对自己的恐怖 quot;听其自然&quot; [单选,A1型题]反刍动物前胃迟缓的主要临诊特征不包括()A.前胃蠕动机能减弱B.食欲减退C.反刍障碍D.呼吸极度困难E.前胃蠕动机能停止 [单选]有效成立的行政行为非依法律规定不得随意变更、撤销或者废止,这体现了行政行为的()A.拘束力B.执行力C.确定力D.公定力 [多选]电动机按用途可分为驱动用电动机和控制用电动机,其中驱动用电动机主要包括()。A.步进电动机B.伺服电动机C.家电用电动机D.电动工具用电动机 [单选,B1型题]属于神经反射的是()A.面部表情、有无异常行为等B.握持C.颈抵抗D.克氏征、四肢肌张力E.精神状态、拥抱反射

高中数学:3.3.2几何概型(2) 名师课件 苏教版必修3

高中数学:3.3.2几何概型(2) 名师课件 苏教版必修3
将在 8 小时内随机到达。顾客甲需要 1 小时服务时间, 顾客乙需要 2 小时。计算有人需要等待的概率。 提示:设甲在 x 、乙在 y 到达,需要等待的情况:
{ x < y < x + 1 } 或者 { y < x < y + 2 }
ks5u精品课件
2、区域是平面图形的几何概型问题
在长度为a的线段内任取两点,将线段分成
变形2: 设有一个正方形网格,现用直径为2的 硬币投掷到此网格上,方格边长要多少才能 使硬币与格线没有公共点的概率大于0.04. 提示: 边长大于2.5
ks5u精品课件
2、区域是平面图形的几何概型问题
Bertrand 问题
已知半径为 1 的圆的内接等边三角形 边长是 3 1/2 ,在圆内随机取一条弦,求 弦长超过 3 1/2 的概率。
三段,求他们可以构成三角形的概率. 1 4
变形:一个圆的所有内接三角形中,问 是锐角三角形的概率是多少?
ks5u精品课件
2、区域是平面图形的几何概型问题
设有一个正方形网格,其中每个最小正方形的 边长都是6.现用直径为2的硬币投掷到此网格
4
上,求硬币落下后与格线没有公共点的概率. 9
变形1:求硬币落下后与格线有公共点的概率.
几何概型(2)
ks5u精品课件
1、几何概型
如果每个事件发生的概率只与构成该事件区 域的长度(面积或体积)成比例,则称这样的概率模型 为几何概率模型,简称为几何概型.
2、几何概型的特点:
(1)试验中所有可能出现的结果(基本事件)有无限多个.
(2)每个基本事件出现的可能性相等.
3、几何概率的计算公式:
分析:设A={等待不超过3分钟},乘客在时 间段(0,5]内任意时刻到达,事件A发生,则 乘客到达的时间在[2,5]内.

高中数学_几何概型

高中数学_几何概型

几何概型知识图谱几何概型知识精讲一.几何概型1.定义:如果每个事件发生的概率只与构成该事件的区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型几何概型,可以将每个基本事件看成从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会一样;这里区域可以是线段、平面图形、立体图形等.2.特点:(1)结果的无限性,即在一次试验中,所有可能出现的结果(基本事件)的个数可以是无限的,且全体结果可用一个有度量的几何区域来表示;(2)等可能性,每个基本事件的发生的可能性是均等的.二.几何概型的计算公式几何概型中,事件A的概率定义为:()AP A=构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)三点剖析一.方法点拨1.几何概型与古典概型的联系与区别在古典概型及几何概型中,基本事件的发生都是等可能的;在古典概型中基本事件的个数是有限的,而在几何概型中基本事件的个数是无限的.2.几何概型求解的一般步骤(1)首先要判断几何概型,尤其是判断等可能性,这方面比古典概型可能更难于判断;(2)把基本事件转化为与之对应的区域;(3)计算基本事件空间与事件A所含的基本事件对应的区域的几何度量(长度、面积、体积等);(4)利用公式代入求解.3.几何概型的应用要把实际问题转化成几何概型,精读问题,注意适当选择观察角度,抓住关键词,把问题转化为数学问题,几何概型问题解决的关键是构造出事件对应的几何图形,利用几何图形的几何度量来求随机事件的概率.注意分辨清楚属于一维、二维或三维问题.尤其是二维问题一直是考试的重点.一维情形例题1、将一条5米长的绳子随机地切断成两条,事件T表示所切两段绳子都不短于1米的事件,则事件T发生的概率为()A.1 2B.15C.25D.35例题2、在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为()A.1 6B.13C.23D.45例题3、在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为_________.例题4、如图,在三角形AOB中,已知∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,求△AOC为钝角三角形的概率.()A.0.6B.0.4C.0.2D.0.1随练1、某公交车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,那么一个乘客候车时间不超过6分钟的概率为____.随练2、平面上有一组平行线,且相邻平行线间的距离为3cm,把一枚半径为1cm的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是()A.1 4B.13C.12D.23随练3、在长为12cm的线段AB上任取一点C.现做一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于32cm2的概率为()A.1 6B.13C.23D.45二维情形例题1、如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1-2πB.12-1πC.2πD.1π例题2、二次函数f(x)=ax2+2bx+1(a≠0).(1)若a∈{-2,-1,2,3},b∈{0,1,2},求函数f(x)在(-1,0)内有且只有一个零点的概率;(2)若a∈(0,1),b∈(-1,1),求函数f(x)在(-∞,-1)上为减函数的概率.例题3、设有-4×4正方形网格,其各个最小的正方形的边长为4cm,现用直径为2cm的硬币投掷到此网格上;假设每次投掷都落在最大的正方形内或与最大的正方形有公共点.求:(1)硬币落下后完全在最大的正方形内的概率;(2)硬币落下后与网格线没有公共点的概率.例题4、小钟和小薛相约周末去爬尖刀山,他们约定周日早上8点至9点之间(假定他们在这一时间段内任一时刻等可能的到达)在华岩寺正大门前集中前往,则他们中先到者等待的时间不超过15分钟的概率是____(用数字作答).随练1、分别在区间[1,6]和[1,4]内任取一个实数,依次记为m和n,则m>n的概率为()A.7 10B.310C.35D.25随练2、设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于1的概率为____.随练3、小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率.三维情形例题1、在500mL的水中有一个细菌,现从中随机取出2mL水样放到显微镜下观察,则发现这个细菌的概率是()A.0.004B.0.002C.0.04D.0.02例题2、在棱长为2的正方体ABCD-A 1B 1C 1D 1中,点O 在底面ABCD 中心,在正方体ABCD-A 1B 1C 1D 1内随机取一点P 则点P 与点O 距离大于1的概率为()A.12π B.1-12π C.6π D.1-6π随练1、1升水中有2只微生物,任取0.1升水化验,含有微生物的概率是()A.0.01 B.0.19 C.0.1 D.0.2随练2、一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是()A.18 B.116 C.127 D.38拓展1、在区间[﹣4,4]上随机地抽取一个实数x ,若x 满足x 2≤m 的概率为34,则实数m 的值为________2、一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是________、________、________.(1)红灯;(2)黄灯;(3)不是红灯.3、在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S 的概率是()A.13 B.12 C.34 D.144、在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与281cm 之间的概率为()A.56 B.12 C.13 D.165、已知圆O :x 2+y 2=4(O 为坐标原点),点P (1,0),现向圆O 内随机投一点A ,则点P 到直线OA 的距离小于12的概率为()A.23 B.12 C.13 D.166、在区间[0,1]上随机取两个数m ,n ,求关于x 的一元二次方程x 2n 有实根的概率.7、假设在5秒内的任何时刻,两条不相关的短信机会均等地进人同一部手机,若这两条短信进人手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为()A.425 B.825 C.1625 D.24258、已知函数:f (x )=x 2+bx+c ,其中:0≤b≤4,0≤c≤4,记函数f (x )满足条件:(2)12(1)3f f ≤⎧⎨-≤⎩的事件为A ,则事件A 发生的概率为()A.58 B.516 C.38 D.129在棱长为a的正方体-A1B1C1D1内任取一点P,则点P到点A的距离小于等于a的概率为()A.22B.22C.16D.16π。

高中数学《几何概型》学案2 新人教B版必修3史同茂

高中数学《几何概型》学案2 新人教B版必修3史同茂

几何概型学习目标:1. 了解几何概型的概念及基本特点;2. 掌握几何概型中概率的计算公式;3. 会进行简单的几何概率计算.课内探究:试验1.取一根长度为3m 的绳子,拉直后在任意位置剪断. 问题:剪得两段的长都不小于1m 的概率有多大?.分析:从每一位置剪断都是一个基本事件,剪断位置可以是长度为3m 的绳上的任意一点.记事件A ="剪得两段的长都不小于1m ".把绳子三等分,于是当剪断位置处在中间一段上时, 事件A 发生.由于中间一段的长度等于绳长的 ,于是事件A 发生的概率. ()P A =试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm .运动员在70m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的. 问题:射中黄心的概率为多少?分析:射中靶面上每一点都是一个基本事件,点可以是靶面直径为122cm 的圆内的任一点.在这两个问题中,虽然类似于古典概型的"等可能性",但是基本事件有无限多个, 显然不能用古典概型的方法求解.那么, 怎么求解?记事件B="射中黄心"为,由于中靶心随机地落在面积为2211224cm π⨯⨯的大圆内,而当中靶点落在面积为22112.24cm π⨯⨯的黄心内时,事件B 发生,于是事件B 发生的概率()P B ==.重点难点:1.几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发 生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段, 平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.2.几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等.3.几何概型的概率公式:在区域D 中随机地取一点, 记事件A ="该点落在其内部一个区域d 内",则事件A 发生的概率()d P A D =的测度的测度= A 构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).说明:(1)D 的测度不为0;(2)其中"测度"的意义依D 确定,当D 分别是线段,平面图形,立体图形时, 相应的"测度"分别是长度,面积和体积. (3) 区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关.典例分析:例1在区间[1,3]上任意取一数,则这个数不小于1.5的概率是多少?跟踪训练1. 两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m 的概率是________.例2. 如下图,在一个边长为3 cm 的正方形内部画一个边长为2 cm 的正方形,向大正方形内随机投点,则所投的点落入小正方形内的概率是________.跟踪训练2.如下图,在一个边长为a 、b (a >b >0)的矩形内画一个梯形,梯形上、下底分别为31a与21a ,高为b ,向该矩形内随机投一点,则所投的点落在梯形内部的概率为________. aa a b1123例3 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?跟踪训练3.在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?当堂检测1. 如下图,在直角坐标系内,射线OT 落在60°的终边上,任作一条射线OA ,则射线落在∠xOT 内的概率是________.2. 如下图,在半径为1的半圆内,放置一个边长为21的正方形ABCD ,向半圆内任投一点,该点落在正方形内的概率为_________.3. 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.4. 在等腰Rt △ABC 中,在斜边AB 上任取一点M ,求AM 的长小于AC 的长的概率.5. 一海豚在水池中自由游弋,水池为长30 m ,宽20 m 的长方形,求海豚嘴尖离岸边不超过2 m 的概率.6、如图,在三角形ABC 中,M 是BC 的中点.向三角形ABC 内随机投一粒米,则米粒落在三角形ABM 内的概率是多少?7. 如图,在墙上挂着一块边长为16cm 的正方形木板,上面画了小、中、大三个同心圆,半径分别为2cm 、4cm 、6cm.某人站在3m 外向此板投镖,设镖击中线上或没有击中都不算,可重投.问:(Ⅰ)投中大圆的概率是多少? (Ⅱ)投中小圆与中圆形成的圆环的概率是多少? (Ⅲ)投中大圆之外的概率是多少?C AB。

高一数学人教A版必修3课件:3.3.1几何概型2

高一数学人教A版必修3课件:3.3.1几何概型2

理论迁移
例1 某人午觉醒来,发现表停了,他 打开收音机,想听电台报时,求他等待 的时间不多于10分钟的概率.
例2 甲乙两人相约上午8点到9点在某 地会面,先到者等候另一人20分钟,过 时离去,求甲乙两人能会面的概率.
y 60
20
O 20 60 x
60 - 40 5 P (A ) = = 2 60 9
3.3 几何概型
3.3.1 几何概型
问题提出
1.计算随机事件发生的概率,我们已经 学习了哪些方法?
(1)通过做试验或计算机模拟,用频率 估计概率;
(2)利用古典概型的概率公式计算.
2.古典概型有哪两个基本特点? (1)试验中所有可能出现的基本事件只 有有限个(有限性); (2)每个基本事件出现的可能性相等 (等可能性). 3.在现实生活中,常常会遇到试验的所 有可能结果是无穷多的情况,这时就不 能用古典概型来计算事件发生的概率.对 此,我们必须学习新的方法来解决这类 问题.
作业: P140 练习: 1,2. P142 习题3.3A组:1.

B N B N B N N B N N B
B
思考3:射箭比赛的箭靶涂有五个彩色的 分环,从外向内依次为白色、黑色、蓝 色、红色,靶心是金色,金色靶心叫 “黄心”.奥运会射箭比赛的靶面直径是 122cm,黄心直径是12.2cm,运动员在距 离靶面70m外射箭.假设射箭都等可能射 中靶面内任何一点,那么如何计算射中 黄心的概率?
知识探究(一):几何概型的概念
思考1:某班公交车到终点站的时间可能 是11:30~12:00之间的任何一个时刻; 往一个方格中投一粒芝麻,芝麻可能落 在方格中的任何一点上.这两个试验可能 出现的结果是有限个,还是无限个?若 没有人为因素,每个试验结果出现的可 能性是否相等?

《几何概型》_PPT完整版人教版2

《几何概型》_PPT完整版人教版2
50 60
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
思维展示
本题采用的几何度量有:
圆心角
时长
面积
弧长
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
几何概型
【情境创设 引入新课】
情境一:现在假设,一根长为3米的彩带,拉直后在任意位置剪
断,那么剪得两端的长都不少于1米的概率有多大?
A
M
N
B
1m
1m
情景二:现在我们将刚才的视频提炼为:指针指向黄色区域时, 获得加分,否则不加分.在下面情况中获得加分的概率是多少?
情景三:大烧杯盛有2升的水,内有1只金鱼, 一个小烧杯从中 取出0.1升,求小烧杯水中含有这条金鱼的概率.
记 表示区域Ω的几何度量, A 表示
子区域A的几何度量.则
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
定义辨析 呈现本质
下列概率问题都是几何概型吗?为什么? 古典概型
⑴我班46个学生,抽5个学生参加问卷调查,某同学
被抽到的概率?
与面积成正比
⑵我班某同学参加射击比赛,假设均能射中且等可 能,箭靶直径20cm,靶心直径4cm,射中靶心概率?
概率的计算公式
古典概型 有限个
几何概型 无限个
相等
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
《几何概型》教学分析人教版2-精品 课件ppt (实用 版) 《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)

3.4 几何概型

3.4 几何概型
规3-4-4
返回
事件A发生的条件是0 事件A发生的条件是0<x-y<6或0<y-x<6,即图中阴影部分, 6,即图中阴影部分, 即图中阴影部分 则μΩ=242,μA=242-182. µ A 24 2 − 182 7 = = , ∴P(A)= 2 µ 24 16 7 即这两艘船中至少有一艘在停靠时必须等待的概率是 .
返回
学点一 与长度有关的几何概型的求法 某公共汽车站每隔5分钟有一辆车通过( 某公共汽车站每隔5分钟有一辆车通过(假设每一辆车带走 站上的所有乘客),乘客到达汽车站的时间是任意的, ),乘客到达汽车站的时间是任意的 站上的所有乘客),乘客到达汽车站的时间是任意的,求乘客 候车时间不超过3分钟的概率. 候车时间不超过3分钟的概率. 【分析】本题考查与长度有关的几何概型的求法. 分析】本题考查与长度有关的几何概型的求法. 【解析】这是一个几何概型问题.记A=“候车时间不超 解析】这是一个几何概型问题. 候车时间不超 过3分钟”.以x表示乘客到车站的时刻,以t表示乘客到车 分钟” 表示乘客到车站的时刻, 站后来到的第一辆汽车的时刻,作图3 站后来到的第一辆汽车的时刻,作图3-4-3.据题意,乘客必 3.据题意, 据题意 然在[ 5,t 内来到车站, ={x 然在[t-5,t]内来到车站,故Ω={x|t-5<x≤t}.
解:按照约定,两人在6点到7点之间任何时刻到达会面点 按照约定,两人在6点到7 是等可能的,因此是一个几何概型,设甲、 是等可能的,因此是一个几何概型,设甲、乙两人到达的时间 为x,y,则|x-y|≤15是能够会面的先决条件. |≤15是能够会面的先决条件. 是能够会面的先决条件 以x和y分别表示甲、乙两人到达约会地点的时间,则两 分别表示甲、乙两人到达约会地点的时间, 人能够会面的充要条件是| 人能够会面的充要条件是|x-y|≤15.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变题:在区间[0,9]上任取一个整数,恰好取在区间[0, 3]上的概率为多少?
典例2
平面上画了一些彼此相距2a的平行线,把一枚半径r<a 的硬币任意掷在这一平面上,求硬币不与任一条平行线相 碰的概率.
思路
解:记“硬币不与任一条平行线相碰”为事件A。 为了确定硬币的位置,过硬币中心O作两平行线间的垂线 段,其长度2a即是几何概型定义中Ω的几何度量。 当硬币不与平行线相碰时,硬币中心O可移 动长度2a-2r即是子区域A的几何度量。 这是一个几何概型问题。
绿


绿 绿 绿 红
复习1
取一个边长为2a的正方形及其内切圆,随机向 正方形内丢一粒豆子,求豆子落入圆内的概率.
2a
解 : 记“豆子落在圆内”为 事件A,
圆的面积 πa 2 π P(A) 2 正方形面积 4a 4 π 答 豆子落入圆内的概率为 . 4
思考题:
有只蚂蚁在如图的五角星区域内自由的爬行,且它
上6:30—7:30之间把报纸送到你家,你 离开家去工作的时间在早上7:00—8:00之间, 问你在离开家前能得到报纸(称为事件A) 的概率是多少? y
你离家时间
y=x
8 : 00
7 : 00
6.57.5xFra bibliotek报纸送到时间
解:设送报人到达的时间为x,你离开家的时间为时间y。 (x,y)可以看成平面上的点,实验的全部结果构成的区域 {( x, y) | 6.5 x 7.5,7 y , 8} 为 这是一个正方形区域,面积为 s 11 1 ,事件
S
A
2a
(a r ) 2 n个A的面积 A的面积 P( A) 参加者获奖的概率为: n个S的面积 S的面积 a2
y
4 m
5 m
x
引 在集合{(x,y) ︳0≤x ≤ 5, 0≤y ≤ 4 }内任取一个元素,能使3x+4y12 ≥0的概率是多少?
例3:假设你家订了一份报纸,送报人可能在早
构成事件A的区域长度(面积或体积) P( A) 全部结果所构成的区域长度(面积或体积)
• 3.公式的运用.
本节核心内容是几何概型特点及概率 求法,易错点是容易找错、 求错几何度量。要求在做解答题时要有规范的步骤和必要的文 字说明,在平时的学习中养成良好的学习习惯!
x
6.5
7.5
报纸送到时间
练习:(会面问题)甲、乙二人约定在6点到 7 点之间在某地会面,先到者等一刻钟后即离去, 设二人在这段时间内的各时刻到达是等可能的, 且二人互不影响。求二人能会面的概率。
我的收获
1.几何概型的特征
几何概型中所有可能出现的基本事件有 每个基本事件出现的可能性 相等 2.几何概型的定义 无限 个;
.
如果某个事件发生的概率只与构成 该事件区域的几何度量(长度、面积 或 体积)成正比例,则称这样的概率 模型为几何概率模型。
3.几何概型的概率计算公式
A P( A)
4 .解决几何概型的关键是构造随机事件对应的几何图形.
解题步骤
记事件 构造几何图形 计算几何度量
下结论
求概率
课堂小结
• 1.几何概型的特点. • 2.几何概型的概率公式.
停在任意一点的可能性相等,已知圆形区域的半径为2,
蚂蚁停在圆形内的概率为0.1,求图中五角星的面积.
(计算结果保留π) 解:记“蚂蚁最后停在五角星内”为事件A,
P ( A) S圆 S五 角 星
S圆 22 S五 角 星 40 P ( A) 0.1
复习2
在区间[0,9]上任取一个实数,恰好取在区间[0, 3]上的概率为多少?
A 2a 2r 2a
2a 2r ar P ( A) 2a a
C
由几何概型的定义知:
m
ar 。 a
n
所以,硬币不与任一条平行线相碰的概率为
变式引申
如图,平面是由若干个边长为2a的小 正方形组成.参加者把半径为 r (r<a) 的 “金币”,任意抛掷在平面上,抛出的 2a “金币”若恰好落在任何一个正方形之内 (不与正方形的边相碰),便可获奖,求 参加者获奖的概率. 解: 分析:试验的基本事件是: 金币的中心投在由若干个小正方形组成的平面里. 设事件A为“金币不与小正方形边相碰”, 不妨先考虑金币与一个小正方形的关系. 如图,A即为“金币的中心要投在绿色正方形内” 由几何概型的定义知:
A表示你在离开家能得到报纸,所构成的区域为
A {( x, y) | y x,6.5 x 7.5,7 y 8}
即图中的阴影部分,面积为
1 1 1 7 SA 1 . 2 2 2 8
你离家时间
y
y=x
8 : 00
7 : 00
这是一个几何概型,所以
SA 7 P( A) S 8
相关文档
最新文档