高分子成型加工 PPT课件

合集下载

高分子成型工艺分析课件

高分子成型工艺分析课件

模具结构设计
优化模具结构,减少模具复杂程度 ,降低制造难度和成本。同时,合 理设计模具的浇注系统和排气系统 ,提高成型效率。
模具表面处理
通过表面处理技术,如喷涂、电镀 、渗碳等,提高模具表面的硬度和 抗摩擦性能,增强模具的耐磨性和 耐腐蚀性。
加工参数的优化
01
温度控制
根据高分子材料的热性能和成型工艺要求,合理设定模具和成型品的加
高分子成型工艺的发展趋势是 向着个性化和定制化的方向发 展,通过引入3D打印等技术, 实现个性化定制和快速制造, 满足消费者对产品多样化的需 求。
高分子成型工艺的发展趋势是 向着复合化的方向发展, 量化。
03
常见的高分子成型工艺分析
注塑成型工艺
注塑成型工艺是一种常见的塑料加工 技术,通过将熔融状态的高分子材料 注入模具中,冷却后得到所需形状的 制品。
注塑成型工艺的挑战在于控制成型过 程中的温度、压力和时间等参数,以 确保制品的尺寸精度和表面质量。
注塑成型工艺具有生产效率高、成型 周期短、适应范围广等优点,广泛应 用于汽车、家电、电子、包装等领域 。
高分子材料是由相对分子质量较高的化合物构成的材料,包括塑料、橡胶、纤 维等。根据来源,高分子材料可以分为天然高分子和合成高分子两大类。
高分子材料的性能特点
总结词
高分子材料具有较高的弹性模量、良好的绝缘性能、较低的密度和良好的加工性 能等特点。
详细描述
高分子材料具有较高的弹性模量,能够承受较大的压力和摩擦力;同时具有良好 的绝缘性能,广泛应用于电子、电器等领域;此外,高分子材料还具有较低的密 度和良好的加工性能,易于加工成各种形状和尺寸的制品。
05
高分子成型工艺的应用实例
汽车行业的高分子成型工艺应用

《高分子加工原理》课件

《高分子加工原理》课件
详细描述
总结词
高分子材料具有粘弹性、热塑性、热固性、绝缘性等特点。
要点一
要点二
详细描述
高分子材料具有粘弹性,表现为在外力作用下既可发生弹性形变,也可发生塑性形变;热塑性是指高分子材料在加热时可以流动,冷却后可以固化;热固性是指高分子材料在加热时可以固化,冷却后性质稳定;绝缘性是指高分子材料具有良好的绝缘性能,不易导电。这些特性使得高分子材料在现代工业和科技领域中具有广泛的应用价值。
热力学第二定律
03
成型工艺参数
介绍影响成型质量的工艺参数,如温度、压力、时间等。
01
高分子材料的加工过程
详细介绍高分子材料的加工过程,包括原料准备、成型、后处理等环节。
02
成型方法
列举常见的成型方法,如注塑、挤出、压延等,并介绍其原理和特点。
高分子材料加工设备与工艺流程
04
设备日常维护
介绍了如何进行日常的设备检查、清洁和润滑工作。
高分子加工技术基础
02
高分子材料通过加热、加压等方式进行成型加工,使其从流动的液体状态转变为固态,并形成所需的形状和结构。
成型原理
成型加工需要使用各种成型设备,如注塑机、压延机、热压机等。
成型设备
成型加工过程中,需要控制各种工艺参数,如温度、压力、时间等,以获得高质量的成型品。
成型工艺参数
二次加工方法
高性能化:随着对高分子材料性能要求的不断提高,加工技术也在不断向高性能化方向发展。通过改进加工工艺和选用高性能的助剂,可以显著提高高分子材料的强度、刚性、耐热性和耐腐蚀性等性能。
高分子材料加工技术在航空航天领域具有广泛的应用前景。由于航空航天器对材料的轻量化和高性能要求极高,高分子材料成为重要的选择之一。通过采用先进的加工技术,可以实现高分子材料的轻量化、高性能化和多功能化,为航空航天器的制造提供更加可靠的支撑。

第七章 高分子材料的成型加工技术PPT课件

第七章   高分子材料的成型加工技术PPT课件
物料在压力推动下通过口模而成为连续 型材
b.挤出过程
熔融:外部加热和内部摩擦热作用下, 逐渐熔化成熔体
成型:通过口模时在压力下成为与口模 相似的连续体
定型:在外部冷却下连续体被凝固定型
图 18-2 单 螺 杆 挤 出 机 基 本 结构 示 意 图
c.特点及应用 生产效率高,可自动化连续生产;
酚醛树脂(PF) 环氧树脂(EP) 2.工程塑料的成型基础 成型性能:成型物料对各种成型工艺和模具结构
的适应能力 (1)塑料熔体的流变行为 流变 流动与变形 粘度 流变性的主要表现
粘度及其变化是塑料成型中最主要的参数 影响粘度的因素
a.聚合物分子量 分子量越大,粘度越大 不同成型方法对粘度要求不同 可通过添加低分子物质(如增塑剂)降低分子量 b.温度
(3)特点与应用 原料是已成型的片材或板材,属二次加工
适应性强,设备投资少,模具制造简便
要求板、片材在加工提哦案件下有较好的延展 性
主要适宜于热塑性塑料,如ABS、PMMA、 PVC、PP、PA、PC、PET等
(8)浇注成型
在室温或稍高温度下是液体的树脂,在加入固 化剂或催化剂与其它添加剂后,可在液态下浇 入模腔,通过化学反应硬化成形
(1)分类 按热行为:热塑性、热固性 按产量用途:通用塑料、工程塑料、功能塑料 (2)常用塑料 聚乙烯(PE) 聚氯乙烯(PVC) 聚丙烯(PP)
聚苯乙烯(PS) 聚甲基丙烯酸甲酯(PMMA) 氟塑料 聚酰胺(PA) 尼龙 聚碳酸酯(PC)
ABS 聚脂树脂
不饱和聚脂(UP) 饱和聚脂:PET、PBT
第七章 高分子材料的成型加工技术
1.高分子材料:以高聚物为主并加入多种添加剂 形成的材料
按用途 :塑料、橡胶、合成纤维 按热行为:热塑性、热固性 2.高分子材料生产过程

《高分子材料成型加工基础》课件——项目三-挤出成型

《高分子材料成型加工基础》课件——项目三-挤出成型

三.辅助设备:
• 前处理设备:预热. 干燥 • 控制生产的设备:各种控制仪表
四. 挤出机的一般操作法:
• 处理挤出物的设备:冷却定型. 牵引.切割.卷取
① 开机前准备: ② 料最好先干燥、必要时须预热 ③ 换上新的多孔板及滤网,检查并装上机头 ④ 检查电器及机械,在传动部分加足润滑油
⑤ 开电热预热:先预热机头、后机身,同时料 斗座通水冷却
● 3.螺杆: ● 挤出机的改进主要在螺杆上 ● (1)螺杆直径(D)与长径比(L/D): ● D↑:挤出机大,产量高(产量∝D2) ● L/D: L为有效长度 ● L/D↑:利于塑化, ↑产量,适应性强
(2)螺杆各段的作用:
• ①加料段: • 加料口(2~10D) • 使塑料受热前移、
压实物料
使塑料密实、排气 ● 热:外加热、 内摩擦热,物料由固体→熔体 ● 完全塑化后经机头挤出成型、冷却定型或拉、吹胀为最终制品
二.塑料在挤出成型中的受热:
● 热量来源:外加热与摩擦热 ● 加料段:
固体物料,螺槽深,温差大,外加热为主 ● 均化段:
熔体,螺槽浅,温差小,摩擦热为主 ● 压缩段:
介于以上两段之间 ● 故挤出机必须分段控温
一.挤出成型的塑料
● 几乎所有热塑性料和某些热固性料:如PVC、PE、PP、PS、PA、ABS、PC等及 PF、UF(脲醛树脂)等
二.挤出成型的制品
● 管、板、单丝、膜、电线、棒、异型材、中空制品(瓶等)等
三.挤出成型特点
生产连续化 生产效率高:挤出制品单机产
量比注塑制品大一倍以上
适应范围广 经济效益好:设备成本低、投资收效快
一.挤出成型设备(挤出生产线或挤出机组) ● ——以塑料异型材为例

高分子材料成型加工PPT课件

高分子材料成型加工PPT课件

部分了解的章节
第二章、第三章、第四章、第十二章、第十三章
考核方式
习题、读书报告、期终考试
可编辑课件PPT仁 浙江大学 教授
• 1980年7月由潘祖仁先生和孙经武(天津 大学)合编《高分子化学》,为文化革命 后我国第一部正式的高校教材。
• 1986年由潘祖仁先生为主编,对全书进行 了较大修改后再次出版。其后十余年间一 直是各校的主要教材,1992年被评为全国 优秀教材。
可编辑课件PPT
23
2、高分子材料的成型加工
高分子材料 成型加工工艺
实用的材料 或制品
(聚合物+助剂) 这一过程的工程技术
1 如何实现—方法(挤出、注射、压制等) 2 方法不同,产品性能不同 3 材料不同,方法不同 4 方法不同,设备不同
可编辑课件PPT
24
3、高分子材料的制造
高分子 化合物制造
的设可编备辑课件PPT
3
课程性质:
高分子材料与工程专业的 专业课程 核心课程
可编辑课件PPT
4
授课方式:
PowerPoint 1、讲课
录像
讲要点(部分章节) 2、自学
出专题、查资料、写报告
做相关的小课题 3、课外兴趣小组
写专题读书报告、集体讨论
可编辑课件PPT
5
授课内容与考核:
主要讲授的章节
绪论、第一章、第五章、第六章、 第七章、第八章、第九章、第十章、第十一章
物理化学 分可析编辑化课学件PPT
高分子物理 物理
材料力学 流体力学
…...
22
1、高分子材料的定义
高分子材料是一定配合的高分子化合物(由主要 成分树脂或橡胶和次要成分添加剂组成)在成型设备 中,受一定温度和压力的作用熔融塑化,然后通过 模塑制成一定形状,冷却后在常温下能保持既定形 状的材料制品。

橡胶加工工艺—橡胶压出工艺(高分子成型课件)

橡胶加工工艺—橡胶压出工艺(高分子成型课件)
有时为调整料流速度,有 的机头内还开有流胶孔, 或者提高流道局部阻力大 部位的温度,或在阻力小 的部位设置阻流器或阻力 调节装置。
二、橡胶的挤出(压出)工艺
(一)压出机工作原理及胶料的运动状态 3 物料在口型中的流动状体和挤出变形 胶料经机头进入口型后,由于口型形状不同及内表 面对物料流动的阻碍,物料流动速度也存在有与机 头类似的速度分布。中间流速大,越接近口型壁流 速越小 。 一般粘弹性的物料,从口型挤出后就不可避免地存 在松弛现象,即:胶条的长度会沿挤出方向缩短, 厚度沿垂直挤出方向增加(离模膨胀现象或称作挤 出变形现象)。挤出后的变形(收缩和膨胀)可以控制 在一定范围,但不可能完全消除。要求收缩率为 2~5%。 物料可塑性小、含胶率大,填充剂用量小,物料挤 出快,机头和口型温度低,膨胀和收缩率就大。
二、橡胶的挤出(压出)工艺
在挤出机(压出机)螺杆的挤压作用下,使受热 熔融的胶料通过具有一定断面形状的口型(口模) 而进行连续造型的工艺过程。
工艺特性: ① 半成品质地均匀致密。应用面广,成形速度快、工效高、成本低、有利 于自动化生产。 ② 设备占地面积小,重量轻,结构简单,造价低;能连续操作,生产能 力大。 ③ 口型模具结构简单、加工易、拆装方便、使用寿命长、易于保管和维 修。 常见制品: 胎面、内胎、胶管、电线、电缆护套、防水卷材及各种异型断面制品。
二、橡胶的挤出(压出)工艺
(一)压出机工作原理及胶料的运动状态
1 胶料在挤出机中的运动状态
加料段:加入的条状胶料,受到旋转螺杆的推挤作用形成连续的胶 团,并沿着螺槽的空间一边旋转,一边不断前进。 压缩段:加料段输送过来的松散胶团在压缩段被逐渐压实、软化, 并把夹带的空气向加料段排出。同时胶团间间隙缩小,密度增高, 进而粘在一起,再加上受到剪切和搅拌作用,因而胶团逐渐被加热 塑化形成连续的粘流体。 挤出段:在挤出段,压缩段输送过来的物料进一步塑化均匀,并输 送到机头和口模处挤出成型。

橡胶加工工艺—橡胶压延工艺(高分子成型课件)

橡胶加工工艺—橡胶压延工艺(高分子成型课件)
应用:主要半制品——胶鞋鞋底、车胎胎面等。
a,b-两辊压型(v1=v2); c-三辊压型(v1v2=v3); d-四辊压型(v2=v3=v4v1)
三、橡胶的压延工艺
(二)压延工艺方法 3 胶片贴合
胶片贴合:通过压延机将两层或多层薄胶片贴合在一起的工艺过程。
通常用于制造较厚、质量要求较高 的胶片和两种不同胶料组成的胶片、 夹布层胶片等。 贴合方法有二辊压延机贴合法、三 辊压延机贴合法、四辊压延机贴合法。 四辊压延机可一次同时完成两个新 鲜胶片的压延与贴合。贴合效率高、 质量好、精度高,但压延效应大。
三、橡胶的压延工艺
(二)压延工艺方法 1 压片
压片:利用压延机等速辊筒将胶料制成具有规定断面厚度和宽度的表面 光滑的胶片。胶片应表面光滑,无绉缩,内部密实,无孔穴、气泡或海绵; 断面厚度均匀,精度,各部分收缩变形一致。 设备:压片压延机一般为三辊或四辊压延机,但多采用三辊压延机
压片工艺分类: ①积胶压延法片材表 面光滑,密实,减少气泡,但会增大压 延效应,适于丁苯橡胶。②普通挤胶法 适于NR。
三、橡胶的压延工艺
(三)压延制品厚度的控制
1 沿辊筒轴线方向上厚度
三高两低现象
(1)辊筒的弹性弯曲变形(横压力) 辊筒弹性弯曲变形(横压力)使压延制品中间厚两边薄 克服方法: a 中高度补偿法 ; b 轴交叉法 ; c 预应力法 (2)辊筒表面温度 轴承润滑油带走部分热量,辊筒温度中间高两边低使压延制品两边 较中间厚。 克服方法: a 中间鼓风冷却; b 两边红外加热
厚擦法:T上>T下>T中; 薄擦法: T上>T中> T下
三、橡胶的压延工艺
(二)压延工艺方法 5 纺织物挂胶的工艺影响因素
(1)胶料的可塑度 为了保证胶料对布孔的充分渗透,胶料要有较高的可塑 度(比压片胶料大)。天然橡胶的贴胶可塑度为0.4-0.5、 擦胶可塑度为0.5-0.6较为合适。 (2)辊温 辊温控制比压片时高,以增大胶料的流动性及胶料与纺织 物间的附着力。但辊温过高易产生焦烧。

高分子材料成型加工ppt课件

高分子材料成型加工ppt课件
6
7
高分子成型加工
定义:将聚合物(有时加入各种添加剂、助剂 或改性材料)转变为制品或实用材料的一种工 程技术。
基本任务: 1.研究各种成型加工方法和技术; 2.研究产品质量与各种因素之间的关系; 因素包括:a.聚合物本身的性质; b.各种加工条件参数; c.设备和模具的结构尺寸; d.各种添加剂、助剂; 3.研究提高产量和降低消耗的途径。
18
19
二、聚合物的可模塑性
★定义:聚合物在温度和压力作用下形变和在 模具中模制成型的能力。
可模塑性取决于聚合物的流变性、热性 质,模塑条件和模具的结构。
20
★表征方法:螺旋流动试验
L 2 d
C
Pd T
2
H
C
Pd
H T
d
21
三、聚合物的可纺性
★定义:聚合物材料通过加工形成连续的固态 纤维的能力。
11
绪论
一、聚合物加工过程
首先,使原材料产生变形或流动取得所 需要的形状;然后,设法保持取得的形状 (即硬化)。
流动-硬化是加工过程的基本程序。
方法
方法
聚合物
可塑性状态
流动与变形
工艺条件
硬化定形
制品
12
二、聚合物加工形式
★聚合物熔体的加工—挤出、注射、压延、模压 ★类橡胶状聚合物的加工—吹塑、拉幅薄膜 ★聚合物溶液的加工—流涎薄膜、湿或干法纺丝 ★低分子聚合物或预聚物的加工—浇铸 ★聚合物悬浮体的加工—胶乳、搪塑 ★聚合物的机械加工—车、铣、刨
17
第一节 聚合物材料的加工性
一、聚合物的可挤压性
★定义:聚合物通过挤压作用形变时获得形状 和保持形状的能力。
粘流态才能挤压变形,受到剪切作用。 可挤压性与粘度、设备结构、压力有关。

高分子材料成型工艺课件

高分子材料成型工艺课件
智能化制造
将信息技术与高分子材料成型工艺 相结合,实现智能化制造,提高生 产效率。
06
高分子材料成型工艺案例分析
案例一:注塑成型工艺在汽车行业的应用
总结词
广泛使用、高效、精确
详细描述
注塑成型工艺是高分子材料成型中的一种常用方法,尤其在汽车行业中应用广泛。通过注塑成型,可以高效、精 确地生产出各种形状和尺寸的汽车零部件,如保险杠、仪表盘、座椅骨架等。这种工艺能够满足汽车行业对高品 质、高效率和高精度的要求。
注塑成型工艺适用于各种塑料材料, 如聚乙烯、聚丙烯、聚氯乙烯等,广 泛应用于汽车、家电、电子等领域。
挤出成型工艺
挤出成型工艺是一种通过螺杆旋 转加压的方式将高分子材料连续
不断地挤出成型的加工方法。
挤出成型工艺适用于各种塑料材 料,如聚乙烯、聚丙烯、聚氯乙 烯等,广泛应用于管材、板材、
型材等领域。
挤出成型工艺具有生产效率高、 加工成本低等优点,但也存在一 些缺点,如设备投资大、生产过
04
高分子材料成型工艺的新发展
3D打印技术
3D打印技术是一种增材制造技术,通过逐层堆积材料来构建三维物体。 在高分子材料成型领域,3D打印技术可用于制造塑料、橡胶等高分子材 料的制品。
3D打印技术的优点包括定制化生产、减少材料浪费、提高生产效率等。 此外,该技术还可用于制造复杂结构的高分子材料制品,如多孔结构、
成型流程
将高分子材料加入成型设备中, 经过加热、加压或特定化学环境 处理,最后冷却固化得到制品。
成型工艺的影响因素
材料性质
高分子材料的分子量、分子量分布、 结晶度、流动性等性能对成型工艺有 很大影响。
成型温度
温度过高可能导致材料分解,温度过 低则可能使材料无法充分流动和塑化 ,影响制品质量。

橡胶加工工艺—橡胶注射工艺(高分子成型课件)

橡胶加工工艺—橡胶注射工艺(高分子成型课件)
三、橡胶的注射工艺
橡胶注射定义: 将胶料加热塑化成粘流态(熔融态),施以高压注射进入模具 热压硫化,然后开启模具取出成型制品的工艺过程。
三、橡胶的注射工艺
工艺特点
① 成型过程和硫化过程同时进行,工序简单,制品性能优异、质量稳 定; ② 胶料利用率高,可获得形状复杂的制品; ③ 自动化和半自动化程度高,劳动强度低,硫化速度快,生产效率高, 但需严格控制硫化工艺,否则胶料易过硫; ④属于周期性生产工艺,一次性投资大,模具结构复杂,加工成本高。 应用范围
6 成型周期—时间
高温快速硫化体系配方可大大缩短硫化时间。 厚制品硫化时由于制品内外层存在一定的温差,因此仍需适当延长硫化 时间保证制品质量。 一般情况下,充模时间与保压时间之和应小于焦烧时间,以防胶料在喷 嘴和模型流道处硫化,同时保证在硫化前完成压力均化过程,消除物料流 动中造成的内应力现象。
三、橡胶的注射工艺
适合于尺寸精度高、形状复杂、产量高的橡胶制品的生产,主要用于 密封圈、带金属骨架的模制品、减震垫及鞋类制品的生产。
三、橡胶的注射工艺
(一)注射过程及原理 1 注射成型过程
塑化
脱模
注射
热压 硫化
橡胶注射成型过程:塑化、注射、热压硫化,脱模。注射之前要求胶 料温度较低,防止发生焦烧,同时胶料应有较好的流动性,保证顺利注 模。注射保压后快速升温,且模具中内外层胶料温度均匀一致,提高 体系硫化效率。
三、橡胶的注射工艺
(二)注射工艺条件分析
5 喷嘴结构 喷嘴结构十分重要,喷嘴锥形部位斜度为30°-75°时,胶温上升最慢, 压力损失小。 减小喷嘴直径,注射时间延长,通过喷嘴摩擦生热高,易引起焦烧; 喷嘴直径增加,注射时间减小,焦烧危险性减小,但硫化时间增加。一 般情况下,喷嘴直径控制在2-6mm。

高分子材料成型加工PPT课件

高分子材料成型加工PPT课件
根据产品需求选择合适的高分子材料,如聚乙烯、聚丙烯、聚氯 乙烯等。
原材料处理
对原材料进行干燥、除湿、清洁等预处理,确保其质量和稳定性。
配料与混合
根据生产需要,将多种原材料按比例混合,制备成适合加工的混 合料。
模具设计
模具材料选择
选用耐高温、耐腐蚀、高硬度的材料制作模具。
模具结构设计
根据产品形状、尺寸和性能要求,设计合理的模具结构。
环保化
总结词
环保意识的提高促使高分子材料成型加工向 更加环保的方向发展。
详细描述
为了降低高分子制品在生产和使用过程中的 环境污染,人们正在积极开发环保型的高分 子材料和加工技术。例如,采用可降解的高 分子材料、开发无毒或低毒的加工助剂、优 化加工工艺以减少能源和资源的消耗等。
智能化
总结词
智能化是高分子材料成型加工的未来重要发展方向。
表面处理
根据需要,对成品进行表面处理,如喷涂、电镀、热压等。
包装与储存
将成品进行包装,并选择适当的储存环境,以防受潮、尘土和紫外 线等因素影响。
04 高分子材料成型加工中的问题与对策
CHAPTER
气泡问题
总结词
气泡问题在高分子材料成型加工中较为常见,主要是由于气体在材料中滞留或挥 发所致。
详细描述
翘曲问题
总结词
翘曲问题是指高分子材料成型加工后 出现弯曲、变形的情况。
详细描述
翘曲问题会影响产品的外观和性能,如 导致不平整的表面或扭曲的形状。解决 翘曲问题的方法包括优化加工工艺、调 整模具设计和选择合适的材料等。
其他问题与对策
总结词
除上述问题外,高分子材料成型加工中还可能遇到其他问题,如裂纹、变色等。
02

《高分子材料成型加工基础》课件——项目六-泡沫塑料成型

《高分子材料成型加工基础》课件——项目六-泡沫塑料成型

① 低发泡塑料:ρ=0.4g/cm3以上,气体/固体<1.5 ② 中发泡塑料:ρ =0.1~0.4g/cm3,气体/固体<1.5~9 ③ 高发泡塑料:ρ= 0.1g/cm3以下,气体/固体>9
● 开孔泡沫塑料:绝大多数泡孔互相连通的泡沫塑料; ● 闭孔泡沫塑料:绝大多数泡孔不相连通的泡沫塑料; ● 任何泡沫塑料都不是完全开孔或完全闭孔的。闭孔可借机械施压或化学方法使其成
将低沸点液体在高压下压入熔融状聚合物中,或在压力下将低沸点液体渗入聚合物颗 粒中,而后用减压或加热的方法使其在聚合物中气化和发泡。
先将颗粒细小的固体物质(如NaCl、淀粉等)混入聚合物中,后用溶剂或伴以化学方法, 使其溶出而留下孔洞成为泡沫塑料。
将微型(直径20μm~250μm、壁厚2~3μm)的空心玻璃球、空心陶瓷球、空心塑料微 球,埋入熔融聚合物或液态的热固性树脂中,而后使其冷却或交联而成为泡沫体。
● 主要:加热后放出N2的一些物质,品种多 ● 气体无毒、无臭、分散性好,对大多数聚合物的渗透性比O2、CO2和NH3都小 ● 大多数有机发泡剂为易燃、易爆的物质
➢ 制造泡沫塑料时,发泡气体是由形成聚合物的组分相互作用所产生的副产品,或是这 类组分与其它物质作用的生成物
➢ 主要用于聚氨酯泡沫塑料
➢ 借助机械搅拌方法使气体混入混合料形成泡孔的泡沫塑料称机械发泡法。(经物理或 化学变化使泡沫稳定)
发泡剂)在受热时产生的。
● 分解温度较狭窄而固定
● 分解速度能控制; ● 分解时不应大量放热; ● 气体没有腐蚀性,发泡剂均匀分布在原料中; ● 分解残余物无毒,对熔融、硬化无影响;
● 残余物不应有不愉快气味和颜色等,价格便宜。
● 主要:碱金属的碳酸盐和碳酸氢盐,如(NH4)2CO3、NaHCO3等 ● 价廉、不影响塑料的耐热性 ● 分解气体速度受压力限制 ● 发泡剂与塑料不混溶;难于均匀分布在物料中

《高分子成型加工》课件

《高分子成型加工》课件
深入探讨高分子成型加工的常用方法,包括注塑成型、挤出成型、吹塑成型 和压铸成型。
高分子成型加工工艺参数
了解影响高分子成型加工质量的重要工艺参数,包括温度控制、压力控制、 速度控制和质量控制。
高分子成型加工应用领域
展示高分子成型加工在不同行业中的广泛应用,包括汽车工业、电子行业、医疗行业和包装行业。
《高分子成型加工》PPT 课件
欢迎来到《高分子成型加工》PPT课件,让我们一起探索高分子材料的概述、 加工技术分类以及成型加工方法。
高分子材料概述
了解高分子材料的特性、应用和制备方法,以及它们在不同行业中的主要分类,包括热塑性和热固性塑料的加工方法。
高分子成型加工方法
高分子成型加工未来发展趋势
探讨高分子成型加工领域的未来发展趋势,包括新材料的研发、智能化生产 设备的应用和环保节能的加工工艺。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

邵氏硬度
邵氏硬度计是将规定形状的压针在标准的弹簧 力下压入试样,把压针压入试样的深度转换为 硬度值。邵氏硬度分为邵氏A和邵氏D两种, 邵氏A硬度适用于橡胶及软质塑料,用HA表示, 邵氏D硬度适用于较硬的塑料,用HD表示。
邵氏 A 型和 D 型硬度计压针 a- 3.00 0.50 ;b- 0.15 ;c― 0 0.04 ;
4
125 ±2
13 ±0.5 13 ±0.5 95
缺口类型和制品尺寸(mm)
试样类 型
缺口类型
缺口剩余 厚度dk
缺口底部圆弧半径r
基本尺寸 极限偏差
缺口宽度n
基本尺寸 极限偏差
A
0.8d
0.25
±0.05
/
/
1, 2, 3, 4
B
0.8d
1.0
±0.05
/
/
1, 3
C
2
C
≤0.1
/
2 3
d
≤0.1
(6) 在同一样品中,如果有部分破坏和完全破坏或铰链破坏时,应报告每 种破坏类型的自述平均值。
(1) 无缺口试样悬臂梁冲击强度aiu (kJ/m2)
aiu
W hb
103
式中 W为破坏试样吸收并修正后的能量值,J; b为试样宽度,mm; h为试样厚度,mm。
(2) 缺口试样悬臂梁冲击强度aiN (kJ/m2)
• 熟悉冲击试验的实验结果处理方法 • 了解测试条件对测定结果的影响
A型缺口
B型缺口
试样类型
长度L
基本尺寸 极限偏差
宽度b
基本尺寸 极限偏差
厚度d
基本尺寸 极限偏差
支撑线 间距L
1
80
±2
10 ±0.5
4
±0.2 60
2
50
±1
6
±0.2
4
±0.2 40
3
120 ±2
15 ±0.5 10 ±0.5 70
• 在塑料成型加工过程中,熔体流动速率是用来衡量塑料熔 体流动性的一个重要指标,其测试仪器通常称为塑料熔体 流动速率测试仪(或熔体指数仪)
• 一定结构的塑料熔体,若所测得MFR愈大,表示该塑料 熔体的平均分子量愈低,成型时流动性愈好。此种仪器测 得的流动性能指标是在低剪切速率下获得的,不存在广泛 的应力-应变速率关系
d― 0.03 ;r― 0.012
压力弹簧对压针所施加的力应与压针伸出压板位移 量有恒定的线性关系。其大小与硬度计所指刻度的关系如下 式所示:
(3) 调节能量刻度盘指针零点,使它在摆锤处 于起始位置时与主动针接触。进行空白实 验,保证总摩擦损失在规定的范围内。
操作步骤
(4) 抬起工锁住摆锤,把试样按规定放置在两支撑块上,试 样支撑面紧贴在支撑块上,使冲击刀刃对谁试样中心,缺 口试样使刀刃对准缺口背向的中心位置。
(5) 平稳释放摆锤,从刻度盘上读取试样破坏时所吸收的冲击 能量值。试样无破坏的,吸收的能量应不作取值,实验记录 为不破坏或NB;试样完全破坏或部分破坏的可以取值。
>3.5~10
6~8
10~30
>0.5~1.0
3~4
60~120
>10~25
6~8
5~10
>1.0~3.5
4~5
30~60
实验步骤
• 取出活塞将试料加入料筒,随即把活塞再插入料 筒并压紧试料,预热4min使炉温回复至要求温度
• 在活塞顶托盘上加上砝码,随即用手轻轻下压, 促使活塞在1min内降至下环形标记距料筒口 5~10mm处。待活塞(不用手)继续降至下环形 标记与料筒口相平行时,切除已流出的样条,并 按表2-6规定的切样时间间隔开始切样,保留连续 切取的无气泡样条三个。当活塞下降至上环形标 记和料筒口相平时,停止切样;
图1-3 PVC 干粉料密炼的扭矩谱
聚合物熔体流动速率的测定
实验目的和要求
• 了解塑料熔体流动指数与分子量大小及其 分布的关系
• 掌握测定塑料熔体流动速率的原理及操作
熔体流动速率
• 塑料熔体流动速率( MFR )是指在一定 温度和负荷下,塑料熔体每10min通 过标准口模的质量
• 工业上常称为熔融指数( MI )
3. 实验原材料和仪器设备
原材料
聚氯乙烯(PVC) 邻苯二甲酸二辛酯(DOP) 三盐基硫酸铅 硬酯酸钡(BaSt) 硬酯酸钙(CaSt) 石蜡
仪器设备
45份 2份 2份
0.7份 0.5份 0.2份
4. 实验步骤
称量 为便于对试样的测试结果进行比较,每次应称取 相同质量的试样。
合上总电源开关,打开扭矩流变仪上的 bN
103
式中 W为破坏试样吸收并修正后的能量值,J; h为试样厚度,mm;
bN为缺口试样缺口底部的剩余宽度,mm。
两个实验结果都需要
(3) 标准偏差s (4) 变异系数CV%
2
s
xi x
n 1
CV s 100% x
邵氏硬度测定
材料硬度的测试方法
• 布氏硬度 • 洛氏硬度 • 维氏硬度 • 莫氏硬度 • 邵氏硬度
温度范围:室温~400℃连续可调,出料口上端12.7~50mm间 温差≤1℃。
序号
标准口模内径
实验温度
负荷
1
1.180
190
2.160
2
2.095
190
0.325
3
2.095
190
2.160

4
2.095

5 6
2.095 2.095

7
2.095

8
2.095

9
2.095

10
2.095
11
2.095
A
GB 1843/1B 1
B
0.25±0.05 1.0±0.05
8.0±0.2 8.0±0.2
操作步骤
(1) 测量每个试样中部的厚度和宽度或缺口试样的剩 余宽度bN,精确到0.02mm。
(2) 检查实验机是否有规定的冲击速度和正确的能量 范围,破断试样吸收的能量在摆锤容量的10% ~ 80%范围内,若表11-1中所列的摆锤中有几个都 能满足这些要求时,应选择其中能量最大的摆锤。
实验步骤
• 停止切样后,趁热将余料全部压出,立即取出活 塞和口模,除去表面的余料并用合适的黄铜丝顶 出口模内的残料。然后取出料筒用绸布蘸少许溶 剂伸入筒中边推边转地清洗几次,直至料筒内表 面清洁光亮为止;
• 所取样条冷却后,置于天平上分别称其质量(准 确至0.001g)。若其质量的最大值和最小值之差 大于平均值的10%,则实验重做
• 不能用来研究塑料熔体粘度与温度,粘度与剪切速率的依 赖关系,仅能比较相同结构聚合物分子量或熔体粘度的相 对数值
主要技术特性
负荷由砝码、托盘(0.231Kg)、活塞(0.094Kg)之和组 成,分为0.325Kg、1.200Kg、2.160Kg、5.000kg等几个档次
标准口模直径
(2.095 ± 0.005)mm和(1.180 ± 0.010)mm; 料筒长度160mm,料筒直径(9.55 ± 0.025)mm
塑料种类 实验序号 塑料种类 实验序号 塑料种类 实验序号
聚乙烯 1、2、3、 ABS 4、6
聚苯乙烯 5、7、11、 聚苯醚 13
聚酰按 10、15 聚碳酸酯
7、9 12、14
16
聚甲醛
3
丙烯酸酯 8、11、13
纤维素酯 2、3
实验步骤
• 吸湿性塑料,测试前应按产品标准规定进 行干燥处理
• 熟悉熔体流动速率仪主体结构和操作规程, 根据塑料类型选择测试条件
操作步骤
(1) 对于无缺口试样,分别测定试样中部边缘 和试样端部中心位置的宽度和厚度,并取 其平均值为试样的宽度和厚度,准确至 0.02mm。缺口试样应测量缺口处的剩余厚 度,测量时应在缺口两端各测一次,取其 算术平均值。
操作步骤
(2) 根据试样破坏时所需的能量选择摆锤,使 消耗的能量在摆锤总能量的10% ~ 85%范 围内。
快捷键可随时结束实验; 提升压杆,依次打开密炼机二块动板,卸下两个转
子,并分别进行清理,准备下一次实验用; 待仪器清理干净后,将已卸下的动板和转子安装好。
5.思考题
(1)图1-3为PVC的典型转矩-时间流变曲线。曲线上 有三个峰。分别指出三个峰代表的意义。
(2)转矩流变仪在聚合物成型加工中有哪些方面的应用? (3)加料量、转速、测试温度对实验结果有哪些影响?
转矩流变仪实验
1. 实验目的要求
了解转矩流变仪的基本结构及其适应范围; 熟悉转矩流变仪的工作 原理及其使用方法; 掌握聚氯乙烯(PVC)热稳定性的测试方法。
2. 实验原理
物料被加到混炼室中,受到两个转子所施加的作用 力,使物料在转子与室壁间进行混炼剪切,物料对转 子凸棱施加反作用力,这个力由测力传感器测量,在 经过机械分级的杠杆和臂转换成转矩值的单位牛顿.米 ( N.m )读数。其转矩值的大小反应了物料黏度的大 小。通过热电偶对转子温度的控制,可以得到不同温 度下物料的黏度。
/
2
±0.2
0.8
±0.1
试样制备
• 注塑标准试样
– 试样表面应平整、无气泡、无裂纹、无分层和 无明显杂质,缺口试样在缺口处应无毛刺
• 板材试样厚度在3~13mm之间时取原厚度。 大于13mm时应从两面均匀地进行机械加工 到10±0.5mm。4型试样的厚度必须加工到 13mm
简支梁冲击试验
标准试样的冲击刀刃和支座尺寸
(6) 如果同种材料在实验中观察到一种以上的破坏类型时,须 在报告中标明每种破坏类型的平均冲击值和试样破坏的百 分数。不同破坏类型的结果不能进行比较。
相关文档
最新文档