最新羧酸及其衍生物

合集下载

第十章 羧酸及其衍生物

第十章 羧酸及其衍生物
O CH3C OH
+ H OC2H5
18
H
+
O CH3C
18
OC2H5 + H2O
酰氧断裂
12
O CH3C OH
:OH
+H
+
OH CH3C OH 加成
-H2O
HOC2H5
OH CH3 C OH HOC2H5
OH CH3 C OC2H5
: : : : : : : :
质子迁 移
-H+
O CH3 C OC2H5
1
I 羧酸
一,结构 烃基与羧基相连的物质叫羧酸:一元羧酸通式为 RCOOH;羧基( COOH)就是羧酸的官能团 RCOOH;羧基(-COOH)就是羧酸的官能团. 就是羧酸的官能团.
O
ห้องสมุดไป่ตู้
中碳为SP 杂化, OH 中碳为SP2 杂化,氧原子与羰基双键间存 在着P― 共扼.由于共扼, P―л 在着P―л共扼.由于共扼,使羧基中的羰基失去了典 型的羰基的性质(如不与NH OH作用 作用) 型的羰基的性质(如不与NH2OH作用);―OH 氧原 子上的电子云向羰基偏移,这有利于―OH氢的离解 氢的离解. 子上的电子云向羰基偏移,这有利于―OH氢的离解.
14
Br2 / P
(2)芳香环的取代反应 (2)芳香环的取代反应
COOH Br2 FeBr3
COOH
Br
5. 二元羧酸的受热反应
乙 二 酸 HOOCCOOH 丙 二 酸 HOOCCH 2COOH 丁二酸 CH 2 COOH CH 2 COOH 戊 二 酸 CH 2 CH 2COOH CH 2COOH
CH 3 COOH + C 2H 5 OH : 1 1 1 : 10

羧酸及其衍生物ppt课件

羧酸及其衍生物ppt课件
RCOCl + R'MgCl
RCOOR"+ R'MgCl
RCOR' (fast)
RCOR'
(1) R'MgCl (2) H2O
R' R C OH R'
酸酐与Grignard 试剂的反应在低温下也可得到酮。
2.2.3 还原
催化氢化或用LiAlH4作还原剂,酰卤、酸酐、酯可被还原成醇,酰胺 则被还原成胺。 2.2.4 酯的缩合反应 • Claisen缩合:
2.2 化学性质 2.2.1 亲核取代反应 (水解、醇解、氨解等)
O R C
L
O O
+
Nu
R
C Nu
L
RCNu
+
L
反应活性: RCOCl > (RCO)2O > RCOOR’ > RCONH2 > RCONR’2
水解: RCOCl (RCO)2O RCOOR’ RCONH2 醇解: RCOCl (RCO)2O + R’OH RCOOR’ + HCl RCOOR’ + RCOOH + H2O RCOOH + HCl 2 RCOOH (加热) (催化) (催化、回流) RCOOH + R’OH RCOOH + NH3

一元羧酸:
HCOOH 甲酸
CH3COOH 乙酸
CH3CHCH2COOH
COOH
CH3C CH3
CHCOOH
Cl
3-甲基-2-丁烯酸
3-(对-氯苯基)丁酸
苯甲酸

二元羧酸:
COOH
CHCOOH
HOOCCOOH

[化学]10羧酸及其衍生物

[化学]10羧酸及其衍生物

H
C l
h
28
上页 下页 返回 退出
10.1.4 重要的羧酸
(1)甲酸
No
甲酸俗称蚁酸,是一种具有刺激气味的液体, 沸点100.7℃ ,能与水、乙醇、乙醚等混溶。
制备:
Image
C O+ N a O H0 2.1 60 H -C O 1 ℃ O N .a 0 H S 2 O M 4H C P O O H a
pKa 3 .7 7 4 .7 4
4 .8 7
4 .8 2
h
20
上页 下页 返回 退出
取代基团对酸性的影响
No
C H3 C H2 C H C O O H C H3 C H C H2 C O O H C H2 C H2 C H C O O H
C l
C l
C l
pKa
2.84
4.06
4.52
Image F C H2 C O O HC C lH2 C O O HBC rH2 C O O HC IH2 C O O H
h
4
上页 下页 返回 退出
No π 键
p 、π共 轭
O
O
RC
Image
.O. H
孤对
电子
RC
OH
p 、π共轭体系
h
5
上页 下页 返回 退出
甲酸的结构
No Image
h
6
动画 上页 下页 返回 退出
10.1.1 羧酸的构造、分类和命名
(2)羧酸的命名
No 许多羧酸有俗名,主要是根据其来源 命名的。
热至200~300℃熔化并失水生成邻苯二甲酸酐
Image
(白色针状晶体,熔点131℃ ,易升华)。 用途:邻苯二甲酸及其酸酐用于制造染料、树

羧酸衍生物

羧酸衍生物

理论解释:
活性取决于L离去难易.
酸碱理论
酸性: HCl > RCOOH > ROH > NH3
pKa -2.2 4~5
16~19 34
共轭碱的碱性: Cl < RCOO < RO < NH2
碱性愈弱,愈易离去。
=
=
=
(一)酰基上的亲核取代
1.水解
O (C6H5)2CHCH2CCl
H2O, Na2CO3 0℃
O NH O
0oC + Br2 + NaOH
O N Br + NaBr + H2O
O
= =
N-溴代丁二酰亚胺
碱性水解
RCONH2 + H2O NaOH RCOONa + NH3
酸性水解
RCONH2 + H2O H2SO4
RCOOH + (NH4)2SO4
水解较难,环内酰胺易水解
5. 酯缩合反应-乙酰乙酸乙酯的合成 乙酰乙酸乙酯可用 Claisen 酯缩合反应合成
O
R C O R'
生成酰胺。
OO
RR
CC
++ HHCCll
NNHH22
O
R C NH2
O
+ R' C O H
OO
RR C NNHH22
+ R'CH22OH
4. 酰胺的反应
O
RC
P-π共轭
NH2
= =Hale Waihona Puke = =酰胺的弱酸碱性
显碱性 NH3
O
亚酰胺
NH
O
RNH2
O NH O
pKa 8.3

羧酸及其衍生物

羧酸及其衍生物
酰卤还原成相应的醛,称为Rosenmund还原
在反应中加入适量的喹啉–S或硫脲等作为抑制剂可降
低催化剂的活性;以使反应停留在生成醛的阶段
39
3 用金属钠醇还原 酯与金属钠在醇溶液中加热回流;可被还原成伯醇
各类含羰基化合物的还原产物和还原情况比较如下:
名称 羧酸
结构 RCOOH
NaBH4/乙醇 (-)
12
2 羧基上的羟基OH的取代反应 羧基上的OH可被一系列原子或原子团取代生成羧酸的衍生物
1 酯化反应
1o 酯化反应是可逆反应;一般只有2/3的转化率
提高酯化率的方法:a 增加反应物的浓度一般是加过量的醇。
b 移走低沸点的酯或水。
2o 酯化反应的活性次序:
酸相同时 CH3OH > RCH2OH > R2CHOH > R3COH
b p:羧酸 > M 相同的醇
m.p:随M↑呈锯齿形上升。偶数碳原子羧酸的m.p>相邻两
个同系物的m.p。
8
三 羧酸的化学性质
9
1 酸性 羧酸的酸性比水 醇强;甚至比碳酸的酸性还要强
羧酸离解后生成的RCOO负离子;由于共轭效应的 存在,氧原子上的负电荷则均匀地分散在两个原子上, 因而稳定容易生成
26
B 丁二酸 戊二酸受热脱水不脱羧生成环状酸酐
C 己二酸 庚二酸受热既脱水又脱羧生成环酮
27
第二节 羧酸衍生物
一 羧酸衍生物的结构和命名 1 结构
羧酸羧基上的OH可被一系列原子或原子团取代生成羧 酸的衍生物 酰基与其所连的基团都能形成Pπ共轭体系。
2 命名 1o 酰卤和酰胺的命名根据酰基称为某酰某
⑶ Hofmam降解反应 可制备少一个C原子的伯胺 注意:N取代的酰胺不能发生脱水反应和Hofmann降解反应 47

有机化学第九章(2024版)

有机化学第九章(2024版)

NH3 (过 量) NH4B r
H2NC H2C O O H
= CH2 CHBrCOOH KOH / CH3OH CH2 CHCOOH
CH2 CHBrCOOH
CH2 =CHCOOH
26
甲酸
❖ 俗名蚁酸,其结构特殊,它的羧基与一氢原子相连, 表现出某些醛的性质,具有较强的还原性,能被托
伦试剂、斐林试剂氧化,也容易被一般的氧化剂氧 化生成二氧化碳和水:
F
OH
pKa
2.66
3.83
3)与碳原子相连的基团不饱和性↑,吸电子能力↑。 = C CH > CH CH2 > CH2CH3
= C H CC H2C O O H > C H2 C HC H2C O O H > C H3C H2C H2C O O H
pKa
2.85
4.35
4.82
(C H3)3N+C H2C O O H
CH2NH2
H
反-4-(氨甲基环己烷)甲酸
止血环酸
6
❖ 芳香羧酸的命名,把芳基作为取代基:
COOH
COOH
CH2COOH
苯甲酸 安息香酸
OH 邻羟基苯甲酸 水杨酸
COOH
α-萘乙酸 COOH
COOH 1,2-苯二甲酸
HO
OH
OH 33,,44,,5-5三-三 羟羟 基苯基甲甲酸酸
没食子酸
7
第一节 羧酸
COOH
2
命名
❖ 脂肪族一元羧酸的命名与醛类相似,即选择含羧基 的最长的碳链为主链,按主链的碳原子数称为某酸:
HCOOH 甲酸
CH3COOH
乙酸 醋酸
γ βα
4 3 21
H

羧酸的四大衍生物

羧酸的四大衍生物

羧酸的四大衍生物
羧酸的四大衍生物
羧酸是一类含有羧基(-COOH)的有机化合物,可作为各种化学反应
的重要中间体。

羧酸有多种衍生物,其中最常见的是如下四种。

一、酰氯(Acyl chloride)
酰氯是羧酸最常见的反应产物,它可以通过将羧酸与氯化物反应制得。

酰氯是一个非常重要的中间体,可用于合成酯、醚、酰胺等多种化合物。

酰氯有弱腐蚀性,可多用于有机合成实验室中。

二、酐(Anhydride)
酐是两个羧酸分子缩合而成的产物,分为内酐和外酐两种。

内酐是指
两个羧基在同一分子内缩合而成的环状产物,外酐则是指两个羧基不
在同一分子内缩合而成的非环状产物。

酐也可作为中间体用于合成酯、酰胺等化合物。

三、酸酐(Acid anhydride)
酸酐是两个不同羧酸分子缩合而成的产物,以其极强的反应性而闻名。

酸酐可用于合成酸酐酯、酸酰胺、酸酐酸等化合物。

但由于其极易水解,因此在使用过程中需要特别注意。

四、酯(Ester)
酯是羧酸的一种重要衍生物,它由羧酸和醇反应而成。

酯具有良好的挥发性和揮發性,并可用于制备香精、香料、油漆等多种化合物。

酯也可作为用于制硝化纤维、炸药等的重要中间体。

在有机合成中,酰氯、酐、酸酐和酯均属于常见的重要中间体。

它们在不同条件下均可相互转化,因此在尝试合成某种化合物时,应根据需要灵活选择相应的羧酸衍生物。

新教材人教版高中化学选择性必修三 3-4 羧酸 羧酸衍生物 知识点梳理

新教材人教版高中化学选择性必修三 3-4 羧酸 羧酸衍生物 知识点梳理

H COHO C O OH H C O O H M O OH R C 第四节 羧酸 羧酸衍生物一、羧酸(一)定义:烃基(或氢原子)与羧基相连构成的有机化合物 (二)分类烃基不同:脂肪酸、脂环酸、芳香酸羧基个数:一元羧酸、二元羧酸、多元羧酸 烃基是否饱和:饱和羧酸、不饱和羧酸碳原子数目:低级脂肪酸(12个碳以下的)、高级脂肪酸(12个碳以上的)(三)通式:饱和一元羧酸C n H 2n O 2(n ≥1) 或C n H 2n+1COOH (n ≥0)或R-COOH (四)同分异构体1、碳架异构:同醛2、官能团异构:饱和一元羧酸和饱和一元酯互为官能团异构(五)命名:同醛(六)物理性质:甲酸、乙酸等分子中碳原子数较少的羧酸能够与水互溶。

随着分子中碳原子数的增加,一元羧酸在水中的溶解度迅速减小,甚至不溶于水,其沸点也逐渐升高。

高级脂肪酸是不溶于水的蜡状固体。

羧酸与相对分子质量相当的其他有机化合物相比,沸点较高,这与羧酸分子间可以形成氢键有关。

(七)化学性质:羧酸的化学性质主要取决于羧基官能团。

由于受氧原子电负性较大等因素的影响,当羧酸发生化学反应时,羧基结构中下面两个部位的化学键容易断裂:当O —H 断裂时,会解离出H +,使羧酸表现出酸性; 当C-O 断裂时,一OH 可以被其他基团取代,生成 酯、酰胺等羧酸衍生物。

1、酸性:乙二酸>甲酸>苯甲酸>CH 3COOH>H 2CO 3>C 6H 5OH>HCO 3—2、酯化反应:(八)常见的有机酸1、甲酸(HCOOH )(1)组成和结构:分子式:CH 2O 2 结构式: 结构简式:HCOOH 或(2)物理性质:甲酸是最简单的羧酸,因最早从蚂蚁中获得,故又称蚁酸。

它是一种无色、有刺激性气味的液体,有腐蚀性,能与水、乙醇等互溶。

蚁、蜂蜇咬导致的皮肤肿痛就是蚁酸引起的。

(3)化学性质:-COOH 和-CHO①酸性 ②酯化反应③与弱氧化剂反应:能与银氨溶液反应,被氧化为碳酸后分解生成二氧化碳和水。

有机化学羧酸及其衍生物

有机化学羧酸及其衍生物
CH3CH2CH CH2COOH
O
CH2C
CH3CH2CH
O
CH2C
O
Ⅱ 羧酸的衍生物
★ 酰氯、酸酐、酯和酰胺都是羧酸中的羟基被不同 基团取代的产物,统称为羧酸衍生物。
10.6 命名:
① 酰氯和酰胺以其所含的酰基来命名; ② 酸酐根据其来源的酸命名; ③ 酯按其来源的酸和醇,叫某酸某酯。
O
酰氯
H3CC Cl
O
OH
R COH LiAlH4 RCH2
4)烃基上的反应: ① α—卤代作用:脂肪羧酸中的α—H比其它C原子
上的H活泼,可被卤素取代:
C3 C HOO 2o H 日 红 r 光 磷 + C 一 l2 C C C 氯 O H l 日 乙 C O 2 l光 C H 酸 二 2 C l H 氯 C 日 C 乙 2O l光 C 三 酸 O 3 C l H 氯 CO 乙
O CH 3COC2H5
NaO2HC 5
O
-CH 2CO OC2H5CH 3 COC2H5
(Ⅰ)
OO CH 3CCH 2COC2H5+-OC2H5
乙 乙酰酸 乙酸乙乙酰 酯 乙酯
O- O
[CH 3CCH 2 COC2H5] OC2H5 (Ⅱ)
5)酰胺的酸碱性:氨是碱性的,但酰胺是中性 物质。这是由于氮上未共用电子对与碳—氧 双键共轭而氮原子上电子密度降低所致。O .. R C NH 2
O
RC O
HCOOH
CH3CO2H
CH3CH2CH2CO2H
CH3CH2CHCO2H Cl
CH3CHCH2CO2H Cl
ClCH2CH2CH2CO2H
pKa 3.75
4.75

【全文】张文勤有机化学(第五版)第十章-羧酸及其衍生物

【全文】张文勤有机化学(第五版)第十章-羧酸及其衍生物

O Cl3C C OH △
CHCl3 + CO2
在脱羧反应中最典型的是羰基酸脱羧
二元羧酸的热分解反应
2. 脱水反应 丁二酸及戊二酸加热至熔点以上则脱水生成
环状酸酐
3. 脱羧及脱水反应
五元环或六元环化合物容易形成
六、羧酸的制备
1. 羧酸的工业合成 (了解) (1) 烃的氧化
烷烃氧化
芳烃氧化
(2) 由一氧化碳、甲醇或醛制备
应用: 由伯酰胺制备少一个碳原子的伯胺
5. 与HNO2的反应
酰胺只能是伯酰胺 可用来鉴别伯酰胺 四、酰胺的生成 1.羧酸衍生物的氨解
2.羧酸的铵盐加热失水而得

小结 羰基的亲核取代反应
① 水解
相应的羧酸
O
R-C-Cl
OO
反 应 速
R-C-O-C-R/
O
+ H-OH
度 R-C-OR/

O
增 R-C-NH2
遇水则又水解为酰胺和盐酸。
二、酰胺的物理性质 在常温下,除甲酰胺是液体外,其它酰胺多为
无色晶体。
熔点、沸点甚至比相对分子质量相近的羧酸还高。
低分子量酰胺易溶于水,随着相对分子质量的 增大,溶解度逐渐减小。 三、酰胺的化学性质
1.水解 酰胺与酯一样在酸碱催化下可水解,生成羧酸或盐。
实际上,酰胺的水解(O=C-N键断裂)较难
例:
9. 歧化反应
§11-4 羧酸衍生物的结构和命名
一、羧酸衍生物的结构
酰卤 酯 酸酐 酰胺
L=X,NH2,OR ………
羧酸衍生物 在结构上的 共同特点是 都含有酰基
羰基与杂原子相连
(1)L和碳相连的原子上有未共用 电子对,故具有给电子共轭效应 (2)与酰基相连的原子的电负性 都比碳大,故有吸电子诱导效应

羧酸及其衍生物

羧酸及其衍生物

羧酸及其衍生物第一节羧酸由烃基(或氢原子)与羧基相连所组成的化合物称为羧酸,其通式为RCOOH,羧基(-COOH)是羧酸的官能团.一,分类和命名按羧酸分子中烃基的种类将羧酸分为脂肪族羧酸和芳香族羧酸.按羧酸分子中所含的羧基数目不同将羧酸分为一元酸和多元酸.一些常见的羧酸多用俗名,这是根据它们的来源命名的.如:HCOOH 蚁酸CH3COOH 醋酸HOOC—COOH 草酸脂肪族羧酸的系统命名原则与醛相同,即选择含有羧基的最长的碳链作主链,从羧基中的碳原子开始给主链上的碳原子编号.取代基的位次用阿拉伯数字表明.有时也用希腊字母来表示取代基的位次,从与羧基相邻的碳原子开始,依次为α,β,γ等.例如:CH3CH═CHCOOH2-丁烯酸2,3-二甲基戊酸α-丁烯酸(巴豆酸)芳香族羧酸和脂环族羧酸,可把芳环和脂环作为取代基来命名.例如:对甲基环已基乙酸3-苯丙烯酸(肉桂酸) 4-甲基-3-(2-萘)丙酸命名脂肪族二元羧酸时,则应选择包含两个羧基的最长碳链作主链,叫某二酸.如:邻-苯二甲酸正丙基丙二酸二,羧酸的制法1,氧化法高级脂肪烃(如石蜡)在加热至120℃-150℃和催化剂存在的条件下通入空气,可被氧化生成多种脂肪酸的混合物.RCH2CH2R1 RCOOH + R1COOH伯醇氧化成醛,醛易氧化成羧酸,因此伯醇可作为氧化法制羧酸的原料.含α-氢的烷基苯用高锰酸钾氧化时,产物均为苯甲酸.例如:2,格氏试剂合成法格氏试剂与二氧化碳反应,再将产物用酸水解可制得相应的羧酸.例如:RMgX + CO2 RCOOMgX RCOOH腈水解法在酸或碱的催化下,腈水解可制得羧酸.RCN + H2O + HCl RCOOH + NH4ClRCN + H2O + NaOH RCOONa + NH3三,物理性质1,状态甲酸,乙酸,丙酸是具有刺激性气味的液体,含4-9个碳原子的羧酸是有腐败恶臭气味的油状液体,含10个碳原子以上的羧酸为无味石蜡状固体.脂肪族二元酸和芳香酸都是结晶形固体.2,沸点羧酸的沸点比分子量相近的醇还高.这是由于羧酸分子间可以形成两个氢键而缔合成较稳定的二聚体.3,水溶性羧酸分子可与水形成氢键,所以低级羧酸能与水混溶,随着分子量的增加,非极性的烃基愈来愈大,使羧酸的溶解度逐渐减小,6个碳原子以上的羧酸则难溶于水而易溶于有机溶剂.化学性质1,酸性羧酸具有酸性,因为羧基能离解出氢离子.RCOOH RCOO- + H+因此,羧酸能与氢氧化钠反应生成羧酸盐和水.RCOOH + NaOH RCOONa + H2O羧酸的酸性比苯酚和碳酸的酸性强,因此羧酸能与碳酸钠,碳酸氢钠反应生成羧酸盐.RCOOH + NaHCO3(Na2CO3) RCOONa + H2O + CO2↑但羧酸的酸性比无机酸弱,所以在羧酸盐中加入无机酸时,羧酸又游离出来.利用这一性质,不仅可以鉴别羧酸和苯酚,还可以用来分离提纯有关化合物.例如:欲鉴别苯甲酸,苯甲醇和对-甲苯酚,可按如下步骤进行,在这三者中加入碳酸氢钠溶液,能溶解并有气体产生的是苯甲酸;再在剩下的二个中加入氢氧化钠溶液,溶解的是对-甲苯酚,不溶解的是苯甲醇.当羧酸的烃基上(特别是α-碳原子上)连有电负性大的基团时,由于它们的吸电子诱导效应,使氢氧间电子云偏向氧原子,氢氧键的极性增强,促进解离,使酸性增大.基团的电负性愈大,取代基的数目愈多,距羧基的位置愈近,吸电子诱导效应愈强,则使羧酸的酸性更强.如:三氯乙酸二氯乙酸氯乙酸pKa 0.028 1.29 2.81因此,低级的二元酸的酸性比饱和一元酸强,特别是乙二酸,它是由两个电负性大的羧基直接相连而成的,由于两个羧基的相互影响,使酸性显著增强,乙二酸的pKa1=1.46,其酸性比磷酸的pKa1=1.59还强.取代基对芳香酸酸性的影响也有同样的规律.当羧基的对位连有硝基,卤素原子等吸电子基时,酸性增强;而对位连有甲基,甲氧基等斥电子基时,则酸性减弱.至于邻位取代基的影响,因受位阻影响比较复杂,间位取代基的影响不能在共轭体系内传递,影响较小.对硝基苯甲酸对氯苯甲酸对甲氧基苯甲酸对甲基苯甲酸pKa 3.42 3.97 4.47 4.382,羧基中的羟基被取代羧酸分子中羧基上的羟基可以被卤素原子(-X),酰氧基(-OOCR),烷氧基(-OR),氨基(-NH2)取代,生成一系列的羧酸衍生物.①酰卤的生成羧酸与三氯化磷,五氯化磷,氯化亚砜等作用,生成酰氯.RCOOH + PCl3(PCl5 SOCl2) RCOCl②酸酐的生成在脱水剂的作用下,羧酸加热脱水,生成酸酐.常用的脱水剂有五氧化二磷等.RCOOH + RCOOH RCOOOCR③酯化反应羧酸与醇在酸的催化作用下生成酯的反应,称为酯化反应.酯化反应是可逆反应,为了提高酯的产率,可增加某种反应物的浓度,或及时蒸出反应生成的酯或水,使平衡向生成物方向移动.RCOOH + R1OH RCOOR1 + H2O酯化反应可按两种方式进行:RCOOH + HOR1 RCOOR1 + H2O (1)RCOOH + HOR1 RCOOR1 + H2O (2)实验证明,大多数情况下,酯化反应是按(1)的方式进行的.如用含有示踪原子18O的甲醇与苯甲酸反应,结果发现18O在生成的酯中.④酰胺的生成在羧酸中通入氨气或加入碳酸铵,首先生成羧酸的铵盐,铵盐胺热脱水生成酰胺.RCOOH + NH3 RCOONH4 RCONH23,α-氢被取代羧基和羰基一样,能使α-H活化.但羧基的致活作用比羰基小,所以羧酸的α-H卤代反应需用在红磷等催化剂存在下才能顺利进行.CH3COOH + Cl2 CH2ClCOOH CHCl2COOH CCl3COOH还原反应羧酸在一般情况下,和大多数还原剂不反应,但能被强还原剂—氢化锂铝还原成醇.用氢化铝锂还原羧酸时,不但产率高,而且分子中的碳碳不饱和键不受影响,只还原羧基而生成不饱和醇.例如: RCH2CH═CHCOOH RCH2CH═CHCH2OH5,脱羧反应羧酸分子脱去羧基放出二氧化碳的反应叫脱羧反应.例如,低级羧酸的钠盐及芳香族羧酸的钠盐在碱石灰(NaOH-CaO)存在下加热,可脱羧生成烃.CH3COONa CH4 + Na2CO3这是实验室用来制取纯甲烷的方法.一元羧酸的脱羧反应比较困难,把羧酸盐蒸气通过加热至400-500℃的钍,锰或镁的氧化物,则脱羧生成酮.2CH3COOH CH3COCH3 + CO2 + H2O当一元羧酸的α-碳上连有吸电子基时,脱羧较容易进行,如:CCl3COOH CHCl3 + CO2↑五,重要的羧酸1,甲酸俗称蚁酸,是具有刺激性气味的无色液体,有腐蚀性,可溶于水,乙醇和甘油.甲酸的结构比较特殊,分子中羧基和氢原子直接相连,它既有羧基结构,又具有醛基结构,因此,它既有羧酸的性质,又具有醛类的性质.如能与托伦试剂,斐林试剂发生银境反应和生成砖红色的沉淀,也能被高锰酸钾氧化.2,乙酸俗称醋酸,是食醋的主要成分,一般食醋中含乙酸6℅-8℅.乙酸为无色具有刺激性气味的液体.当室温低于16.6℃时,无水乙酸很容易凝结成冰状固体,故常把无水乙酸称为冰醋酸.乙酸能与水按任何比例混溶,也可溶于乙醇,乙醚和其它有机溶剂.3,苯甲酸俗名安息香酸,是无色晶体,微溶于水.苯甲酸钠常用作食品的防腐剂.4,乙二酸俗称草酸,是无色晶体,通常含有两分子的结晶水,可溶于水和乙醇,不溶于乙醚.草酸具有还原性,容易被高锰酸钾溶液氧化.利用草酸的还原性,还可将其用作漂白剂和除锈剂.5,已二酸为白色电晶体,溶于乙醇,微溶于水和乙醚.已二酸和已二胺发生聚合反应,生成聚酰胺(尼龙-66).羧酸衍生物一,分类和命名重要的羧酸衍生物有酰卤,酸酐,酯和酰胺.1,酰卤和酰胺酰卤和酰胺的命名由酰基名称加卤素原子或胺.酰基:羧酸分子从形式上去掉一个氢原子以后所乘余的部分.某酸所形成的酰基叫某酰基.例如:某酰基乙酰氯乙酰胺N-甲基乙酰胺2,酸酐某酸所形成的酸酐叫\"某酸酐\".如:乙酐(醋酐) 乙丙酐丁二酸酐邻-苯二甲酸酐酯酯的命名为\"某酸某酯\".如:CH3CH2COOCH3 丙酸甲酯(CH3)2C═CHCH2COOCH2CH3 4-甲基-3-戊烯酸乙酯苯甲酸甲酯苯甲酸苄酯HOOC—COOCH2CH3 乙二酸氢乙酯CH3CH2OOC—CH2—COOCH2CH3 丙二酸二乙酯二,物理性质酰氯大多数是具有强烈刺激性气味的无色液体或低熔点固体.低级酸酐是具有刺激性气味的无色液体,高级酸酐为无色无味的固体.酸酐难溶于水而溶于有机溶剂.低级酯是具有水果香味的无色液体.酯的相对密度比水小,难溶于水而易溶于乙醇和乙醚等有机溶剂.三,化学性质1,水解四种羧酸衍生物化学性质相似,主要表现在它们都能水解,生成相应的羧酸.RCOCl HClRCOOOCR1 R1COOHRCOOR1 + H2O RCOOH + R1OHRCONH2 NH3水解反应进行的难易次序为:酰氯> 酸酐> 酯> 酰胺例如,乙酰氯与水发生猛烈的放热反应;乙酐易与热水反应;酯的水解在没有催化剂存在时进行得很慢;而酰胺的水解常常要在酸或碱的催化下,经长时间的回流才以完成.2,醇解和氨解酰氯,酸酐和酯都能与醇作用生成酯.RCOCl HClRCOOOR1 + HOR2 RCOOR2 + R1COOHRCOOR1 R1OH酰氯,酸酐和酯都能与氨作用,生成酰胺.RCOCl HClRCOOOR1 + NH3 RCONH2 + R1COOHRCOOR1 R1OH四,重要的羧酸衍生物1,乙酰氯:是一种在空气中发烟的无色液体,有窒息性的刺鼻气味.能与乙醚,氯仿,冰醋酸,苯和汽油混溶.2,乙酐:又名醋(酸)酐,为无色有极强醋酸气味的液体,溶于乙醚,苯和氯仿.3,顺丁烯二酸酐:又称马来酸酐和失水苹果酸酐.为无色结晶性粉末,有强烈的刺激性气味,易升华,溶于乙醇,乙醚和丙酮,难溶于石油醚和四氯化碳.4,乙酸乙酯:为无色可燃性的液体,有水果香味,微溶于水,溶于乙醇,乙醚和氯仿等有机溶剂.5,甲基丙烯酸甲酯:为无色液体,其在引发剂存在下,聚合成无色透明的化合物,俗称有机玻璃.6,丙二酸二乙酯及其在有机合成中的应用:丙二酸二乙酯,简称丙二酸酯,为无色有香味的液体,微溶于水,易溶于乙醇,乙醚等有机溶剂.常用下面的方法来制取丙二酸酯:CH2ClCOONa CH2CNCOONa + C2H5OH C2H5OOCCH2COOC2H5由于丙二酸酯分子中亚甲基上的氢原子受相邻两个酯基的影响,比较活泼,其能在乙醇化钠的催化下与卤代烃或酰氯反应,生成一元取代丙二酸酯和二元取代丙二酸酯.烃基或酰基取代两二酸酯经碱性水解,酸化和脱羧后,可制得相应的羧酸.这是合成各种类型羧酸的重要方法,称为丙二酯酯合成法.取代羧酸羧酸分子中烃基上的氢原子被其它原子或原子团取代后生成的化合物称为取代羧酸.常见的取代羧酸有卤代酸,羟基酸,羰基酸(氧代酸)和氨基酸等.第一节羟基酸一,分类和命名羟基酸可以分为醇酸和酚酸两类.羟基酸的命名是以相应的羧酸作为母体,把羟基作为取代基来命名的.自然界存在的羟基酸常按其来源而采用俗名.如:CH3CHOHCOOH 2-羟基丙酸(乳酸)HOOCCH2CHOHCOOH 羟基丁二酸(苹果酸)HOOCCHOHCHOHCOOH 2,3-二羟基丁二酸(洒石酸)2-羟基苯甲酸(水杨酸)3,4,5-三羟基苯甲酸(没食子酸)二,醇酸的性质1,物理性质醇酸一般为结晶的固体或粘稠的液体.由于羟基和羧基都以且慢水形成氢键,所以醇酸在水中的溶解度比相应的醇或羧酸都大,低级的醇酸可与水混溶.2,化学性质醇酸既具有醇和羧酸的一般性质,如醇羟基可以氧化,酰化,酯化;羧基可以成盐,成酯等,又由于羟基和羧基的相互影响,而具有一些特殊的性质.(1)酸性在醇酸分子中,由于羟基的吸电子诱导效应沿着碳链传递到羧基上,而降低了羧基碳的电子云密度,使羧基中氧氢键的电子云偏向于氧原子,促进了氢原子解离成质子.由于诱导效应随传递距离的增长而减弱,因此醇酸的酸性随着羟基与羧基距离的增加而减弱.如:CH3CHOHCOOH OHCH2CH2COOH CH3CH2COOHpKa 3.87 4.51 4.882,α-醇酸的分解反应由于羟基和羧基都有吸电子诱导效应,使羧基与α-碳原子之间的电子云密度降低,有利于二者之间键的断裂,所以当α-醇酸与稀硫酸共热时,分解成比原来少一个碳原子的醛或酮和甲酸.RCHOHCOH RCHO + HCOOH此反应常用于由高级羧酸经α-溴代酸制备少一个碳原子的高级醛.RCH2COOH RCHBrCOOH RCHOHCOOH RCHO + HCOOH3,脱水反应脱水产物因羟基与羧基的相对位置不同而有所区别.①α-醇酸生成交酯:α-醇酸受热时,一分子α-醇酸的羟基与另一分子α-醇酸的羟基相互脱水,生成六元环的交酯.RCHOHCOOH + RCHOHCOOH 交酯②β-醇酸生成α,β-不饱和羧酸:β-醇酸中的α-氢原子同时受到羟基和羧基的影响,比较活泼,受热时容易与β-碳原子上的羟基结合,发生分子内脱水生成α,β-不饱和羧酸.RCHOHCH2COOH RCH═CHCOOH + H2O③γ-和δ-醇酸生成物内酯:γ-和δ-醇酸在室温时分子内的羟基和羧基就自动脱去一分子水,生成稳定的γ-和δ-内酯.④羟基与羧基相隔5个或5个以上碳原子的醇酸受热,发生多分子间的脱水,生成链状的聚酯.三,酚酸的性质(1)物理性质酚酸大多数为晶体,有的微溶于水(如水杨酸),有的易溶于水(如没食子酸).(2)化学性质羟基处于邻或对位的酚酸,对热不稳定,当加热至熔点以上时,则脱去羧基生成相应的酚.+ CO2↑+ CO2↑四,重要的羟基酸1,乳酸:为无色粘稠液体,有很强的吸湿性和酸味,溶于水,乙醇,甘油和乙醚,不溶于氯仿和油脂.2,β-羟基丁酸:是吸湿性很强的无色晶体,一般为糖浆状粘稠液体,易溶于水,乙醇及乙醚,不溶于苯.3,苹果酸:为针状结晶,易溶于水和乙醇,微溶于乙醚.苹果酸在酶的催化下生成草酰乙酸.苹果酸在食品工业中用作酸味剂.4,洒石酸:是透明棱形晶体,有很强的酸味,易溶于水.洒石酸常用于配制饮料,洒石酸钾钠用于配制斐林试剂.5,柠檬酸:为无色结晶,含一分子结晶水,易溶于水,乙醇和乙醚,有强酸味.柠檬酸常用于配制清凉饮料和作糖果的调味剂,也是制药工业的重要原料.6,水杨酸:为无色针状结晶,微溶于冷水,易溶于乙醇,乙醚和热水.它具有酚和羧酸的一般性质,如易被氧化,遇三氯化铁显紫红色,酸性比苯甲酸强等.7,乙酰水杨酸:俗称\"阿司匹林\",为白色针状晶体.它可用水杨酸和乙酐在少量浓硫酸存在下制得.乙酰水杨酸具有解热镇痛作用,是常用的解热镇痛药.乙酰水杨酸分子中中无游离的酚羟基,故其纯品与三氯化铁不显色,但在潮湿的空气中,其易水解为水杨酸和乙酸,因此应密闭于干燥处贮存.8,没食子酸:又称五倍子酸.纯粹的没食子酸为白色结晶性粉末,能溶于水,乙醇和乙醚.没食子酸有较强还原性,极易被氧化,露置在空气中能迅速氧化呈暗褐色,可用作抗氧剂的影像显影剂.没食子酸与三氯化铁产生蓝黑色沉淀,可用来制造墨水.第二节羰基酸一,分类和命名分子中既含有羰基又含有羧基的化合物称为羰基酸.根据所含的是醛基还是酮基,将其分为醛酸和酮酸.羰基酸的命名与醇酸相似,也是以羧酸为母体,羰基的位次用阿拉伯数字或用希腊字母表示.如:OHC—COOH CH3COCOOH CH3COCH2COOH乙醛酸丙酮酸3-丁酮酸(β-丁酮酸)二,化学性质酮酸具有酮和羧酸的一般性质,如与氢或亚硫酸氢钠加成,与羟胺生成肟,成盐和酰化等.由于两种官能团的相互影响,α-酮酸和β-酮酸又有一些特殊的性质.(一)α-酮酸的性质1,脱羧和脱羰反应在α-酮酸分子中,羰基与羧基直接相连,由于羰基和羧基的氧原子都具有较强的吸电子能力,使羰基碳与羧基碳原子之间的电子云密度降低,所以碳碳键容易断裂,在一定条件下可发生脱羧和脱羰反应.α-酮酸与稀硫酸或浓硫酸共热,分别发生脱羧和脱羰反应生成醛或羧酸.RCOCOOH + 稀H2SO4 RCHO + CO2↑RCOCOOH + 浓H2SO4 RCOOH + CO↑2,氧化反应α-酮酸很容易被氧化,托伦试剂就能其氧化成羧酸和二氧化碳.RCOCOOH + *Ag(NH3)2++ RCOONH4 + Ag↓(二)β-酮酸的性质在β-酮酸分子中,由于羰基和羧基的吸电子诱导效应的影响,使α-位的亚甲基碳原子电子云密度降低.因此亚甲基与相邻两个碳原子间的键容易断裂,在不同的反应条件下,能发生酮式和酸式分解反应.1,酮式分解β-酮酸在高于室温的情况下,即脱去羧基生成酮.称为酮式分解.RCOCH2COOH RCOCH3 + CO2↑2,酸式分解β-酮酸与浓碱共热时,α-和β-碳原子间的键发生断裂,生成两分子羧酸盐.称为酸式分解.RCOCH2COOH + 40℅NaOH RCOONa + CH3COONa三,乙酰乙酸乙酯及酮式-烯醇式互变异构现象1,乙酰乙酸乙酯的制备在醇钠的催化作用下,两分子乙酸乙酯脱去一分子乙醇生成乙酰乙酸乙酯,此反应称为克莱森酯缩合反应.2CH3COOC2H5 CH3COCH2COOC2H5 + C2H5OH2,酮式-烯醇式互变异构现象乙酰乙酸乙酯能与羰基试剂如羟按,苯肼反应生成肟,苯腙等,能与氢氰酸,亚硫酸氢钠等发生加成反应.由此,证明它具有酮的结构.另外,乙酰乙酸乙酯还能与金属钠作用放出氢气,能使溴的四氯化碳溶液褪色,与三氯化铁作用产生紫红色.由此,又证明它也具有烯醇式的结构.这种现象的产生是因为乙酰乙酸乙酯室温下通常是由酮式和烯醇式两种异构体共同组成的混合物,它们之间在不断地相互转变,并以一定比例呈动态平衡.像这样两种异构体之间所发生的一种可逆异构化现象,叫做互变异构现象.乙酰乙酸乙酯分子中烯醇式异构体存在的比例较一般羰基化合物要高的原因,是由于其分子中的亚甲基氢受羰基和酯基的吸电子诱导效应的影响酸性较强,容易以质子形式解离.形成的碳负离子与羰基和酯基共轭,发生电子离域而比较稳定.当H+与羰基氧结合时,就形成烯醇式异构体.此外,还由于烯醇式异构体能形成六元环的分子内氢键,以及其分子中共轭体系的存在,更加强了它稳定性. 3,分解反应(1)酮式分解乙酰乙酸乙酯在稀碱溶液中加热,可发生水解反应,经酸化后,生成β-丁酮酸.β-丁酮酸不稳定,失去二氧化碳生成丙酮.(2)酸式分解乙酰乙酸乙酯与浓碱共热时,生成两分子乙酸盐,经酸化后得到两分子乙酸.4,在合成上的应用乙酰乙酸乙酯亚甲基上的氢原子很活泼,与醇钠等强碱作用时,生成乙酰乙酸乙酯的钠盐,再与活泼的卤烃或酰卤作用,生成乙酰乙酸乙酯的一烃基,二烃基或酰基衍生物.+ RCOX乙酰乙酸乙酯的钠盐还可与卤代酸酯,卤代丙酮等反应,引入相应的酯基和羰基.乙酰乙酸乙酯的一烃基,二烃基或酰基衍生物,再进行酮式分解或酸式分解反应,可以制取甲基酮,二酮,一元羧酸,二元羧酸,酮酸等化合物.四,重要的羰基酸1,乙醛酸:为无色糖浆状液体,易溶于水.2,丙酮酸:为无色有刺激性气味的液体,可与水混溶,酸性比丙酮和乳酸都强.3,β-丁酮酸:又称乙酰乙酸,是无色粘稠液体,酸性比丁酸和β-羟基丁酸强,可与水或乙醇混溶.临床上把β-丁酮酸,β-羟基丁酸和丙酮三者总称为酮体.酮体是脂肪酸在人体内不能完全氧化成二氧化碳和水的中间产物,大量存在于糖化酶尿病患者的血液和尿中,使血液的酸度增加,发生酸中毒,严重时引起患者昏迷或死亡.4,α-酮丁二酸:又称草酰乙酸,为晶体,能溶于水,在水溶液中产生互变异构,生成α-羟基丁烯二酸,其水溶液与三氯化铁反应显红色.α-酮丁二酸具有二元羧酸和酮的一般反应.如能成盐,成酯,成酰胺,与2,4-二硝基苯肼作用生成2,4-二硝基苯腙等.立体化学基础按结构不同,同分异构现象分为两大类.一类是由于分子中原子或原子团的连接次序不同而产生的异构,称为构造异构.构造异构包括碳链异构,官能团异构,位置异构及互变异构等.另一类是由于分子中原子或原子团在空间的排列位置不同而引起的异构,称为立体异构.立体异构包括顺反异构,对映异构和构象异构.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B. 诱导效应强度与距离成反比,距离↑,诱导效应强
度↓。
=O OH
= C O N O
= HO O C
=O OH C C3 H
α-H被-R取代得越多,羧酸的酸性越弱。例如:
RCO+O NH aOHR C O ON a+ + H 2O
C 10以 下 溶 于 水 ; > C 10在 水 溶 液 中 呈 胶 体 溶 液 。
羧酸及其衍生物
教学内容: 1.酸的结构、分类及命名 2.一元羧酸的物理性质 3.一元羧酸的化学性质 (1)酸性。 (2)羧基中羟基的取代反应。 (3)脱羧反应。 (4) -H卤代。 F>C>Bl>Ir;O>SRR 4. 诱导效应和共轭效应
5.羧酸衍生物的分类及命名 6.酰卤的制法和性质 7.酸酐的制法和性质 8.羧酸酯制法和性质:水解、醇解、氨解、还原与格
氏试剂反应,酯缩合反应。
第十五章 羧酸及其衍生物
§15-1 羧酸
定义:含有羧基的化合物。 通式:(H)RCOOH (一元羧酸) 官能团:–COOH
一.羧酸的结构、分类和命名
1.羧基的结构:
O R–C
∖ OH
事实:独立的 C=O ; 0.122nm
–COOH中的C=O ; 0.1245nm
C–OH中的 C–O . 0.143nm C–O . 0.131nm
(3)羧基碳原子的电子云密度增高,使其正电性降低, 故羧基不易与亲核试剂发生加成反应。
2. 影响酸性强度的因素 —⑴电子效应、⑵场效应、⑶氢键、⑷空间效应
(1) 诱导效应的影响
吸电子—从上到下原子序数依次↑,电负性依↓。 故:
构 造 : O -
R -C-OH
④二元酸:选择含两个羧基的最长碳链为主链,叫某 二酸。
COOH ‫׀‬ COOH (草酸) 乙二酸
‫׀‬CH2COOH CH2COOH
(琥珀酸) 丁二酸
HO–CHCOOH ‫׀‬ HO–CHCOOH
(酒石酸) 2,3-二羟基丁二酸
二.羧酸的物理性质
1.物态:C1 ~ C3,具有强烈酸味和刺激性的液体。 C4 ~ C9,具有腐败恶臭的油状液体。 C10 ↗,挥发性很低、没有气味的石蜡状固体。
–COOH 邻苯二甲酸 –COOH
③烯酸的命名
不饱和羧酸的主链应包括双键及羧基,而称为“某 烯酸”,并在某烯名称前以阿拉伯数字标明双键位 次;有两个或三个双键的烯酸称为“二烯酸”或“三 烯酸”,并分别在前面标明各双键的位次;
‫׀‬CH3CH–C‫=׀‬CH–CH=CHCOOH OH C2H5
5-乙基-6-羟基-2,4-庚二烯酸
p K a
0 .6 4
1 .2 6
2 .8 6
诱导效应的特点: A. 具有加和性
C 3 C H 2 C α HHC > O C 3 β C O H α H H 2 C C O H > O γ C H 2 β C H 2 α C H 2 C HOO
Cl
Cl
Cl
p K a
2 .8 2
4 .4 1
4 .7 0
2.沸点:比分子量相近的其他有机物高。

HCOOH
M 46
b.p 100.5℃
CH3CH2OH 46
78.3℃
CH3CHO 44
20.8℃
原因:发生双分子缔合(即两
O
个分子间通过两个氢 R–C
键连接)。
\ O–H
H–O \ C–R
O
3.熔点:随C↗呈锯齿状上升。即含偶数C原子羧酸的 熔点比和它相邻的两个奇数C原子羧酸的 熔点高。
解释:
O ← 未经杂化 ①羰基C采取sp²杂化。
R–C ∖
← sp²
②形成p- 共轭体系。 RCONa+HClRCOH+NaCl
C2CHOO> HO←CHs2pC²HO> OCH2CHOO
F
Cl Br
2.分类 据烃基的性质
脂肪羧酸 芳香羧酸
饱和羧酸 不饱和羧酸
一元羧酸
据分子中含羧基的数目 二元羧酸 多元羧酸
3.命名 (1)俗名:常据来源来命名.
HCOOH 蚁酸
COOH ‫׀‬ COOH 草酸
CH3COOH 醋酸
‫׀‬CH2COOH CH2COOH
琥珀酸
CH3CH2CH2COOH 酪酸
HO–CHCOOH ‫׀‬ HO–CHCOOH
酒石酸
‫ ׀‬CH2COOH HO–CCOOH
‫׀‬ CH2COOH 柠檬酸
4.水溶性:(1)C1 ~ C4与水互溶。(–COOH起主导作用) (2)C↗ ,水溶性↙; C10↗不溶于水。
(–R起主导作用) (3)二元酸比一元酸易溶。R-C O
H-O H
(形成氢键数目多)
O-H O-H
H
H-O
H
三 羧酸的化学性质 4.
脱羧反应 氧化还原
酰基
R
3.a-H的取代
O
1.酸性
C
H
COOH ‫׀‬ 安息香酸
(2)系统命名法
①选择含羧基的最长碳链为主链,编号从羧基碳开始, 根据主链上碳原子数目称为某酸。 ②芳香羧酸的命名,是把芳香环看作取代基。
‫׀‬CH3CH–C‫׀‬HCH2COOH CH3 CH3
3,4-二甲基戊酸
COOH ‫׀‬
–NO2 ‫׀‬ OH 2-硝基-4-羟基苯甲酸
O
2.羟基被取代
-X(Cl) 酰卤
-OCOR 酸酐
-OR

(-NH2) 酰胺
C2CHO> OCH2CHO> OCH2CHO
F
Cl Br
由于p~ 效应:
(1)羟基中氧原子的电子云密度降低,羟基中的共用电 子对就更偏向氧原子,从而使氢原子容易成为氢离子而解 离出来,故羧酸表现明显的酸性。
(2) RCOO-中负电荷均匀地分布在两个氧原子上,稳定 性↑,羧酸酸性↑。
sp 2
杂化
p - 共 轭 :
R
C
O
O
H
如: p K a 2 .6 6 2 .8 6 2 .9 0
F > O > R N 2> R C 3 R
同周期元素——从左到右电负性依次↑。
C H 2 C OO > H C H 2 C OOH
F
OH
如: pK a 2.66 3.83
= C C > H C C 2 > H H C 2 C 3H H
与碳原子相连的基团不饱和性↑,吸电子能力↑。
= C C C H 2 C H O > C 2 O C H C 2 C H H H O > C 3 C O 2 C H 2 C H H H O
如: p K a
2 . 8 5
4 . 3 5
4 . 8 2
C 3 C l CO > C O 2 C lH HC > O C C l O 2 C H H O
供电子诱导效应(+I效应)使酸性↓。
相关文档
最新文档