第三章钢结构的连接螺栓连接

合集下载

A钢结构的连接(焊缝)

A钢结构的连接(焊缝)
fw — — 角焊缝强度设计值 fw由角焊缝抗剪条件确定 , 所以公式右边相当于角焊 缝抗拉强度设计值。
沿焊缝长度方向的力Nx , 在有效截面上引起平行于焊 缝长度方向的剪应力 f 。
直角角焊缝的计算
则直角角焊缝在各种应力综合作用下的计算公式为:
f —— 正面角焊缝的强度设计值增大
系数 。静载时 f =1 .22 ,对直接承受
当焊件厚度 hf=tx
tm≤4mm时,则取
2 . 式最中大tm焊ax 脚为较尺厚寸焊件h的f m厚ax度(mm)
tmin为较薄焊件的厚度。
板件厚度为t1 的板件边缘焊缝尚应满足:
(1)
当t1≤6mm时,h r ≤ t
(2)
当t 1>6mm时,hf≤t1-(1~2)mm。
为什么焊脚尺寸不能过小?
焊脚尺寸过小 ,在施焊过程中高温的焊缝热量很快被焊件吸收, 焊缝冷却过快 , 焊缝金属易产生硬组织 ,焊缝易变脆。
强度计算(焊透的对接焊缝)
1 、承担轴心力
2 、承担弯矩和剪力
在正应力和剪应力同时作用点处: 1. 1为考虑到最大折算应力只 在局部出现,而将强度设计值适当提高系数 。
采用斜焊缝时(三级焊缝)

时 , 即 6≤67.2 时
斜焊缝与钢板等强 。
规范规定 , 当斜焊缝与作用力N间的夹角 符合tg 56 . 3º)时 , 可不验算其强度 。 工程中通常取 =45º 。
V
eF
1
2
MM
h1 h h2 x
x
2’
σf1 σf2
τf
h1
对于2点:
强度验算公式:
h 2— 腹板焊缝的实际长度; l w2—腹腹板板焊焊缝缝的的计计算算长长度度 ; he2—腹板焊缝截面有效高度。

钢结构螺栓连接

钢结构螺栓连接
1.高强度螺栓预拉力的控制方法 预拉力是通过拧紧螺帽来实现的。其常用的控制方法为: ⑴转角法(用于大六角型螺栓):通过工艺试验,确定满足预
拉力要求所需角度,在实际工程中采用固定转角,不精确; ⑵扭矩法(用于大六角型螺栓):通过工艺试验,确定满足预
拉力要求所需扭矩,制做特殊扳手,如机械扳手,光电扳手等; ⑶扭剪法(用于扭剪型螺栓):用特殊扳手拧断其梅花头为
Nt
N
b t
2、螺栓群弯矩受拉
N
H
V
N
刨平顶紧 承托(板)
a)
b)
螺栓群承受轴心拉力
基本假定:
1)在弯矩作用下,板件绕最边缘的螺栓旋转 ;
2)每个螺栓受力大小与其到旋转中心的距离成正比。
3.7 普通螺栓连接的工作性能和计算
第三章 钢结构的连接
3.7.2 普通螺栓抗拉连接
V N1
N2
N3
M
o'
中和轴
第三章 钢结构的连接
3.7.2 普通螺栓抗拉连接
规范中考虑杠杆效应的方法: 1)降低螺栓的抗拉强度,即取 ftb 0.8 f ;
2)设计中采取构造措施以减少不利影响,如设置加劲肋。
抗拉连接螺栓的破坏形式:螺杆被拉断。
3.7.2.2 单个螺栓的抗拉承载力
式单中个Ae螺—栓—的螺抗栓拉的承有载效力面N设t积b计,值A可e为查f:tb表;πd4e2 ftb
形小,耐疲劳,特别适于承受动力荷载的结构. d0 d 1.5-
2.0mm。
承压型连接——允许接触面滑移,以连接达到破坏的极限承载
力作为设计准则.其承载力高于摩擦型,连接紧凑,但剪切变形
比摩擦型大,故不得用于承受动力荷载的结构。d
1.5mm。

钢结构螺栓连接.pdf

钢结构螺栓连接.pdf

第三章钢结构螺栓连接第一节概述螺栓作为钢结构主要连接紧固件,通常用于钢结构中构件间的连接、固定、定位等,钢结构中使用的连接螺栓一般分普通螺栓和高强度螺栓两种。

选用普通螺栓作为连接的紧固件,或选用高强度螺栓但不施加紧固轴力,该连接即为普通螺栓连接,也即通常意义下的螺栓连接;选用高强度螺栓作为连接的紧固件,并通过对螺栓施加紧固轴力而起到连接作用的钢结构连接称高强度螺栓连接。

图!"#"$为两种螺栓连接工作机理的示意,其中图!"#"$(%)为摩擦型高强度螺栓连接的工作机理,通过对高强度螺栓施加紧固轴力,将被连接的连接钢板夹紧产生摩擦效应,当连接节头受外力作用时,外力靠连接板层接触面间的摩擦来传递,应力流通过接触面平滑传递,无应力集中现象。

普通螺栓连接在受外力后,节点连接板即产生滑动,外力通过螺栓杆受剪和连接板孔壁承压来传递,如图!"#"$(&)。

图!"#"$螺栓连接工作机理示意图!"#"’为典型螺栓连接拉伸曲线,从曲线上可以把螺栓连接工作过程分为四个阶段:阶段$为静摩擦抗滑移阶段,即为摩擦型高强度螺栓连接的工作阶段,对普通螺栓连接,阶段$不明显,可忽略不计,连接接头直接进入阶段’;阶段’为荷载克服摩擦阻力,接头产生滑移,螺栓杆与连接板孔壁接触进入承压状态,此阶段为摩擦型高强度螺栓连接的极限破坏状态;阶段#为螺栓和连接板处于弹性变形阶段,荷载—变形曲线呈现线性关系;阶段!为螺栓和连接板处于弹塑性变形阶段,最后螺栓剪断或连接板破坏(拉脱、承压和净截面拉断),整个连接接头破坏,曲线的终点即为普通螺栓连接的极限破坏状态;若采用高强度螺栓,则为承压型高强度螺栓连接的极限破坏状态。

图!"#"$螺栓连接的典型拉伸曲线对于高强度螺栓连接,阶段#和阶段!中连接板面间的摩擦效应仍然存在,该两阶段通称摩擦—承压型高强度螺栓连接,连接的设计计算应采用变形准则方法进行,即给定一个连接接头变形量(!),可以通过连接拉伸曲线(%&’(!))得到相应接头承载力,对于允许连接接头有一定变形的结构,可以采用摩擦—承压型高强度螺栓连接,其优点是比摩擦型连接提高了连接的承载力,避免了接头发生极限破坏(承压型连接)。

第三章 钢结构连接(螺栓)

第三章 钢结构连接(螺栓)

但在重要的连接中,例如:制动梁或吊车梁上翼缘与
施工图中螺栓及其孔眼图例
螺栓及其孔眼图例见表3.3,
3.7 普通螺栓连接的工作性能和计算
普通螺栓连接按受力情况可分为三类
①螺栓只承受剪力; ②螺栓只承受拉力; ③螺栓承受拉力和剪力的共同作用。

下面将分别论述这三类连接的工作性能和计算
方法。
3 钢结构的连接
3.6 螺栓连接的构造
3.6.1 螺栓的排列

规范规定的钢板上螺栓的容许距离见表3.5(p62)。 在角钢、普通工字钢、槽钢截面上排列螺栓的线距应满 足表3.6、表3.7、表3.8的要求。
螺栓或铆钉的最大、最小容许距离 名称 位置和方向
表 3.4 最大容许距离 (取两者的较小值) 最小容许 距 离

1
外排(垂直内力方向或顺内力方向) 中 垂直内力方向 压力 顺内力方向 排 拉力
8d0 或 12t 16d0 或 24t 12d0 或 18t 16d0 或 24t 3d0
中 心 间 间 距 顺内力方向 中心至 垂直 构件边 内力 缘距离 方向 气割或锯割边 其他螺栓或铆钉 1.2d0 注:(1) d0 为螺栓或铆钉孔直径,t 为外层较薄板件的厚度; (2)钢板边缘与刚性构件(如角钢、槽钢等)相连的螺栓或铆钉的最大间距,可按 中间排的数值采用。 轧制边自动精密 高强度螺栓 剪切边或手工气割边 4d0 或 8t 1.5d0
距≥2d0来保证,第⑤种破坏形式通过限制夹紧长度在(4~6)d内 来保证。因此,抗剪螺栓连接的计算只考虑第①、②种破坏形式。
1 1
(a) e
(b)
(c)
(d)
1-1 剖面 图 3-12 抗剪螺栓的破坏性式
(e)

钢结构的连接螺栓连接

钢结构的连接螺栓连接

yn
M N1 y1
y12 y22 yn2
N1 y1
n
yi2
i 1
N1
M y1
n
yi2
i 1
1号螺栓强度验算:
N1
N
b t
一般螺栓群在偏心拉力作用
N1F
F e
1 2 3 4
F M
刨平顶紧 F
承托(板)
可采用偏于安全旳设计措施,即叠加法。
N1M
N2M
y1
N3M
N4M
M=F·e
N1 N1F
材为Q235钢,采用M 22普通螺栓 (C级),螺栓孔直径d0 24mm。 N
此连接承受的静力荷载设计值为
340
260 10
N
10
t 12
N 900kN。
解:查附表1.3得:fvb 140N / mm2
f
b c
305N
/
mm2
一个螺栓的抗剪承载力设计值为
N
t 20
N
N
530
t 12
N /2
T y1
n
xi2
n
yi2
i 1
i 1
i 1
i 1
N1Ty
T r1
n
xi2
n
yi2
x1 r1
T
n
xi2
x1
n
yi2
i 1
i 1
i 1
i 1
y1 r1
N1Tx N1T
x N1Ty
T
螺栓1旳强度验算公式为:
N12Tx
N1Ty N1F
2
N
b min
当螺栓布置比较狭长(如y1≥3x1)时, 可令:xi=0,则N1Ty=0

钢结构-第三章 钢结构连接方法

钢结构-第三章 钢结构连接方法

自动焊的焊缝质量稳定,焊缝内部缺陷较少, 塑性好,冲击韧性好,适合于焊接较长的直接 焊缝。半自动焊因人工操作,适用于焊曲线或 任意形状的焊缝。自动和半自动焊应采用与主 体金属相适应的焊丝和焊剂,焊丝应符合国家 标准的规定,焊剂应根据焊接工艺要求确定。
钢结构连接方式
* 气体保护焊是用惰性气体(或CO2)气体作
为电弧的保护介质,使熔化金属与空气隔绝, 以保持焊接过程稳定。气体保护焊电弧加热 集中,焊接速度快,熔深大,故焊缝强度比 手工焊的高。且塑性和抗腐蚀性好,适合于 厚钢板的焊接。
钢结构连接方式
(二)焊缝符号集及标注方法
《焊缝符号表示法》规定:焊缝符号一般由基本符 号与指引线组成,必要时还可加上补充符号和焊缝尺寸。 基本符号:表示焊缝的横截面形状,如用“ ”表 示角焊缝,用“V”表示V形坡口的对接焊缝; 补充符号:补充说明焊缝的某些特征,用“ ” 表示现场安装焊缝,用“ ”表示焊件三面带有焊缝; 指引线 :一般由横线和带箭头的斜线组成,箭头 指向图形相应焊缝处,横线上方和下方用来标注基本符号 和焊缝尺寸等。
钢结构连接方式
本章小结
*一、知识点
* 1.钢结构的连接方法主要有焊接连接、螺栓连接和铆钉连接三
种方式。
* 2.钢结构常用的焊接方法、焊缝连接;对接焊缝和角焊缝的构
造;焊缝符号集及标注方法;焊缝质量检验和焊缝质量级别。
* 3. 普通螺栓连接的构造;
*二、重点内容
* 1.钢结构的连接方法 * 2.普通螺栓连接的构造
钢结构连接方式
A、B级螺栓(精制螺栓)采用8.8级钢材制作,经机床车削加工而成,表 面光滑,尺寸准确,且配用Ⅰ类孔(即螺栓孔在装配好的构件上钻成或扩钻成,孔 壁光滑,对孔准确)。由于其加工精度高,与孔壁接触紧密,其连接变形小,受力 性能好,可用于承受较大剪力和拉力的连接。但制造和安装较费工,成本高,故在 钢结构中较少采用。

钢结构第3章(螺栓连接计算)

钢结构第3章(螺栓连接计算)

2
2
当螺栓群分布在一个狭长带内,如y1>3x1时,可近似取xi=0,这时
N N
T 2
1x
V 1y
2
Ty1 y2 i
V 2 b N min n
2
例3.11 设计两块钢板用普通螺栓连接的盖板拼接,构件受轴拉力设计值 为 N=325kN,钢材Q235A,粗制螺栓直径d=20mm,板宽360mm,盖板 厚6mm,杆件板厚8mm。
n
1.1n
(2)搭接接头或用拼接板单面连接的,由于容易弯曲,螺栓联接 数(不包括摩擦型连接的高强度螺栓),应按计算增加10%。 1.1n
1.1n 1.1n (3)在构件端部连接中,当利用短角钢与型钢(角钢、槽钢等)的外 伸肢相连以缩短连接长度时,在短角钢两肢中的任一肢上所用的螺栓数 目应当增加计算数的50%。
连接处接触面连接处接触面处理方法处理方法q235q235钢钢q345q345和和q390q390钢钢q420q420喷喷喷砂后涂无机富锌漆喷砂后涂无机富锌漆喷砂后生赤绣喷砂后生赤绣用钢丝刷清除浮锈或未用钢丝刷清除浮锈或未经处理的干净轧制表面经处理的干净轧制表面045045035035045045030030050050040040050050035035050050040040050050040040摩擦面抗滑移系数值表311当表面有水或漆或其它污物表面的摩擦系数将大幅下降
a) B A b) B A c)
A
d) e)
35º 35º
A
A
综上所述:在普通螺栓的抗剪连接中需要计算的内容主要有三项: (1)保证螺栓杆不被剪断; (2)保证螺栓孔壁不会因承压而破坏; (3)构件有足够的净截面强度,不被拉断。(实质上属于构件破坏 ) 当有螺栓孔削弱,除上述构件被拉断外,还有一种使构件破坏的可能 性,如图所示:这类破坏方式被成为块状拉剪破坏(block shear failure )。这类破坏在过去并不注意,现在在设计规范中已经明确要求计算。 (《钢结构设计规范》7.5.1)

19年新钢结构连接第3章

19年新钢结构连接第3章

34
步骤3:计算角钢肢背和肢尖上侧缝分担的轴力(N1 ,N2)
k1N
lw1
N
k2N
lw2
查得焊缝内力分配系数K1=0.65, K2=0.35
肢背角焊缝所承受的内力
N1=373.75kN
肢尖角焊缝所承受的内力
N2=201.25kN
2019/10/20
35
步骤4:计算角钢肢背和肢尖上侧缝长度(lw1 ,lw2)
强度折减:高空安装焊缝,强度设计值乘以0.9
2019/10/20
8
3.2.4 焊缝连接型式及焊缝型式
焊缝连接型式:对接、搭接、T形连接和角接
焊缝连接型式
2019/10/20
9
焊缝型式:对接焊缝和角焊缝
对接焊缝按受力与焊缝方向分: 1)正对接焊缝(a):作用力方向与焊缝方向正交。 2)斜对接焊缝(b):作用力方向与焊缝方向斜交。

(
f
f
)2


2 f

f
w f
f 1.22
正面角焊缝强度增大系数,直接承受 动力荷载时为1.0
20
3.3.3 常用连接方式的角焊缝计算
1. 受轴心力焊件的拼接板连接
仅侧面角焊缝:
f
N he lw

f
w f
仅正面角焊缝:
f
he
N lw
f
f
w f
2019/10/20
2019/10/20
27
[分析] 方法一: 假定焊脚尺寸----焊缝长度----拼接盖板尺寸
步骤1:假定焊脚尺寸(hf) 角焊缝的尺寸是根据板件的厚度确定的。
最大焊脚尺寸:规范规定,当t>6mm时,hf≦t-(1~2)mm,t为 较薄焊件的厚度

钢结构第三章(连接)

钢结构第三章(连接)

传力机理
利用预拉力把被连接的部 件夹紧,使部件的接触面 允许接触面滑移,依靠螺栓 间产生很大的摩擦力,外 杆和螺孔之间的承压来传力 力通过摩擦力来传递 =螺杆的公称直径 +1.5~2.0mm =螺杆的公称直径 +1.0~1.5mm
栓孔直径
特点
剪切变形小,弹性性能好, 连接紧凑,但剪切变形大, 特别适用于承受动力荷载 不得用于承受动力荷载的结 的结构 构
本章难点:如何运用相关公式进行各种连接计算
1
§3.1 钢结构的连接方法
连接的原则 安全可靠、传力明确、构造简单、制造方便和节约钢材 连接的方式 对接焊缝 1、焊接
角焊缝
2、铆接
2
§3.1 钢结构的连接方法
普通螺栓
3、螺栓连接
高强螺栓
摩擦型连接 承压型连接
3
§3.1 钢结构的连接方法
焊接连接
铆钉连接
1)连续角焊缝:受力性能较好,为主要的角焊缝形式。
≥50或10h 2)间断角焊缝:在起、灭弧处容易引起应力集中。只能用于次要或受 力小的构件。
f
≥50或 10hf
≥50mm或10hf
19
§3.2 焊接方法和焊接连接形式
3.2.2 焊接连接形式及焊缝形式
(2)焊缝形式 C、按施焊位置分:平焊、横焊、立焊和仰焊。 a) 焊条 b) c) d)
螺栓连接
4
§3.1 钢结构的连接方法
3.1.1 焊接连接
优点
* * * * 构造简单 任何形式的构件都可直接相连; 用料经济 不削弱截面; 制作加工方便 可实现自动化操作; 连接的密闭性好,结构刚度大,整体性好。
缺点
* * * * *
材质易变脆; 产生残余应力、残余应变、焊接缺陷 降低压杆稳定、影响疲劳强度 对裂纹十分敏感 低温冷脆问题较为突出。

钢结构第三章 钢结构的连接

钢结构第三章 钢结构的连接

钢结构第三章钢结构的连接钢结构的连接1. 引言钢结构的连接是钢结构设计的关键环节之一。

连接的质量直接影响到整个钢结构的稳定性和安全性。

本章将详细介绍钢结构连接的相关知识,包括连接的分类、连接的选择原则、常用连接方式等。

2. 钢结构连接的分类钢结构连接可以按连接方式、连接部位、连接形式等多种方式进行分类。

常见的连接方式包括焊接连接、螺栓连接、连接件连接等。

根据连接部位可分为梁柱连接、梁梁连接、柱柱连接等。

根据连接形式可分为刚性连接和半刚性连接。

3. 焊接连接焊接连接是最常用的连接方式之一。

本节将详细介绍焊接连接的原理、方法、注意事项等。

焊接连接具有连接刚性好、承载能力高等优点,但需要注意焊接质量、焊接工艺等因素。

4. 螺栓连接螺栓连接是另一种常见的连接方式。

本节将介绍螺栓连接的原理、选型、设计要点等。

螺栓连接具有拆卸方便、适应性广等优点,但也有一些需注意的问题,如螺栓预紧力、螺栓材料等。

5. 连接件连接连接件连接是一种常用的连接方式,合用于一些特殊场合。

本节将介绍连接件连接的原理、选择、设计要点等。

连接件连接具有连接方便、适应性强等优点,但在设计过程中需要注意连接件的选择和尺寸等。

6. 钢结构连接的设计原则钢结构连接的设计原则包括强度原则、刚度原则、稳定性原则等。

本节将详细介绍这些设计原则的具体内容和应用方法,匡助读者更好地进行连接设计。

7. 钢结构连接的验算钢结构连接的验算是保证连接质量的重要环节。

本节将介绍常用的连接验算方法,如焊缝验算、螺栓验算等。

同时还将介绍一些相关的计算公式和实例,匡助读者理解和应用。

8. 钢结构连接的质量控制钢结构连接的质量控制是确保连接质量的关键。

本节将讲解常用的连接质量控制方法,如焊接质量控制、螺栓预紧控制等。

同时还将介绍一些连接质量控制的经验和技巧。

9. 钢结构连接的维护与检测钢结构连接的维护与检测是保证连接安全可靠的重要手段。

本节将介绍常用的连接维护与检测方法,如焊缝检测、螺栓松动检测等。

第三章 钢结构的连接-普通螺栓连接

第三章 钢结构的连接-普通螺栓连接

公式的两点说明:
(1)螺栓的有效截面面积 因栓杆上的螺纹为斜方向的,所以抗拉时公式取的是有效
直径de而不是净直径dn,现行国家标准取:
ded1 23 43t (t螺)距
dn de dm d
(2)螺栓垂直连接件的刚度对螺栓抗拉承载力的影响
A、螺栓受拉时,一般是通过
与螺杆垂直的板件传递,即螺 杆并非轴心受拉,当连接板件 发生变形时,螺栓有被撬开的 趋势(杠杆作用),使螺杆中 的拉力增加(撬力Q)并产生 弯曲现象。连接件刚度越小撬 力越大。试验证明影响撬力的 因素较多,其大小难以确定, 规范采取简化计算的方法,取 ftb=0.8f(f—螺栓钢材的抗 拉强度设计值)来考虑其影响。
由假定‘(2)’得
y1 r1
N1Tx N1T
x N1Ty
T
N 1 TN 2 TN 3 T N nT
r1 r2 r3
rn
由上式得:
N 2 TN r1 1 Tr2 ; N 3 TN r1 1 Tr3 ; N nT N r1 1 Trn
得:
T N r 1 1 Tr 1 2 r 2 2 r n 2N r 1 1 Ti n 1r i2
简化计算: 令:xi=0,则NiTy=0
N 1Tx T ny r1 i2y r1 1T ny y1 i2
y 1 N1Tx
y1
r1
N1T
x N1Ty

i 1
i 1
x1
N 1 2 T x N 1 F 2 N m b in
三、普通螺栓的抗拉连接
(一)普通螺栓抗拉连接的工作性能

N 1 TT nr1n
Tr1
n
ri2
xi2 yi2

钢结构第三章螺栓连接

钢结构第三章螺栓连接

需验算 正交截 面和折 线截面 的强度
An t[2e4 (n2 1) e12 e22 n2d0 ]
例题3-14
设计两角钢用C级普通螺栓的拼接,已知角 钢型号为∟90×6,所承受的轴心拉力的设计 值为N=160KN,采用拼接角钢的型号与构件 的相同,钢材为Q235A,螺栓直径d=20mm, 孔径为21.5mm。
Nn yn
y2 n
N Myi
i
y2
i
要求:受力最大的最外排螺栓的拉力不超过一 个螺栓的抗拉承载力设计值,即:
N My1 N b
1
y2
i
t
4. 弯矩和拉力共同作用的普通螺栓群计算
根据偏心距的大小可能出现小偏心受拉和大偏 心受拉两种情况
(1)小偏心受拉:全部螺栓均为受拉
轴心力:由各螺栓均匀承受;
验算螺栓受力以及净截面强度
1、拼接板尺寸:长、宽、厚度
600mm
厚度的确定原则:拼接板的截面面积大于被 连接钢板的截面面积。
被连接钢板的截面面积:18×600
拼接板的截面面积:2×600×t
取10mm
长度的确定:与螺栓的布置间距有关
布置螺栓
2、螺栓布置:水平距离和竖向距离
距离的选取原则:在容许距离范围之内,水 平距离取较小值;竖向距离取较大值。
de2
4
ftb
2. 轴心拉力作用普通螺拴群的计算
螺栓群在轴心力作用下的抗拉连接,通常假定每 个螺栓平均受力,则连接所需螺栓数为:
n

N N tb
3.弯矩作用的普通螺栓群计算
中和轴
受拉区 受压区
由螺栓承担 由整个受压板承担
近似地取最下排螺栓中心处

钢结构的连接(螺栓)PPT

钢结构的连接(螺栓)PPT

02
焊接过程中易产生热变 形,需进行焊后处理。
03
焊接过程中易产生焊接 缺陷,如气孔、夹渣、 未熔合等。
04
焊接过程中需要消耗大 量能源,且焊接设备成 本较高。
螺栓连接
01
02
03
04
通过螺栓和螺母将两个或多个 钢材连接在一起,操作简单,
安装方便。
螺栓连接可以拆卸,便于维修 和更换。
螺栓连接适用于承受静载和动 载的结构,承载能力较高。
优点
01
02
03
04
高强度
螺栓连接具有较高的承载能力 ,能够承受较大的拉力和压力

灵活性
螺栓连接适用于各种形状和尺 寸的钢结构,可以方便地连接
不同材料和厚度的构件。
易于安装
螺栓连接的安装过程相对简单 ,不需要焊接等复杂工艺,可
以快速装配和拆卸。
耐腐蚀
钢结构连接处使用螺栓连接可 以有效避免焊接区域的腐蚀问
06
螺栓连接的未来发展
新材料的应用
01
02
03
高强度钢材
随着材料科学的进步,高 强度钢材的研发和应用将 进一步提高螺栓连接的强 度和稳定性。
轻质材料
轻质材料的出现将降低结 构重量,提高螺栓连接的 效率,尤其在航空和汽车 领域具有广泛应用前景。
耐腐蚀材料
针对不同环境条件,研发 具有良好耐腐蚀性能的螺 栓材料,以提高结构的使 用寿命和安全性。
智能化连接技术
自动化装配
利用机器人和自动化设备 实现螺栓连接的快速、准 确装配,提高生产效率。
智能监测
通过传感器和智能化技术 对螺栓连接进行实时监测, 及时发现潜在问题,确保 结构安全。
预紧力控制

第三章 钢结构的连接

第三章  钢结构的连接

max f t w或f cw
max
平焊 质量好
立焊 质量一般
横焊
仰焊 质量差
5.焊缝符号和标注方法

在钢结构施工图上要用焊缝代号标明焊缝形式、尺寸和辅助
要求。

焊缝代号主要由图形符号、辅助符号和引出线等部分组成。 具体有关代号规定和详细说明,可参照《建筑结构制图标准 》(GB/T 50105—2001)和《焊接符号表示法》(GB 324— 88)。
t
斜向受力的对接焊缝
对接焊缝斜向受力是指作用力通过焊缝重心,并与焊缝长度方向呈 夹角,其计算公式为:
N sin f t w 或 f cw l wt
N cos f vw l wt
l’w——斜焊缝计算长度。加引弧板时,l’w=b/sinq;不加引弧板时,l’w= b/sinq-2t。
易于采用自动化,生产效率高。
(2)缺点:位于焊缝附近热影响区的材质有些变脆;
在焊件中产生焊接残余应力和残余变形,对结构
工作有不利的影响; 焊接结构对裂纹很敏感,一旦局部发生裂纹便有
可能迅速扩展到整个截面,尤其在低温下易发生脆断。
2. 常用的电弧焊的基本原理和设备
包括手工电弧焊、自动埋弧电弧焊和半自动埋弧电弧焊。
N M max N M f t w Aw Ww
Vmax S w max f vw I wt
(3. 6a)
(3.6b)
翼缘与腹板相交处焊缝的折算应力:
N M 1 2 3 12 1.1 f t w
式中:
(3.7)
M1
M h0 Ww h


(2)自动(或半自动)埋弧焊
①原理:埋弧焊是电弧在焊剂层下燃烧的一种电弧焊方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
段:加荷之初,连接中剪力较小, 荷载靠板件间接触面的摩擦力传 递,螺栓杆与孔壁间的间隙保持 不变,处于弹性阶段,板件间摩 擦力大小取决于拧紧螺帽时螺杆 中的初始拉力、板面处理方式, 普通螺栓的初应力很小。此阶段 很短,可略去不计。
(2)相对滑移阶段 12水平线段: 荷载增大,剪力达到摩擦力最大 值,板件间产生相对滑移,其最 大滑移量为螺栓杆与孔壁之间的 间隙,直至螺栓杆与孔壁接触。
N/2 l1
平均值
力发生重分布,螺栓群中 各螺栓受力逐渐均匀。
螺栓的内力分布
当l1≤15d0(d0为孔径)时, 假定N由各螺栓均匀承担。
N
n
Nb m in
当l1>l5d0后,各螺杆所受内力不易均匀,端部螺栓首
先达到极限强度而破坏,随后由外向里依次破坏。为防
止端部螺栓提前破坏,当l1>l5d0 时,螺栓的抗剪和承 压承载力设计值应乘以折减系数η予以降低:
⑤沿杆轴方向受拉的螺栓连接中的端板,应采取增强刚度 的措施。
第七节 普通螺栓连接的性能和计算
抗剪连接的工作性能 抗剪连接是最常见的螺栓连接。抗剪试验可得试件上a、
b两点间的相对位移δ与作用力N的关系曲线。试件由零
载一直加载至连接破坏的全过程,经历三个阶段。
N/2 N/2 a
N
b
(1)摩擦传力弹性阶段 O1斜直线
端距 中距
边距 中距 边距
A 并列
B 错列
螺栓排列考虑的因素:
•受力要求 垂直于受力方向:受拉构件各排螺栓的中距及边距不能过 小,以免螺孔导致钢板截面削弱过多,降低其承载能力。 在顺力作用方向:端距应按被连接件材料的抗挤压及抗剪 切等强度条件确定,以使钢板在端部不致被螺栓冲剪破坏,
端距不应小于2d0;中距不宜过大,否则被连接板件间容
——
4d0 或 8 t
2d0 1.5d0 1.5d0 1.2d0
螺栓的构造要求: ①为连接可靠,连接的一端永久螺栓不得少于两个;
②对承受动力荷载的,必须要求防螺栓松动措施,如加弹 簧垫圈、焊死螺帽和螺杆;
③C级螺栓有较大孔隙,只适用于杆轴方向受拉的连接;
④采用高强度螺栓进行拼接,为保证摩擦面紧密贴合,不 采用型钢,而采用钢板;

垂直内力方向
间 顺内力方向

构件受压力 构件受拉力
沿对角线方向
顺内力方向
垂直
剪切或手工气割边
内 力 轧 制 边 、自 动 气 高 强 度 螺 栓
方向
割或锯割边
其它螺栓
最大容许距离 最小容许距离
(取两者的较小值)
8d0 或 12 t
16d0 或 24 t
12d0 或 18 t
3d0
16d0 或 24 t
材为Q235钢,采用M 22普通螺栓
N
(C级),螺栓孔直径d0 24mm。 此连接承受的静力荷载设计值为
340
260 10
N
10
t 12140N / mm2 fcb 305N / mm2
一个螺栓的抗剪承载力设计值为
N
t 20
N
N
530
t 12
N/2
N/2
NVb
nv
d
4
2
fvb
2 3.14 222 140 4
106 .4kN
一个螺栓的承压承载力设计值为
N
b c
d
t fcb 2220305 134.2kN
第六节 螺栓连接的构造
螺栓的工作
按受力情况分为
①剪力螺栓(抗剪螺栓):螺栓杆垂直于力线
②拉力螺栓(抗拉螺栓):螺栓杆平行于力线
③既受剪又受拉的螺栓
F
F
N
① 只受剪力
②只受拉力
③ 剪力+拉力
抗剪连接——板件之间有相互错动的趋势 抗拉连接——板件之间有相互脱开的趋势
抗剪连接
抗拉连接
螺栓的排列 分为并列和错列两种形式。 并列:比较简单整齐,布置紧凑,连接板尺寸小,螺栓孔 对构件截面削弱较大。 错列:可以减小对截面的削弱,但螺栓排列松散,连接板 尺寸较大。
易发生鼓曲现象。
•构造要求 中距及边距不宜过大,否则连接板件间不能紧密贴合,潮 气侵入缝隙使钢材锈蚀。
•施工要求 保证一定空间,便于打锚和采用扳手拧紧螺帽。根据扳手 尺寸和工人的施工经验、规定最小中距为3d0。
螺栓的最大、最小容许距离
名称
中心间距
中心至构件 边缘距离
位置和方向
外排(垂直内力或顺内力方向)
N/2
⑤栓杆弯曲破坏
N
N/2
措施:栓杆长度不应大于5d0
以上两种破坏形式通 过构造避免。
单螺栓承载力设计值
N/2
抗剪承载力:
N
b v
nv
d
4
2
f
b v
N/2
N
nv—剪切面数目;d—螺栓杆直径; fvb—螺栓抗剪强度设计值;
承压承载力:
N
b c
d
tf
b c
d
∑t—连接接头一侧承压构件总厚度的较小值。 fcb—螺栓孔壁承压强度设计值;
(3)弹塑性阶段 荷载继续增加, 连接所承受的外力主要靠螺栓与 孔壁接触传递。螺栓杆除主要受 剪力外,还承受弯矩和轴向拉力, 孔壁受到挤压。螺杆的伸长受到 螺帽的约束,增大了板件间的压 紧力,使板件间的摩擦力随之增 大,所以曲线呈上升状态。达到 “3”点时,螺栓或连接板达到 弹性极限。
(4)破坏阶段 荷载继续增加, 此阶段即使给荷载很小的增量, 连接的剪切变形也迅速加大,直 到连接的最后破坏。曲线的最高 点“4”所对应的荷载即为普通 螺栓连接的极限荷载。
单螺栓抗剪承载力:
N
b m
in
min(
N
b v
,
N
b c
)
剪切面数目nv
N
N/2
N
N/2
N
单剪:nv 1
N/3 N/3 N/3
双剪:nv 2
N/2 N/2
四剪:nv 4
普通螺栓群抗剪连接计算:轴心力
螺栓群承受轴心剪力时,
螺栓群在长度方向各螺栓 N
N/2
受力不均匀,两端大,中
间小。当沿受力方向的连 接长度≤15d0时,连接工 作进入弹塑性阶段后,内
单个螺栓的破坏形式
①栓杆直径较小时,栓杆可 ②栓杆直径较大、板件较薄时
能先被剪断;
板件可能先被挤坏,这种破坏
叫做螺栓承压破坏;
N/2
N
N
N
N/2
③板件截面可能因螺栓孔 消弱截面太多而被拉断;
N
N
以上三种破坏形式通 过强度计算避免。
④端距太小,端距范围内的板件有可能被栓杆冲剪破 坏
N
N
措施:端距不应小于2dO
1.1 l1 0.7
150 d0
普通螺栓群长连接 螺栓数确定:
n
N
N
b m
in

计算NVb
、N
b c

通 螺
N
b m
in
min
NVb
,N
b c

群 轴

l1 15d0



剪 的 计
N
n
N
b m
in


1.1 l1 0.7
150 d0
N
n
N
b m
in

取整数按规定排列螺栓
设计轴心受拉双拼接板的连接。钢
相关文档
最新文档