化工原理实验—吸收
(化工原理实验)吸收实验
100%
吸收操作
开启恒温水浴,使吸收塔内温度 恒定。将配制好的吸收剂从塔顶 缓慢加入,保持塔内液面稳定。
80%Βιβλιοθήκη 数据记录在实验过程中,定时记录气体流 量、塔内温度、压力以及吸收剂 液位等关键数据。
数据记录与处理
01
数据整理
将实验过程中记录的各项数据整理成表格,便于后续分析。
02
数据处理
根据实验原理,对数据进行处理,如计算吸收速率、吸收效率等关键指
实验注意事项
实验前准备
熟悉实验流程,了解设备构造及 功能,检查实验装置是否完好,
确保实验条件符合安全要求。
操作规范
严格遵守实验操作规程,避免误 操作引发事故。
数据记录
认真记录实验数据,确保数据真 实可靠,为后续分析提供依据。
安全防护措施
个人防护
实验人员需佩戴合适的防护用品,如实验服、护目镜、手套等, 以降低化学品对皮肤和眼睛的伤害。
数据处理结果
通过数据处理,得到了不同条 件下的吸收率和传质系数,为 后续结果分析和讨论提供了依 据。
结果分析与讨论
吸收率分析
01
分析了不同操作条件下吸收率的变化规律,探讨了温度、压力、
流量等因素对吸收率的影响。
传质系数讨论
02
讨论了传质系数与操作条件的关系,以及传质系数对吸收过程
的影响。
结果合理性判断
03
根据实验结果和理论分析,判断了实验结果的合理性,并对可
能存在的误差进行了分析。
与理论预测比较
理论预测模型
介绍了用于预测吸收过程的理论模型,包括传质方程、热力学模 型等。
实验结果与理论预测比较
将实验结果与理论预测进行了比较,分析了两者之间的差异和原因。
氧解析-化工原理-吸收-实验报告
氧解析-化工原理-吸收-实验报告一、实验目的1. 学习氧解析法的基本原理和实验操作。
2. 了解化学吸收法的原理及其在氧解析中的应用。
3. 掌握氧解析实验中的基本操作技能。
二、实验原理1.氧解析原理氧解析的原理是利用红色五价铁离子与氧气发生氧化反应的原理,通过测定铁离子还原的电位差来确定氧气的含量。
具体反应式如下:Fe2+ + 1/4O2 + 2H+ → Fe3+ + 1/2H2O由于1mol电子交换可产生1.23V电势,通过测定铁离子还原电位和标准电极电位的差值,即可得到氧气的含量。
2.化学吸收原理化学吸收法是通过某种吸收剂与被测气体的化学反应来去除被测气体中的某种成分的方法。
吸收剂可选择性地吸收被测气体中的某种成分,然后通过吸收前后吸收剂的质量差来确定该成分的含量。
在氧解析中,选择NaOH作为吸收剂,用于吸收氧气。
三、实验步骤1. 洗涤仪器:将氧解析仪、吸收瓶、饱和盐水瓶和试管用酒精清洗干净。
2. 理顺连接线:将氧解析仪与吸收瓶通过橡胶软管连接,吸收瓶与饱和盐水瓶通过橡胶软管连接,饱和盐水瓶与试管通过橡胶软管连接。
3. 加入吸收剂:将20mL的0.1mol/L NaOH溶液倒入吸收瓶中。
4. 预处理:将氧解析仪的样品室和参比室用稀硝酸洗涤干净,然后用蒸馏水冲洗干净。
5. 校准:用样品室中的氧气校准氧解析仪,通过调节样品室中的Hg电极电势,使得氧解析仪显示的氧气浓度与标准气体浓度一致。
6. 吸氧:将被测气体(氮气与氧气混合气体)通过饱和盐水瓶并以一定流速进入吸收瓶,其中氧气被NaOH吸收,剩余的氮气流经氧解析仪,接着通过排气口排出实验室。
7. 计算:通过测定吸收剂的重量差和转化率计算氧气的含量。
四、实验结果与分析实验中测得的吸收剂重量差为0.23g,转化率为95%,因此氧气的含量为100%-95%=5%。
五、实验结论本实验通过氧解析法和化学吸收法,成功测定了氧气的含量。
实验结果表明本实验的测量结果较为准确,具有较高的稳定性和重复性,可有效满足实际应用需求。
吸收实验报告实验小结
一、实验目的本次实验旨在通过实际操作,掌握吸收实验的基本原理和操作方法,了解吸收塔的结构和工作原理,学习如何测定填料塔的体积吸收系数,并分析影响吸收效率的因素。
二、实验原理吸收实验是化工过程中常见的传质操作之一,主要用于气体和液体之间的物质传递。
本实验采用填料塔作为吸收设备,通过改变气体和液体的流量,研究其传质性能。
填料塔的体积吸收系数KYa是指单位体积填料层在单位时间内,气体和液体之间的传质速率。
其计算公式如下:KYa = (qL (C2 - C1)) / (qV (C2 - C1))其中,qL为液体流量,qV为气体流量,C1为进塔气体中溶质的摩尔分数,C2为出塔气体中溶质的摩尔分数。
三、实验内容1. 实验装置及原理实验装置主要包括填料塔、气体发生器、流量计、压力计、温度计等。
填料塔内填充有适当的填料,气体和液体在填料层内进行逆流接触,实现物质传递。
2. 实验步骤(1)准备实验装置,检查各连接处是否严密,确保实验过程中无泄漏。
(2)开启气体发生器,调整气体流量,使其达到实验要求。
(3)调整液体流量,使其达到实验要求。
(4)记录进塔气体中溶质的摩尔分数C1,出塔气体中溶质的摩尔分数C2,以及气体和液体流量。
(5)重复上述步骤,改变气体和液体流量,记录数据。
(6)根据实验数据,计算填料塔的体积吸收系数KYa。
四、实验结果与分析1. 实验结果通过实验,得到了不同气体和液体流量下填料塔的体积吸收系数KYa。
实验结果表明,填料塔的体积吸收系数KYa随着气体和液体流量的增加而增加。
2. 结果分析(1)气体和液体流量对体积吸收系数的影响:实验结果表明,填料塔的体积吸收系数KYa随着气体和液体流量的增加而增加。
这是因为气体和液体流量的增加,使得气液两相接触面积增大,传质速率提高。
(2)填料类型对体积吸收系数的影响:实验结果表明,不同填料类型对填料塔的体积吸收系数KYa有较大影响。
一般来说,填料比表面积越大,孔隙率越高,体积吸收系数KYa越大。
最新化工原理实验报告吸收实验要点
最新化工原理实验报告吸收实验要点在进行化工原理实验,特别是吸收实验时,有几个关键要点需要关注:1. 实验目的:理解吸收过程中的质量传递原理,掌握吸收塔的操作和设计基础,以及熟悉相关设备的使用。
2. 实验原理:吸收实验通常涉及将气体中的某一组分通过与液体接触而转移到液体中的过程。
这一过程依赖于气液之间的浓度差和接触面积。
通常,气体从塔底进入,液体从塔顶喷洒下来,气体和液体在塔内逆流接触,实现质量传递。
3. 实验设备:主要包括吸收塔、气体流量计、液体流量计、温度计、压力计、分析仪器(如气相色谱仪)等。
确保所有设备校准正确,以保证实验数据的准确性。
4. 实验步骤:- 准备工作:检查所有设备是否正常,准备实验所需的化学试剂和标准溶液。
- 实验操作:按照实验指导书进行操作,包括设定气体和液体的流速、温度和压力等参数。
- 数据记录:准确记录实验过程中的所有观察和测量数据,包括气液流量、塔内温度和压力等。
- 结果分析:根据实验数据,计算吸收效率,分析影响吸收效果的因素。
5. 安全注意事项:在实验过程中,要严格遵守实验室安全规则,使用个人防护装备,处理化学品时要小心谨慎。
6. 实验结果分析:通过对收集到的数据进行分析,可以确定吸收塔的效率和操作条件对吸收效果的影响。
此外,还可以通过对比理论值和实验值,来评估实验的准确性和可靠性。
7. 结论:基于实验结果和分析,得出关于吸收过程效率和操作参数对吸收效果影响的结论。
同时,提出可能的改进措施和建议。
8. 参考文献:列出实验报告中引用的所有文献和资料,确保信息来源的准确性和可靠性。
以上是吸收实验的主要内容要点,每个实验报告的具体内容可能会根据实验的具体要求和条件有所不同。
吸收实验报告
一、实验目的1. 了解填料塔的吸收原理和操作方法;2. 学习测定填料塔的吸收系数;3. 分析影响吸收过程的因素。
二、实验原理吸收是气液两相接触过程中,气体中的溶质分子被液相吸收的过程。
在填料塔中,气液两相逆流接触,溶质分子从气相转移到液相。
本实验采用理想气体吸收模型,即气体在液相中的溶解度与气相分压成正比,吸收过程遵循亨利定律。
三、实验仪器与材料1. 填料塔(玻璃或有机玻璃制成,内装填料)2. 气体发生装置(可产生一定浓度的气体)3. 气体流量计4. 温度计5. 液相流量计6. 吸收液(溶剂)7. 计时器8. 计算器四、实验步骤1. 准备实验装置,确保填料塔内填料均匀分布;2. 在气体发生装置中产生一定浓度的气体,通过流量计调节气体流量;3. 在填料塔底部加入吸收液,通过液相流量计调节液相流量;4. 打开气体发生装置,记录气体流量和液相流量;5. 观察气体在填料塔中的流动情况,记录气体进出口的压力、温度等参数;6. 测定一定时间后,收集塔顶出口气体,分析气体中溶质浓度;7. 根据实验数据,计算填料塔的吸收系数。
五、实验结果与分析1. 实验数据记录实验条件:气体浓度C1=0.1mol/L,液相流量Q=1L/min,气体流量Qg=1L/min,填料层高度H=1m。
实验时间:T=10min气体进出口压力:P1=101.3kPa,P2=101.3kPa气体进出口温度:T1=25℃,T2=25℃气体进出口溶质浓度:C1=0.1mol/L,C2=0.05mol/L2. 吸收系数计算根据实验数据,计算吸收系数Kx:Kx = (C1 - C2) / (C1 Qg H) = (0.1 - 0.05) / (0.1 1 1) = 0.5mol/m²·s3. 结果分析本实验中,填料塔的吸收系数Kx为0.5 mol/m²·s。
结果表明,在实验条件下,填料塔具有良好的吸收性能。
吸收系数的大小与气体浓度、液相流量、填料层高度等因素有关。
(化工原理实验)吸收实验
本实验将介绍吸收实验的目的、原理、吸收塔的介绍,以及操作条件对吸收 效果的影响等内容。同时,还将探讨吸收剂的种类及选择,以及吸收剂的循 环使用方法。
实验步骤
1. 准备实验装置,并确保安全 2. 根据实验要求,执行操作步骤 3. 记录实验过程中的数据和观察结果 4. 对实验结果进行数据处理和误差分析 5. 总结实验结果,并讨论实验的应用和价值
吸收剂的种类及循环使用
物理吸收剂
如水、有机溶剂等。可 以通过循环使用来提高 吸收效率。
化学吸收剂
如酸碱溶液等。通过反 应物不断参与吸收过程, 需要周期性更新。
选择适合的吸收剂
需考虑反应速率、选择 性、价格等因素,以满 足实验或生产的要求。
实验安全注意事项
• 佩戴适当的个人防护装备,如实验服和手套。 • 确保实验室通风良好,以避免有害气体积聚。 • 严格按照实验操作步骤进行,避免潜在的危险。 • 注意化学品的正确使用和储存。
吸收过程的优缺点
• 优点:高效去除有害气体,可实现大规模生产。 • 缺点:操作复杂,消耗能源,产生废液等环境问题。
吸收过程与其他分离技术的比较
分离技术 蒸馏 萃取 结晶
原理
依靠液体的沸点差异进行 分离
利用溶剂对物质的选择性 溶解性
通过物质的溶解度差异实 现分离
适用场景 适用于易挥发物质分离
适用于溶剂可分离的混合物
适用于固溶体或溶剂晶体 分离
吸收剂的再生方法
1
萃取再生
2
通过将吸收剂与合适的溶剂混合,
利用两者的溶解度差异来实现分离
与再生。
3
蒸馏再生
通过加热吸收液体,使其中的溶质 蒸发并收集,再作为吸收剂。
吸收解吸实验
化工原理课程实验报告L K —以气相分压表示推动力的总传质系数,或简称为液相传质总系数,1-⋅s m 。
若气液相平衡关系遵循享利定律:A A Hp C =,则:l g G HK k K 111+= lg L k k H K 11+= (3-24)C A1,F L图3-10 双膜模型的浓度分布图 图3-11 填料塔的物料衡算图 当气膜阻力远大于液膜阻力时,则相际传质过程式受气膜传质速率控制,此时,g G k K =;反之,当液膜阻力远大于气膜阻力时,则相际传质过程受液膜传质速率控制,此时,l L k K =。
本实验采用转子流量计测得CO2、空气和水的流量。
根据实验条件(温度和压力)折算为实际流量,最后按有关公式换算成CO2、空气和水的摩尔流量。
填料塔物料衡算如图3-11所示。
气体校正公式:v =√ρ₀ρ (3-26)式中:V 。
——流量计读数;V ——被测流体实际流量;ρ₀,ρ——标定流体和被测流体在标定状态(T 。
,p 。
)下的密度。
测定塔顶和塔底液相组成C A1和C A2,利用滴定法测定吸收液浓度,根据吸收液消耗盐酸体积量可计算塔底吸收液浓度:C A1=2C Ba(OH)2V Ba(OH)2−C HCl V HCl2V 溶液(3-27)吸收剂(水)中含有少量的二氧化碳,根据吸收剂(水)滴定消耗盐酸体积量可计算出塔顶吸收剂(水)中CO ,浓度为:dh相 界 面距离液 膜气膜浓度图1 二氧化碳吸收与解吸实验装置流程示意图1-CO2钢瓶;2-减压阀;3-CO2流量计;4-吸收风机;5-吸收塔空气流量计;6-吸收水泵;7-吸收塔水流量计;8-吸收尾气传感器;9-吸收塔;10、15-液封;11-解吸液罐;12-解吸尾气传感器;13-吸收液罐;14-解吸塔;16-压差计;17-解吸水泵;18-解吸塔水流量计;19-解吸风机;20-解吸塔空气流量计; 21-空气旁路调节阀;22-π型管。
化工原理吸收公式总结
化工原理吸收公式总结化工原理中的吸收可是个相当重要的环节,吸收公式更是解决相关问题的关键钥匙。
咱们今儿就来好好唠唠这些公式。
先来说说亨利定律,这可是吸收过程中的基础。
它表明在一定温度和压强下,气液平衡时,溶质在气相中的分压与溶质在液相中的摩尔分数成正比。
用公式表达就是:p = Ex ,这里的 p 是溶质在气相中的平衡分压,E 是亨利系数,x 是溶质在液相中的摩尔分数。
再瞅瞅气膜吸收速率方程:NA = kg(p - pi),这里的 NA 代表溶质 A 的吸收速率,kg 是气膜吸收系数,p 是气相主体中溶质 A 的分压,pi 是相界面处溶质 A 的分压。
液膜吸收速率方程也不能落下:NA = kl(ci - c),NA 同样是溶质A 的吸收速率,kl 是液膜吸收系数,ci 是相界面处溶质 A 的浓度,c是液相主体中溶质 A 的浓度。
还有总吸收速率方程:NA = Ky(y - yi),Ky 是气相总吸收系数,y 是气相主体中溶质 A 的摩尔比,yi 是相界面处溶质 A 的摩尔比。
给您说个我曾经遇到的事儿,就和这吸收公式有关。
有一次在实验室做吸收实验,我们小组想要研究某种气体在特定溶液中的吸收情况。
一开始,大家都信心满满,觉得按照书上的步骤来肯定没问题。
结果呢,实验数据出来一分析,和预期的相差甚远。
我们几个那叫一个着急,赶紧从头开始排查问题。
最后发现,原来是在计算的时候,把气膜和液膜的吸收系数弄混了,导致整个计算结果都错了。
这可给我们上了深刻的一课,让我们明白了,这些公式可不是随便拿来用的,得搞清楚每个参数的含义和适用条件。
说完这些单个的公式,咱们再聊聊它们之间的关系。
在很多实际问题中,需要综合运用这些公式来求解。
比如说,要确定吸收塔的高度,就得先根据物料衡算求出塔底和塔顶的浓度,再结合吸收速率方程计算出传质单元数,最后才能得出塔高。
还有啊,在使用这些公式的时候,一定要注意单位的统一。
不然,一个不小心,就会得出错误的结果。
化工原理实验—吸收
填料吸收塔的操作及吸收传质系数的测定一、实验目的(1)了解填料吸收塔的结构和流程;(2)了解吸收剂进口条件的变化对吸收操作结果的影响;(3)掌握吸收总传质系数的测定方法.二、基本原理1.吸收速率方程式吸收传质速率由吸收速率方程式决定: Na = Ky A Δym式中 Ky 为气相总传质系数,mol/m2*h;A 为填料的有效接触面积,m2;Δym 为塔顶、塔底气相平均推动力。
a 为填料的有效比表面积,m2/m3;V 为填料层堆积体积, m3 ;Kya 为气相总容积吸收传质.系数,mol/m3*h。
从上式可看出,吸收过程传质速率主要由两个参数决定:Δym为过程的传质推动力,Kya的倒数1/Kya表征过程的传质阻力。
2.填料吸收塔的操作吸收操作的结果最终表现在出口气体的组成y2上,或组分的回收率η上。
在低浓度气体吸收时,回收率可近似用下式计算:η = (y1 - y2)/y1吸收塔的气体进口条件是由前一工序决定的,一般认为稳定不变。
控制和调节吸收操作结果的操作变量是吸收剂的进口条件:流率 L 、温度 t 和浓度 x2 这三个要素。
由吸收分析可知,改变吸收剂用量是对吸收过程进行调节的最常用方法,当气体流率 G 不变时,增加吸收剂流率,吸收速率η增加,溶质吸收量增加,出口气体的组成y2随着减小,回收率η增大。
当液相阻力较小时,增加液体的流量,总传质系数变化较小或基本不变,溶质吸收量的增加主要是由于传质平均推动力Δym的增大而引起,即此时吸收过程的调节主要靠传质推动力的变化。
但当液相阻力较大时,增加液体的流量,可明显降低传质阻力,总传质系数大幅度增加,而平均推动力却有可能减小(视调节前操作工况的不同而不同),但总的结果使传质速率增大,溶质吸收量增大。
吸收剂入口温度对吸收过程的影响也甚大,也是控制和调节吸收操作的一个重要因素。
降低吸收剂的温度,使气体的溶解度增大,相平衡常数减小。
对于液膜控制的吸收过程,降低操作温度,吸收过程的阻力随之减小,使吸收效果变好,y2降低,但平均推动力Δym或许会有所减小。
化工原理实验报告_吸收
化工原理实验报告_吸收
实验名称:吸收实验
实验目的:
1. 掌握吸收塔的操作方法;
2. 熟悉吸收塔的工作原理;
3. 了解吸收塔在化工过程中的应用。
实验原理:
吸收是指将气体中的某种成分溶解在液体中的过程。
在工业生产中,吸收常用于气体分离和净化。
吸收塔是常用的吸收装置,常见的吸收塔有塔板吸收塔和填料吸收塔两种类型。
实验仪器及材料:
1. 塔式吸收塔;
2. 气源;
3. 转子流量计;
4. 吸收液;
5. 相应的连接管道。
实验步骤:
1. 将吸收液倒入吸收塔中,注意液位不要过高;
2. 连接气源至吸收塔的底部,控制气源流量;
3. 打开气源,调节气源流量;
4. 连接转子流量计并调节流量;
5. 观察吸收液的变化并记录实验数据。
实验数据记录和分析:
根据实验步骤所得到的数据,可以计算出气体吸收的效率和吸收塔的传质系数。
根据数据分析,可以得到吸收塔的工作效果和适用范围。
实验结果和结论:
通过实验可以得到气体吸收的效率和吸收塔的传质系数,进而评估吸收塔的性能。
根据实验结果,可以判断吸收塔是否适用于化工过程中的气体分离和净化。
根据实验结果和结论,可以调整吸收塔的操作方法和参数,进一步优化吸收塔的性能。
实验注意事项:
1. 操作吸收塔时需注意安全,避免发生意外事故;
2. 控制气源流量时需谨慎,避免发生压力过大或流量过大的情况;
3. 实验结束后,及时清洗吸收塔和相关设备。
化工原理实验——填料吸收实验
实验六填料塔流体力学特性实验一、实验目的1、了解填料塔的构造、流程及操作2、了解填料塔的流体力学性能。
3、学习填料吸收塔传质能力和传质效率的测定方法。
4、掌握以 Y为推动力的总体积吸收系数K Y a的测定方法。
二、实验内容(一)、填料塔流体力学性能测定1、测量干填料层(ΔP/Z)-u关系曲线2、测量某喷淋量下填料层(ΔP/Z)-u关系曲线:选择液相流量,在该液相流量下于最小和最大气体流量之间选择不同的值测定塔的压降,得到塔压降与空塔气速的关系,确定出液泛气速。
(二)传质实验:固定液相流量和入塔混合气氨的浓度,在液泛速度以下取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和总体积吸收系数)。
三、实验装置(一)、实验装置流程及示意图空气由鼓风机送入空气转子流量计,空气通过流量计处的温度由温度计测量,空气流量由放空阀调节。
氨气由氨瓶送出,经过氨瓶总阀进入氨气转子流量计,氨流量由流量计调节,氨气通过转子流量计处温度由实验时大气温度代替。
氨气进入空气管道与空气混合后进入吸收塔底部。
水由自来水管经水转子流量计进入塔顶,水的流量由水转子流量计调节。
分析塔顶尾气浓度时靠降低水准瓶的位置,将塔顶尾气吸入吸收瓶和量气管。
•在吸入塔顶尾气之前,予先在吸收瓶内放入5mL已知浓度的硫酸用于吸收尾气中氨。
塔底吸收液可用三角瓶于塔底取样口取样。
填料层压降用U形管压差计测定。
鼓风机氨瓶总阀自来水吸收液取样口液封管填料塔温度计空气转子流量计氨转子流量计水转子流量计氨流量调节阀水流量调节阀U型管压差计吸收瓶量气管水准瓶仪表盘填料吸收塔实验装置流程示意图放空阀图1 填料吸收塔实验流程示意图(第一套)图2 填料吸收塔实验流程示意图(第二套)1-鼓风机;2-空气流量调节阀;3-空气转子流量计;4-空气温度;5-液封管;6-吸收液取样口;7-填料吸收塔;8-氨瓶阀门;9-氨转子流量计;10-氨流量调节阀;11-水转子流量计;12-水流量调节阀;13-U 型管压差计;14-吸收瓶;15-量气管;16-水准瓶;17-氨气瓶;18-氨气温度;20-吸收液温度;21-空气进入流量计处压力。
化工原理吸收与解吸实验报告
化工原理吸收与解吸实验报告一、实验目的:通过本次实验,学生们可以了解化工原理中吸收与解吸的基本原理,掌握吸收塔的操作技能,以及熟悉吸收剂的选择和使用方法。
二、实验原理:1. 吸收与解吸的基本原理吸收是指气体在接触液体时被液体所溶解或被化学反应转化为溶质的过程。
而解吸则是指气体从液体中逸出或分离出来的过程。
在化工生产过程中,常用于气体分离、纯化和回收等方面。
2. 吸收塔吸收塔是一种常见的设备,用于进行气液相接触和传质过程。
其主要结构包括进料口、出料口、填料层等。
填料层可以增加气液接触面积,提高传质效率。
3. 吸收剂吸收剂是指用于吸收气体的液体,在选择时需要考虑其对目标气体的亲和力、溶解度、稳定性以及成本等方面因素。
三、实验步骤:1. 将制备好的NaOH溶液倒入吸收塔中,并将塔内温度升至60℃左右。
2. 将CO2气体通过气体流量计和压力表接入吸收塔顶,调节气体流量和压力使其稳定。
3. 观察吸收塔内液位变化,记录液位高度和时间,计算出CO2的吸收速率。
4. 停止供气后,将塔内液体倒出并加入硫酸溶液进行解吸,记录解吸速率。
四、实验结果:1. 吸收速率:在60℃下,CO2的吸收速率为0.016mol/min。
2. 解吸速率:在添加硫酸溶液后,CO2的解吸速率为0.014mol/min。
五、实验分析:1. 实验结果表明,在所选条件下,NaOH溶液对CO2具有较好的亲和力和溶解度。
2. 在实际生产中,需要根据具体情况选择合适的吸收剂,并结合填料层设计等因素来提高传质效率。
六、实验结论:本次实验成功地展示了化工原理中吸收与解吸的基本原理,并通过操作塔内填料层等设备提高了传质效率。
同时还验证了NaOH溶液对CO2具有较好的亲和力和溶解度。
吸收实验(化工原理实验)
吸收实验一、实验目的1、了解填料吸收塔的一般结构和工业吸收过程流程;2、掌握吸收总传质系数K a的测定方法;x3、考察吸收剂进口条件的变化对吸收效果的影响;4、了解处理量变化对吸收效果的影响。
二、实验原理1、概述吸收过程是依据气相中各溶质组分在液相中的溶解度不同而分离气体混合物的单元操作。
在化学工业中吸收操作广泛应用于气体原料净化、有用组分的回收、产品制取和废气治理等方面。
在吸收研究过程中,一般可分为对吸收过程本身的特点或规律进行研究和对吸收设备进行开发研究两个方向。
前者的研究内容包括吸收剂的选择、确定因影响吸收过程的因素、测定吸收速率等,研究的结果可为吸收工艺设计提供依据,或为过程的改进及强化指出方向;后者研究的重点为开发新型高效的吸收设备,如新型高效填料、新型塔板结构等。
吸收通常在塔设备内进行,工业上尤其以填料塔用的普遍。
填料塔一般由以K a下几部分构成:(1)圆筒壳体;(2)填料;(3)支撑板;(4)液体预分布装置;(5) x液体再分布器;(6)捕沫装置;(7)进、出口接管等等。
其中,塔内放置的专用填料作为气液接触的媒介,其作用是使从塔顶流下的流体沿填料表面散布成大面积的液膜,并使从塔底上升的气体增强湍动,从而为气液接触传质提供良好条件。
液体预分布装置的作用是使得液体在塔内有良好的均匀分布。
而液体在从塔顶向下流动的过程中,由于靠近塔壁处的空隙大,流体阻力小,液体有逐渐向塔壁处汇集的趋向,从而使液体分布变差。
液体再分布器的作用是将靠近塔壁处的液体收集后再重新分布。
填料是填料吸收塔最重要的部分。
对于工业填料,按照其结构和形状,可以分为颗粒填料和规整填料两大类。
其中,颗粒填料是一粒粒的具有一定几何形状和尺寸的填料颗粒体,一般以散装(乱堆)的方式堆积在塔内。
常见的大颗粒填料有拉西环、鲍尔环、阶梯环、弧鞍环、矩鞍环等等。
填料等材质可以使金属、塑料、陶瓷等。
规整填料是由许多具有相同几何形状的填料单元组成,以整砌的方式装填在塔内。
化工原理吸收与解吸实验报告
化工原理吸收与解吸实验报告一、引言1.1 实验目的实验目的是通过对吸收与解吸过程的研究,了解吸收与解吸的基本原理,并掌握吸收与解吸实验的操作方法和计算技巧。
### 1.2 实验原理吸收是指气体或溶质与液体或固体之间相互作用,使溶质从气体相转变为液体或固体相的过程。
解吸则是溶质从液体或固体转变为气体相的过程。
吸收与解吸常用于气体的分离、净化和某些溶剂的回收等工艺中。
二、实验设备和试剂2.1 实验设备•吸收塔•解吸塔•气液分离器•气液流动调节器 ### 2.2 试剂•饱和盐水溶液•乙酸乙酯溶液三、实验步骤3.1 吸收实验1.将吸收塔与气液分离器连接。
2.将饱和盐水溶液注入吸收塔中。
3.将待吸收的气体通过塔底进气管导入吸收塔底部。
4.调节气体流量和液体流量,保持稳定。
5.收集吸收后的液体样品,进行后续分析。
3.2 解吸实验1.将解吸塔与气液分离器连接。
2.将乙酸乙酯溶液注入解吸塔中。
3.将吸收塔中的液体样品通过塔底进液管导入解吸塔底部。
4.调节气体流量和液体流量,保持稳定。
5.收集解吸后的气体样品,进行后续分析。
四、实验数据分析4.1 吸收实验数据采集吸收塔中的液体样品,并测量其溶质浓度。
### 4.2 解吸实验数据采集解吸塔中的气体样品,并测量其溶质浓度。
五、结果与讨论5.1 实验结果分析吸收实验数据和解吸实验数据,得出吸收和解吸过程中溶质的浓度变化情况,并绘制相关曲线图。
### 5.2 讨论分析吸收与解吸过程中可能出现的影响因素,探讨导致实验结果差异的原因。
六、结论通过吸收与解吸实验,我们深入了解了吸收与解吸的原理和操作方法,并获得了相关的实验数据。
实验结果表明,在特定条件下,吸收与解吸能够有效实现气体与液体或固体的相互转换。
实验过程中注意到仍存在一些影响因素,需进一步研究和优化实验条件。
七、参考文献[1] 张三, 李四, 王五. 吸收与解吸原理及应用[M]. 化学出版社, 20XX. [2] ABC. 吸收与解吸的研究进展[J]. 中国化学, 20XX, 38(3): 1-10.。
化工原理吸收
化工原理吸收
化工原理中的吸收操作是一种常见的气体和液体分离技术。
通过将气体溶解在液体中,可以有效地将气体成分从气相转移到液相中。
吸收过程的基本原理是利用液体对气体的亲和力来实现分离。
通常,吸收塔中的液体称为溶液或吸收液,而气体称为被吸收物质或吸收剂。
在吸收过程中,气体在吸收液中的分子间发生物理或化学吸附,从而被有效地捕集和固定在液体中。
当溶液饱和或达到一定浓度时,吸收过程结束。
吸收操作常用于以下方面:
1. 气体净化:吸收操作可以去除气体中的污染物质,如二氧化硫、氨气等。
通过选择适当的吸收剂和调整操作条件,可以有效地将这些有害物质从气体中去除。
2. 气体回收:吸收操作可用于回收有用气体。
例如,在石油炼制过程中,吸收操作常用于回收烃类气体或气体中的有机物。
3. 气体分离:吸收操作可以实现气体的分离和回收。
根据气体在吸收液中的溶解度差异,可以将混合气体分离成不同组分的吸收器。
吸收操作的关键参数包括吸收剂的选择、操作温度、压力、气体流量和溶液流量等。
合理地选择和控制这些参数可以提高吸收操作的效果和经济性。
总之,吸收操作是一种重要的化工分离技术,可用于气体净化、
气体回收和气体分离等应用领域。
通过合理选择吸收剂和调整操作条件,可以实现高效、经济的气体和液体分离过程。
化工原理实验—吸收
化工原理实验—吸收1. 引言吸收是化工领域中常见的物质分离和净化方法之一。
它通过将气体或液体中的有害或有用成分吸附到溶液或固体表面上来实现分离和净化的目的。
在本实验中,我们将学习和探索吸收的基本原理和应用。
2. 实验目的本实验的主要目的是通过实验操作和数据分析,加深对吸收原理的理解,掌握吸收过程中的计算和分析方法,并了解吸收在化工工程中的应用。
3. 实验原理吸收是指气体或液体中的溶质在吸收剂(例如溶液或固体)中被吸附或溶解的过程。
吸收剂可以选择根据目标溶质的特性,吸附剂的选择要考虑化学亲和力、溶解度、扩散速率等因素。
在吸收过程中,传质是一个重要的因素。
传质可以通过质量传递和动量传递来实现。
质量传递包括分子扩散、对流传质和表面吸附等。
動量传递則以氣體相、液體相間的質量轉移的能力來表現。
吸收实验可以使用装置,如吸收柱或喷淋塔,为气体和液体之间的接触提供更大的界面积。
此外,经过精确设计和调整,吸收装置可以提高传质效率,实现高效的吸收效果。
4. 实验步骤步骤一:准备工作•确保所有实验设备和试剂已准备齐全。
•检查实验装置是否正常,无泄漏和损坏。
步骤二:实验装置的组装和调整•根据吸收实验的要求,安装吸收柱或喷淋塔。
•调整气体和液体的流量控制,以确保适当的接触和传质效率。
步骤三:实验操作•启动气体和液体的进料系统,调整流量。
•收集样品以进行后续分析,记录有关流量、温度、压力等参数的数据。
步骤四:数据分析•根据收集的样品数据,计算吸收效率、传质系数等参数。
•对数据进行统计和图表分析,以便进行实验结果的评估和比较。
5. 实验注意事项•在实验操作过程中,要注意设备和试剂的安全使用。
•在实验前要明确吸收剂和溶质的性质,并根据需要进行必要的预处理。
•实验过程中要注意将气体和液体的流速和温度适当控制,以保证实验结果的准确性。
6. 实验结果与讨论根据实验数据进行分析后,我们可以得到吸收效率和传质系数等参数的计算结果。
对于不同的吸收剂和溶质,我们可以根据实验结果评估其吸附和溶解的效果,并对吸收过程中的传质机制进行讨论。
化工原理实验—吸收
化工原理实验—吸收化工原理实验—吸收引言:在化工工业中,吸收是常用的一种气体分离和净化方法。
它通过液态吸收剂将气体中的有害物质转移到液相中,从而达到净化目的。
实验目的:通过实验,了解吸收过程中吸收剂的选择和操作对气体净化的影响,并掌握吸收塔的组装和操作。
实验原理:化工吸收是一种液-气传热传质过程,利用吸收剂的物理性质将气体中的目标组分调和到吸收剂中,并在表面吸附各种气体和VOC的传质过程。
实验步骤:1、实验装置的搭建搭建一台小型吸收装置,包含吸收塔和气体供给系统两个部分。
吸收塔由玻璃管和塔盘组成,每个塔盘之间的松动配合应注意。
在玻璃瓶中注满约200mL的吸收剂。
本实验中使用对氨基苯磺酸为吸收剂来吸收二氧化硫。
吸收剂加载后将塔盘组装在塔体内,通过塞子将塔道的上部密封。
“L”形接口管道连接气体供给系统和吸收塔,一端通过小风扇从上部向吸收管旋转喷淋液化的二氧化硫气体,另一端通过另一个“ L”形接口管道排出气体。
2、实验操作(1)当装置组装好,吸收剂进入足够饱和后,关一下风扇,打开二氧化硫气供应。
当装置稳定后,可开始收集实验数据。
(2)研究吸收剂的不同浓度对吸收的影响,测定并计算实际吸收量。
(3)通过专业仪器测定吸收塔内的温度和压力,确保实验的稳定性。
3、实验参数分析浓度的改变对吸收量的影响:在实验中,我们改变了吸收剂的质量和浓度,下图为二氧化硫的吸收量与吸收剂浓度之间的关系。
从图中可以看出,随着吸收剂浓度的增加,吸收量也有所增加。
当吸收剂浓度为1.5mol/L左右,吸收量达到最大值,进一步增加吸收剂浓度,吸收量反而减少。
温度的改变对吸收量的影响:在实验中,我们改变了吸收剂的温度,下图b显示了温度变化对吸收量的影响。
从图中可以看出,吸收量随着温度的增加而增加。
在高温下,吸收达到最大,进一步增加温度吸收量却有所下降。
压力的改变对吸收量的影响:在实验过程中,吸收塔的压力和温度也被记录并分析。
下图c反映了压力变化对吸收量的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
填料吸收塔的操作及
吸收传质系数的测定
一、实验目的
(1)了解填料吸收塔的结构和流程;
(2)了解吸收剂进口条件的变化对吸收操作结果的影
响;
(3)掌握吸收总传质系数的测定方法.
二、基本原理
1.吸收速率方程式
吸收传质速率由吸收速率方程式决定: Na = Ky A Δym
式中 Ky 为气相总传质系数,mol/m2*h;
A 为填料的有效接触面积,m2;
Δym 为塔顶、塔底气相平均推动力。
a 为填料的有效比表面积,m2/m3;
V 为填料层堆积体积, m3 ;
Kya 为气相总容积吸收传质.系数,mol/m3*h。
从上式可看出,吸收过程传质速率主要由两个参数决定:Δym为过程的传质推动力,Kya的倒数1/Kya表征过程的传质阻力。
2.填料吸收塔的操作
吸收操作的结果最终表现在出口气体的组成y2上,或组分的回收率η上。
在低浓度气体吸收时,回收率可近似用下式计算:
η = (y1 - y2)/y1
吸收塔的气体进口条件是由前一工序决定的,一般认为稳定不变。
控制和调节吸收操作结果的操作变量是吸收剂的进口条件:流率 L 、温度 t 和浓度 x2 这三个要素。
由吸收分析可知,改变吸收剂用量是对吸收过程进行调节的最常用方法,当气体流率 G 不变时,增加吸收剂流率,吸收速率η增加,溶质吸收量增加,出口气体的组成y2随着减小,回收率η增大。
当液相阻力较小时,增加液体的流量,总传质系数变化较小或基本不变,溶质吸收量的增加主要是由于传质平均推动力Δym的增大而引起,即此时吸收过程的调节主要靠传质推动力的变化。
但当液相阻力较大时,增加液体的流量,可明显降低传质阻力,总传质系数大幅度增加,而平均推动力却有可能减小(视调节前操作工况的不同而不同),但总的结果使传质速率增大,溶质吸收量增大。
吸收剂入口温度对吸收过程的影响也甚大,也是控制和调节吸收操作的一个重要因素。
降低吸收剂的温度,使气体的溶解度增大,相平衡常数减小。
对于液膜控制的吸收过程,降低操作温度,吸收过程的阻力随之减小,使吸收效果变好,y2降低,但平均推动力Δym或许会有所减小。
对于气相控制的吸收过程,降低操作温度,过程阻力基本不变,但平均推动力增大,吸收效果同样将变好。
总之,吸收剂温度的降低,改变了相平衡常数,对过程阻力及过程推动力都会产生影响,其总的结果使吸收效果变好,气体出口浓度降低,吸收过程的回收率增加。
吸收剂进口浓度x2是控制和调节吸收效果的又一重要因素。
吸收剂进口浓度x2降低,液相进口处的推动力增大,全塔平均推动力也将随之增大而有利于吸收过程回收率的提高。
但应注意,当气液两相在塔底接近平衡(L/G < m)(见图a)时,欲降低y2,提高回收率,用增大吸收剂用量的方法更为有效。
但是,当气液两相在塔顶接近平衡时(L/G > m)(见图b)时,提高吸收剂用量,即增大L/G并不能使y2明显降低,只有用降低吸收剂入塔浓度x2才是有效的。
a. L/G < m
b.
L/G > m
最后应注意,上述讨论基于填料塔的填料高度是一定的,亦即针对某一特定的工程问题进行操作型
命题的讨论。
若是设计型的工程问题,则上述结果不
一定相符。
三、实验内容
在以下操作条件下,对比、研究组分回收率、传质推动力和传质阻力的变化:
(1)原料气流量不变,改变吸收剂流量;
(2)吸收剂流量不变,改变原料气流量;
(3)原料气、吸收剂流量都不变,改变吸收剂温度;
四、实验装置
本实验的装置包括填料塔主体、空气输送、空气和丙酮汽化器以及吸收剂供给等部分。
压缩空气的压力由
压力定值器稳定,流量由转子流量计检测,经丙酮汽化器鼓泡带出丙酮蒸汽成为原料气后,进入填料塔。
吸收剂由高位槽供给,经电加热器和转子流量计,进入填料塔与原料气逆流接触,进行传质。
塔顶搭底吸收剂的温度由温度计检测。
原料气进出口的浓度由针筒取样后送色谱仪检测。
五、实验操作原则
(1)空气压力定值器一般设定在0.02 - 0.04范围内。
(2)空气转子流量计的读数须作压力温度的校正。
(3)改变操作条件后,应稳定十分钟以上时间方可取样。
(4)原料气进出口浓度的取样须仔细、缓慢,既不能漏入空气,又不能将液体抽入取样管。
(5)当原料气进口浓度较高时,数据处理时应以高浓度气体吸收的计算方法进行处理。