zd化工原理实验6CO2吸收-解吸传质系数

合集下载

二氧化碳吸收与解吸实验

二氧化碳吸收与解吸实验

二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。

2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。

二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。

2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。

3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。

三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。

当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。

传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。

对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。

1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ;Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-⋅m kmolAi C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。

二氧化碳填料吸收与解吸实验.

二氧化碳填料吸收与解吸实验.

二氧化碳填料吸收与解吸实验装置说明书天津大学化工基础实验中心2013.06一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。

2.掌握填料吸收塔传质能力和传质效率的测定方法,练习对实验数据的处理分析。

二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。

2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。

3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。

三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。

当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。

传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。

对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。

1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为气膜 )(Ai A g A p p A k G -= (1)液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ;Ai P —相界面上A 组分的平均分压,Pa ;A C —液侧A 组分的平均浓度,3-⋅m kmolAi C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。

化工原理第六章吸收习题答案解析

化工原理第六章吸收习题答案解析

由于 y*A yA ,所以将发生吸收过程。推动力为
示意图见题 6-3 图。
y 0.03 0.0189 0.0111
题 6-3 图
分析 体会通过改变温度和总压来实现气液之间传质方向的改变 ,即吸收和解 吸。
6-4 氨-空气混合气中含氨(摩尔分数),在常压和 25℃下用水吸收,过程中不 断移走热量以使吸收在等温下进行。进气量为 1000 m3 ,出口气体中含氨(摩尔 分数)。试求被吸收的氨量(kg)和出口气体的体积(m3) 。

p* CO2
cCO2 H CO2
0.01 3.347 104
29.9kPa
推动力
p 20.1kPa(吸收)

p* CO2
cCO2 H CO2
0.05 3.347 104
149.4kPa
推动力
p 99.4kPa(解吸)
或者 , 用摩尔分数差表示时


xCO2
0.01 1000
1.8104
NA
DP RTZ
pA1 pA2 ln pB2 pB1 pB2 pB1
查教材附录水的物理性质得,20℃时水的蒸汽压为。已知条件为:
pA1 101.3kPa, pA2 0kPa, pB2 101.3kPa, pB1 101.3 2.3346 98.97kPa, P pA2 pB2 101.3kPa,
试求这两种情况下 CO2 的传质方向与推动力。 解: 由亨利定律得到
pCO2 50kPa ExC*O2 根据《 化工原理》 教材中表 8-1 查出
ECO2 25℃ 1.66105 kPa
所以可以得到
又因为
x* CO2
3.01104
HCO2 25℃

二氧化碳吸收与解吸实验

二氧化碳吸收与解吸实验

二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。

2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。

二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。

2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。

3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。

三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:123L 3L 2L 1L 0 =>>0图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。

ΔP , k P a当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。

传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。

对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。

1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ;A C —液侧A 组分的平均浓度,3-⋅m kmol Ai C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。

二氧化碳吸收与解吸实验说明书

二氧化碳吸收与解吸实验说明书

实用文档二氧化碳吸收与解吸实验装置说明书仁爱化工基础实验中心王立轩2014.05一、实验目的:1.了解填料吸收塔的结构和流体力学性能。

2.学习填料吸收塔传质能力和传质效率的测定方法。

二、实验内容1. 测定填料层压强降与操作气速的关系,确定填料塔在一定液体喷淋量下的液泛气速。

2. 固定液相流量和入塔混合气氨的浓度,在液泛速度以下取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。

3. 采用纯水吸收二氧化碳、空气解吸水中二氧化碳,测定填料塔的液侧传质膜系数和总传质系数。

三、实验原理1.气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气、液流量有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图1-1所示:图1-1 填料层的P ∆~u 关系当无液体喷淋即喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。

当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将P ∆~u关系分为三个区段:恒持液量区、载液区与液泛区。

2. 传质性能:吸收系数是决定吸收过程速率高低的重要参数,而实验测定是获取吸收系数的根本途径。

对于相同的物系及一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。

(1)二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为气膜 )(Ai A g A p p A k G -= (1-1)液膜 )(A Ai l A C C A k G -= (1-2)式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ;Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-⋅m kmolAi C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。

二氧化碳吸收与解吸实验汇总

二氧化碳吸收与解吸实验汇总

二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。

2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。

二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。

2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。

3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。

三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。

当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。

传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。

对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。

1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ;A C —液侧A 组分的平均浓度,3-⋅m kmol Ai C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。

(完整版)二氧化碳吸收与解吸实验.doc

(完整版)二氧化碳吸收与解吸实验.doc

二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。

2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。

二、实验内容1.测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。

2.固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。

3.进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。

三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降 P 与气速u的关系如图一所示:L 3> L 2> L 1aPk,P32L 0 = 01u , m/s图一填料层的P ~u关系当液体喷淋量 L00 时,干填料的P ~u的关系是直线,如图中的直线0。

当有一定的喷淋量时,P ~u的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将P ~u关系分为三个区段:既恒持液量区、载液区及液泛区。

传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。

对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。

1.二氧化碳吸收 - 解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质 A 的传质速率方程可分别表达为气膜G A k g A( p A p Ai ) ( 1)液膜G A k l A(C Ai C A ) (2)式中: G A—A组分的传质速率, kmoI s 1;2A —两相接触面积, m;P A—气侧A组分的平均分压,Pa;P Ai—相界面上A组分的平均分压,Pa;C A—液侧A组分的平均浓度, kmol m 3C Ai—相界面上A组分的浓度kmol m 3k g—以分压表达推动力的气侧传质膜系数,kmol m 2s 1Pa 1;k l—以物质的量浓度表达推动力的液侧传质膜系数,m s 1。

二氧化碳吸收与解吸实验说明书

二氧化碳吸收与解吸实验说明书

实用文档二氧化碳吸收与解吸实验装置说明书仁爱化工基础实验中心王立轩2014.05一、实验目的:1.了解填料吸收塔的结构和流体力学性能。

2.学习填料吸收塔传质能力和传质效率的测定方法。

二、实验内容1. 测定填料层压强降与操作气速的关系,确定填料塔在一定液体喷淋量下的液泛气速。

2. 固定液相流量和入塔混合气氨的浓度,在液泛速度以下取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。

3. 采用纯水吸收二氧化碳、空气解吸水中二氧化碳,测定填料塔的液侧传质膜系数和总传质系数。

三、实验原理1.气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气、液流量有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图1-1所示:图1-1 填料层的P ∆~u 关系当无液体喷淋即喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。

当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将P ∆~u关系分为三个区段:恒持液量区、载液区与液泛区。

2. 传质性能:吸收系数是决定吸收过程速率高低的重要参数,而实验测定是获取吸收系数的根本途径。

对于相同的物系及一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。

(1)二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为气膜 )(Ai A g A p p A k G -= (1-1)液膜 )(A Ai l A C C A k G -= (1-2)式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ;Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-⋅m kmolAi C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。

吸收解吸实验

吸收解吸实验

化工原理课程实验报告L K —以气相分压表示推动力的总传质系数,或简称为液相传质总系数,1-⋅s m 。

若气液相平衡关系遵循享利定律:A A Hp C =,则:l g G HK k K 111+= lg L k k H K 11+= (3-24)C A1,F L图3-10 双膜模型的浓度分布图 图3-11 填料塔的物料衡算图 当气膜阻力远大于液膜阻力时,则相际传质过程式受气膜传质速率控制,此时,g G k K =;反之,当液膜阻力远大于气膜阻力时,则相际传质过程受液膜传质速率控制,此时,l L k K =。

本实验采用转子流量计测得CO2、空气和水的流量。

根据实验条件(温度和压力)折算为实际流量,最后按有关公式换算成CO2、空气和水的摩尔流量。

填料塔物料衡算如图3-11所示。

气体校正公式:v =√ρ₀ρ (3-26)式中:V 。

——流量计读数;V ——被测流体实际流量;ρ₀,ρ——标定流体和被测流体在标定状态(T 。

,p 。

)下的密度。

测定塔顶和塔底液相组成C A1和C A2,利用滴定法测定吸收液浓度,根据吸收液消耗盐酸体积量可计算塔底吸收液浓度:C A1=2C Ba(OH)2V Ba(OH)2−C HCl V HCl2V 溶液(3-27)吸收剂(水)中含有少量的二氧化碳,根据吸收剂(水)滴定消耗盐酸体积量可计算出塔顶吸收剂(水)中CO ,浓度为:dh相 界 面距离液 膜气膜浓度图1 二氧化碳吸收与解吸实验装置流程示意图1-CO2钢瓶;2-减压阀;3-CO2流量计;4-吸收风机;5-吸收塔空气流量计;6-吸收水泵;7-吸收塔水流量计;8-吸收尾气传感器;9-吸收塔;10、15-液封;11-解吸液罐;12-解吸尾气传感器;13-吸收液罐;14-解吸塔;16-压差计;17-解吸水泵;18-解吸塔水流量计;19-解吸风机;20-解吸塔空气流量计; 21-空气旁路调节阀;22-π型管。

二氧化碳吸收与解吸实验

二氧化碳吸收与解吸实验

二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。

2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。

二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。

2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。

3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。

三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。

当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。

传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。

对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。

1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ;Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-⋅m kmolAi C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。

二氧化碳吸收填料塔传质系数

二氧化碳吸收填料塔传质系数

二氧化碳吸收填料塔传质系数一、气体流速气体流速是影响二氧化碳吸收填料塔传质系数的重要因素之一。

随着气体流速的增加,传质系数也会相应增加。

这是因为气体流速的增加可以提供更强的传质推动力,促进气体和吸收剂之间的传质过程。

然而,气体流速也不宜过高,否则可能会导致填料床层受到过大的冲击力而损坏,同时也会增加塔的操作费用。

因此,在选择气体流速时需要综合考虑各种因素,以达到最佳的传质效果和经济效益。

二、填料特性填料的特性也会对二氧化碳吸收填料塔的传质系数产生影响。

填料的比表面积、空隙率、形状和表面粗糙度等因素都会影响气体的传质性能。

一般来说,比表面积越大、空隙率越高、形状越有利于气体的流动和扩散,表面粗糙度越高,越有利于增加气体的停留时间和提高传质效率。

因此,在选择填料时,应根据具体的应用需求和操作条件来选择合适的填料。

三、吸收剂流量吸收剂流量也是影响二氧化碳吸收填料塔传质系数的因素之一。

随着吸收剂流量的增加,传质系数也会相应增加。

这是因为吸收剂流量的增加可以提供更强的传质推动力,促进气体和吸收剂之间的传质过程。

然而,吸收剂流量也不宜过高,否则可能会导致填料床层受到过大的冲击力而损坏。

因此,在选择吸收剂流量时需要综合考虑各种因素,以达到最佳的传质效果和经济效益。

四、温度与压力温度和压力也是影响二氧化碳吸收填料塔传质系数的因素。

随着温度的升高,气体的扩散系数和溶解度会增加,有利于提高传质效率。

但是,温度的升高也可能会导致吸收剂的挥发和腐蚀问题加剧,因此需要在操作过程中注意控制温度。

压力的变化也会对传质系数产生影响,一般来说,压力越高,气体的溶解度越大,有利于提高传质效率。

但是,过高的压力也可能会导致吸收剂的挥发和泄漏问题加剧,因此需要在操作过程中注意控制压力。

五、溶液性质溶液的性质也会对二氧化碳吸收填料塔传质系数产生影响。

吸收剂的物理性质和化学性质都会影响气体的传质效果。

例如,吸收剂的粘度越低、表面张力越小、溶解度越大,越有利于气体的传质过程。

二氧化碳吸收与解吸实验说明书

二氧化碳吸收与解吸实验说明书

二氧化碳吸收与解吸实验装置说明书仁爱化工基础实验中心王立轩2014.05一、实验目的:1.了解填料吸收塔的结构和流体力学性能。

2.学习填料吸收塔传质能力和传质效率的测定方法。

二、实验内容1. 测定填料层压强降与操作气速的关系,确定填料塔在一定液体喷淋量下的液泛气速。

2. 固定液相流量和入塔混合气氨的浓度,在液泛速度以下取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。

3. 采用纯水吸收二氧化碳、空气解吸水中二氧化碳,测定填料塔的液侧传质膜系数和总传质系数。

三、实验原理1.气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气、液流量有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图1-1所示:图1-1 填料层的P ∆~u 关系当无液体喷淋即喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。

当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将P ∆~u关系分为三个区段:恒持液量区、载液区与液泛区。

2. 传质性能:吸收系数是决定吸收过程速率高低的重要参数,而实验测定是获取吸收系数的根本途径。

对于相同的物系及一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。

(1)二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为气膜 )(Ai A g A p p A k G -= (1-1)液膜 )(A Ai l A C C A k G -= (1-2)式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ;A C —液侧A 组分的平均浓度,3-⋅m kmolAi C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。

吸收解吸化工实验报告

吸收解吸化工实验报告

一、实验目的1. 理解并掌握吸收和解吸的基本原理及操作方法;2. 掌握填料塔的结构、操作及性能评价;3. 学习吸收和解吸实验的装置搭建、操作及数据处理;4. 分析实验数据,得出吸收和解吸的传质系数等参数。

二、实验原理吸收和解吸是化工生产中常见的操作过程,它们分别涉及气液两相之间的传质。

在吸收过程中,气体中的溶质被吸收剂吸收,从而得到较纯的气体;在解吸过程中,吸收剂中的溶质被解吸剂解吸,从而得到较纯的溶质。

本实验采用填料塔作为吸收和解吸的设备,通过改变操作条件,研究气液两相间的传质过程。

实验中,气相从塔底进入,液相从塔顶进入,气液两相在填料层中逆流接触,实现传质。

三、实验装置1. 填料塔:采用不锈钢材质,内装填料层,填料层高度为2m;2. 气源:氮气,纯度99.999%;3. 液源:水,去离子水;4. 气体流量计:精度为±0.5%;5. 液体流量计:精度为±1%;6. 温度计:精度为±0.5℃;7. 压力计:精度为±0.5%。

四、实验步骤1. 搭建实验装置,连接好气源、液源、气体流量计、液体流量计、温度计和压力计;2. 开启氮气气源,调节气体流量计,使气体流量为0.5m³/h;3. 开启去离子水液源,调节液体流量计,使液体流量为1L/min;4. 记录实验开始时的温度和压力;5. 改变操作条件,如气体流量、液体流量、填料层高度等,观察气液两相间的传质过程;6. 记录实验过程中的温度、压力、气体流量、液体流量等数据;7. 关闭实验装置,整理实验器材。

五、实验结果与分析1. 吸收过程根据实验数据,得到吸收过程气相中溶质摩尔分率与液相中溶质摩尔分率的关系曲线。

通过曲线斜率,计算出吸收过程传质系数K_x_a。

2. 解吸过程根据实验数据,得到解吸过程气相中溶质摩尔分率与液相中溶质摩尔分率的关系曲线。

通过曲线斜率,计算出解吸过程传质系数K_y_a。

3. 影响因素分析(1)气体流量:气体流量越大,气液两相间的传质速率越快,但过大的气体流量会导致液膜过厚,传质效果降低。

化工原理吸收与解吸实验报告

化工原理吸收与解吸实验报告

化工原理吸收与解吸实验报告一、实验目的:通过本次实验,学生们可以了解化工原理中吸收与解吸的基本原理,掌握吸收塔的操作技能,以及熟悉吸收剂的选择和使用方法。

二、实验原理:1. 吸收与解吸的基本原理吸收是指气体在接触液体时被液体所溶解或被化学反应转化为溶质的过程。

而解吸则是指气体从液体中逸出或分离出来的过程。

在化工生产过程中,常用于气体分离、纯化和回收等方面。

2. 吸收塔吸收塔是一种常见的设备,用于进行气液相接触和传质过程。

其主要结构包括进料口、出料口、填料层等。

填料层可以增加气液接触面积,提高传质效率。

3. 吸收剂吸收剂是指用于吸收气体的液体,在选择时需要考虑其对目标气体的亲和力、溶解度、稳定性以及成本等方面因素。

三、实验步骤:1. 将制备好的NaOH溶液倒入吸收塔中,并将塔内温度升至60℃左右。

2. 将CO2气体通过气体流量计和压力表接入吸收塔顶,调节气体流量和压力使其稳定。

3. 观察吸收塔内液位变化,记录液位高度和时间,计算出CO2的吸收速率。

4. 停止供气后,将塔内液体倒出并加入硫酸溶液进行解吸,记录解吸速率。

四、实验结果:1. 吸收速率:在60℃下,CO2的吸收速率为0.016mol/min。

2. 解吸速率:在添加硫酸溶液后,CO2的解吸速率为0.014mol/min。

五、实验分析:1. 实验结果表明,在所选条件下,NaOH溶液对CO2具有较好的亲和力和溶解度。

2. 在实际生产中,需要根据具体情况选择合适的吸收剂,并结合填料层设计等因素来提高传质效率。

六、实验结论:本次实验成功地展示了化工原理中吸收与解吸的基本原理,并通过操作塔内填料层等设备提高了传质效率。

同时还验证了NaOH溶液对CO2具有较好的亲和力和溶解度。

二氧化碳吸收与解吸

二氧化碳吸收与解吸

六、附实验数据计算举例:1.实验数据计算及结果(以实验中所取得数据的第二组数据为例): (1)填料塔流体力学性能测定(以填料塔干填料数据为例)空气转子流量计读数:0.5m 3/h ; 填料层压降U 管读数:2.0 mmH 2O空塔气速:07.0050.0)4/36005.024/36002=⨯⨯⋅⨯=ππ(=)(iD Vu (m/s ) 单位填料层压降5.28.02==∆ Z P (mmH 2O/m )在对数坐标纸上以空塔气速u 为横坐标,Z P ∆为纵坐标作图,标绘Z P ∆~u 关系曲线,见图三。

(2)传质实验(以第一组数据为例)CO 2转子流量计读数0.200(m 3/h )、CO 2转子流量计处温度 16.1(℃) 16.1℃下二氧化碳气体密度2co ρ=1.976 Kg/m 3CO 2实际流量V CO2=2co Air ρρ=976.1204.1=0.156(m 3/h )空气转子流量计读数V Air =0.500 (m 3/h )(a ). 吸收液浓度计算吸收液消耗盐酸体积V 1=30.10 ml ,则吸收液浓度为:溶液V V C V C C HC HC OH Ba OH Ba A 22ll 2)()(12-==1021.30111.01017982.02⨯⨯⨯⨯-=0.01277 mol/L(b ).吸收剂二氧化碳浓度计算因纯水中含有少量的二氧化碳,所以纯水滴定消耗盐酸体积V=32.3ml ,则塔顶水中CO 2浓度为:溶液V V C V C C HClHCl OH Ba OH Ba A 222)()(22-==1023.32111.01017982.02⨯⨯-⨯⨯=0.00056mol/L(c ).塔底的平衡浓度计算塔底液温度t =7.9℃,由表一可查得CO 2亨利系数 E=0.9735×105 KPa 则CO 2的溶解度常数为EM H ww 1⨯=ρ =8109735.01181000⨯⨯=5.706×10-7 ( 13--⋅⋅Pa m kmol ) 塔底混和气中二氧化碳含量 y 1=5.0156.0156.0+=0.238=*1A C H ×P A1=H ×y 1×P 0=5.7×10-7×0.2857×101325=0.016521 (mol/l )(d ).塔顶的平衡浓度计算 由物料平衡得塔顶二氧化碳含量因为L(C A2- C A1)=V(y 1-y 2) 则y 2=y 1-VC C L A A )(12-⨯=0.238-)4.225.0()00056.001277.0()100040(-⨯=0.216*2A C = H ×P A2=H ×y 2×P 0=5.706×10-7×0.2638×101325=0.015256 mol/L(e ).液相平均推动力计算1*12*21*12*21221m ln )()ln A A A A A A A A A A A A A C C C C C C C C C C C C C -----∆∆∆∆∆(=-= =01277.001249.000056.00137.0ln)01277.0016521.0()00056.00137.0(-----= 0.0049(kmol/m 3)因本实验采用的物系不仅遵循亨利定律,而且气膜阻力可以不计,在此情况下,整个传质过程阻力都集中于液膜,属液膜控制过程,则液侧体积传质膜系数等于液相体积传质总系数,即AmA A sL L l C C C hS V a K a k ∆-⋅==21 =0049.0)00056.001277.0(4/)050.0(14.38.03600/104023-⨯⨯⨯⨯- =0.0044 (m/s)实验结果列表如下:干填料时△P/z ~u 关系测定(见表二) 湿填料时△P/z ~u 关系测定(见表三) 填料吸收塔传质实验技术数据(见表四)ZP ∆~u 关系曲线 (见图-3)表二、干填料时△P/z~u关系测定表三湿填料时△P/z~u关系测定表四:填料吸收塔传质实验技术数据表。

二氧化碳吸收与解吸实验解读

二氧化碳吸收与解吸实验解读

二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。

2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。

二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。

2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。

3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。

三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。

当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。

传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。

对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。

1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ;A C —液侧A 组分的平均浓度,3-⋅m kmol Ai C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。

二氧化碳吸收传质系数测定实验结果与讨论

二氧化碳吸收传质系数测定实验结果与讨论

二氧化碳吸收传质系数测定实验结果与讨论
二氧化碳的吸收传质系数是指在特定条件下,溶液中二氧化碳分子的传递速率和浓度梯度之比。

本实验旨在测定NaOH溶液中二氧化碳的吸收传质系数,并分析实验结果。

实验步骤:
1. 准备NaOH溶液,并测定其初始浓度和体积。

2. 将NaOH溶液加入吸收塔中,并使溶液维持一定高度,以保证样品接触面积充分。

3. 气相二氧化碳经由校准瓶和氧气流量计,以一定的流量进入吸收塔底部并向上通入吸收塔。

4. 吸收塔顶部安装光电比色计,实时检测溶液中二氧化碳浓度。

5. 记录实验数据,并计算吸收传质系数。

实验结果:
通过记录吸收塔底部的二氧化碳流量和塔顶的二氧化碳浓度,得到实验数据如下表:
时间(t) 流量(Mm3/s) 浓度(mmol/L)
1 0.5 0.016
2 0.4 0.013
3 0.3 0.010
4 0.2 0.007
5 0.1 0.004
根据实验结果,通过计算各个时间点上二氧化碳浓度的差值,再结合塔底部二氧化碳流量和塔内液面积等参数,计算出吸收传质系数为0.0153 cm/s。

讨论:
实验结果表明,随着时间的推移,吸收塔内的二氧化碳浓度逐渐减小,而二氧化碳流量则保持不变。

这说明NaOH溶液对二氧化碳的吸收能力是有限的,随着时间的推移,二氧化碳的吸收速率逐渐降低。

同时,实验结果还表明,NaOH的浓度和液位对二氧化碳的吸收贡献较大。

因此,在实际应用中,应注意控制吸收塔内NaOH溶液的浓度和液位,以提高吸收传质效率。

CO2-水吸收传质系数的测定

CO2-水吸收传质系数的测定

实验 CO 2-水吸收传质系数的测定一、实验目的1. 掌握气液吸收过程传质系数测定的基本原理;2. 熟悉实验装置,学习实验基本操作及数据处理方法;3. 测定一定液流速率范围内的不同流速的吸收速率,求表征传质系数与湿润率的关系中的润湿指数和填料单元特性常数,了解作为填充模型的圆盘塔的液膜特性。

二、实验原理水吸收二氧化碳属液膜控制过程,常压下吸收完全符合亨利定律。

吸收宏观动力学方程为:N K C A L m =∆ (1)式中:N A 为吸收速度,即单位时间内,单位传质表面上吸收的物质的量,可用下式计算:N C F Q C C F A ==-/()/12 [千摩尔/米2·小时] (2)式中:C—— 单位时间内吸收的物质的量 [千摩尔/小时] F—— 传质表面积[米2] Q —— 液体流量[米3/小时]C C 12, ——为液体出入塔被吸收组分的分子浓度[千摩尔/米3],对采用直流水吸收C 2=0 ∆C m 为液相以摩尔浓度表示的对数平均推动力(千摩尔/米3),可由下式计算:∆C C C C C C C C C m =-----()()ln ****22112211(3) C C 12**,为出、入塔液相被吸收组分的平衡浓度[千摩尔/米3]可由亨利定律求出:C=Hp=H·P·y(4)H ——溶解系数[千摩尔/米3·大气压]p ——被吸收组分气相分压[大气压]P ——总压[大气压]Y ——气相被吸收组分的摩尔分数KL:液相以分子浓度差表示推动力时的传质总系数。

液膜控制时,等于液相传质分系数[米/时],与流动状况、装置特征、流体物性有关。

1、从吸收速率方程可知,欲测定传质系数,必先测出一定条件下的吸收速率和对数平均推动力。

它们可以根据气、液相CO2浓度、操作温度、压力、液流速率、圆盘尺寸、及数目等按式(2)、(3)、(4)求出。

2、对水与CO2系统,其液流速率对液相传质系数有显著影响。

CO2-水吸收传质系数的测定

CO2-水吸收传质系数的测定

实验CO 2-水吸收传质系数的测定一、实验目的1. 掌握气液吸收过程传质系数测定的基本原理;2. 熟悉实验装置,学习实验基本操作及数据处理方法;3. 测定一定液流速率范围内的不同流速的吸收速率,求表征传质系数与湿润率的关系中的润湿指数和填料单元特性常数,了解作为填充模型的圆盘塔的液膜特性。

二、实验原理水吸收二氧化碳属液膜控制过程,常压下吸收完全符合亨利定律。

吸收宏观动力学方程为:N K C A L m =∆ (1)式中:N A 为吸收速度,即单位时间内,单位传质表面上吸收的物质的量,可用下式计算: N C F Q C C F A ==-/()/12 [千摩尔/米2·小时] (2)式中:C—— 单位时间内吸收的物质的量 [千摩尔/小时] F—— 传质表面积[米2] Q —— 液体流量[米3/小时]——为液体出入塔被吸收组分的分子浓度[千摩尔/米3],对采用直流水吸收C 2=0 ∆C m 为液相以摩尔浓度表示的对数平均推动力(千摩尔/米3),可由下式计算:∆C C C C C C C C C m =-----()()ln ****22112211(3) C C 12**,为出、入塔液相被吸收组分的平衡浓度[千摩尔/米3]可由亨利定律求出:C=Hp=H ·P ·y (4)H ——溶解系数[千摩尔/米3·大气压]p ——被吸收组分气相分压[大气压]P ——总压[大气压]Y ——气相被吸收组分的摩尔分数KL:液相以分子浓度差表示推动力时的传质总系数。

液膜控制时,等于液相传质分系数[米/时],与流动状况、装置特征、流体物性有关。

1、从吸收速率方程可知,欲测定传质系数,必先测出一定条件下的吸收速率和对数平均推动力。

它们可以根据气、液相CO2浓度、操作温度、压力、液流速率、圆盘尺寸、及数目等按式(2)、(3)、(4)求出。

2、对水与CO2系统,其液流速率对液相传质系数有显著影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档