原子吸收光谱分析法
原子吸收光谱法课件
欢迎来到原子吸收光谱法课件!本课件将为您介绍原子吸收光谱法的定义和 原理,并探讨其在科学实验室中的常见仪器,以及样品制备和操作步骤。
原子吸收光谱法的定义和原理
原子吸收光谱法是一种分析方法,通过测量样品中特定元素的吸收光谱来定 量分析该元素的浓度。基于原子对特定波长的吸收特性,该方法被广泛应用 分析食品中的微量元素和有害物质,确 保食品安全和质量合规。
3 药物研发
用于药物制剂中活性成分的浓度分析,确保 药品质量和疗效。
4 金属分析
用于金属合金、地质样品等材料中金属元素 的定量分析,检测材料成分。
优缺点分析
优点
高选择性和准确度,能够定量分析微量元素。适用于多种样品类型。
缺点
需要专用设备和经验操作,成本较高。对于某些元素和化合物可干扰。
技术的进展和未来发展趋势
原子吸收光谱法的技术不断发展,提高了灵敏度和分析速度。未来的发展趋 势包括更小型化的仪器、多元素分析和在线监测技术的推广。
总结和要点
• 原子吸收光谱法是一种常用的定量分析方法。 • 不同类型的原子吸收光谱仪器适用于不同的分析需求。 • 样品制备和操作步骤对结果的准确性至关重要。 • 应用领域广泛,包括环境监测、食品安全和药物研发。 • 优点包括高准确度和选择性,缺点包括设备成本和干扰因素。 • 技术的进展将进一步提高分析性能和便捷性。
常见的原子吸收光谱仪器
火焰原子吸收光谱仪
适用于常见金属元素的分析,如 铁、铜和锌。操作简单,常用于 实验室环境。
石墨炉原子吸收光谱仪
适用于痕量金属元素的分析,如 铅和汞。能够提高灵敏度和准确 度,但操作较为复杂。
电感耦合等离子体原子发 射光谱仪
适用于多元素的快速分析,可检 测从微量到痕量的元素含量。具 有高灵敏度和低检测限。
原子吸收光谱定量分析方法
原子吸收定量分析方法一、定量分析方法(P145)⑴标准曲线法:配制一系列浓度不同的标准溶液,在相同测定条件下,测定标准系列溶液和待测试样溶液的吸光度,绘制A-c标准曲线,由待测溶液的吸光度值在标准曲线上得到其含量。
(2)标准加入法当试样组成复杂,待测元素含量很低时,应采用标准加入法进行定量分析。
取若干份体积相同的试液(cX),依次按比例加入不同量的待测物的标准溶液(cO):浓度依次为:cX,cX+cO,cX+2cO,cX+3cO,cX+4cO …分别测得吸光度为:AX ,A1 ,A2 ,A3 ,A4 …直线外推法:以对浓度做图得一直线,图中cX点即待测溶液浓度。
(3)稀释法:⑷内标法:在标准试样和被测试样中,分别加入内标元素,测定分析线和内标线的吸光度比,并以吸光度比与被测元素含量或浓度绘制工作曲线。
内标元素的选择:内标元素与被测元素在试样基体内及在原子化过程中具有相似的物理化学性质,样品中不存在,用色谱纯或者已知含量二、灵敏度和检出限(1)灵敏度1、定义:在一定浓度时,测定值(吸光度)的增量(△ A)与相应的待测元素浓度(或质量)的增量(△ c或A m)的比值(即分析校正曲线的斜率)PS:习惯上用特征浓度和特征质量表征灵敏度2、特征浓度定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量浓度定义为元素的特征浓度3、特征质量定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量定义为元素的特征质量。
(2)检出限定义:适当置信度下,能检测出的待测元素的最低浓度或最低质量。
用接近于空白的溶液,经若干次重复测定所得吸光度的标准偏差的3倍求得。
(3)测定条件的选择1.分析线的选择每种元素都有几条可供选择使用的吸收线。
一般选待测元素的共振线作为分析线,可以得到最好的灵敏度。
在测量高含量元素时,也可选次灵敏线。
2.单色器光谱通带的选择(调节狭缝宽度)光谱通带的选择以排除光谱干扰和具有一定透光强度为原则。
原子吸收光谱分析法
Atomic Absorption Spectrometry, AAS
1
一、原子吸收光谱法
§8-1 概述
1.原子吸收分光光度法的特点 检出限低;准确度高; 选择性好,一般情况下共存元素不干扰;价廉。 2.应用
应用范围广,可测定70多个元素
3.基本原理 原子吸收光谱法: 基于待测元素的基态原子在蒸气状态对 原子共振辐射的吸收程度来确定物质含量的分析方法。
__________,对应的频率称为__________,在此频率处
的吸收称为__________。 ^^谱线轮廓 峰值吸收系数 中心频率 峰值吸收
10
三、吸收线宽度的影响因素
吸收线的宽度受多种因素影响,一类是由原子性质所决定,另
一类是外界因素。 1、自然宽度 Δ N
• 定义:无外界影响时,谱线仍有一定的宽度 • 一般约10-5nm。与其他变宽相比可完全忽略。 2、多普勒变宽(热变宽)Δ D • 定义:又称热变宽,是由于原子在空间作无规则热运动导致的 变宽,通常在原子吸收光谱法测量条件下,多普勒变宽是影响
效率低而且使基态原子在吸收区内停留的时间很短。
( 2 )消耗试液量大,一般为 0.5-1 mL 。对于数量很少的试样 (如血液、活体组织等)的分析,受到限制。
(3)不能直接分析固体试样。
36
2. 无火焰原子化装置
利用电热、阴极溅射、等离子体或激光等方法使试样中
待测元素形成基态自由原子。 前广泛使用的是电热高温石墨炉原子化法。 (1)结构 由石墨炉电源、炉体和石墨管三部分组成。
的光谱。(惰性气体光谱干扰很小)
类型:
单元素灯、多元素灯,但多元素灯谱线干扰大,价格贵使用受限
27
第03章 原子吸收光谱分析
7
• 各种元素的基态至第一激发态跃迁最易发生,吸收最强,最灵 敏线——主共振吸收线。 • 各种元素的原子结构和外层电子排布不同,由基态至第一激发 态跃迁吸收能量不同,共振线不同——具有特征性。
• 利用基态的原子蒸气对光源辐射的特征谱线(共振线)的吸收
可以进行定量分析。 • 光谱位于光谱的紫外区和可见区。
• 准确度高,分析速度快;
• 应用广泛。 • 局限:不能对多元素同时测定(需更换光源)、对难 熔元素测定灵敏度和精密度较低、对于成分复杂样品 干扰较严重、对多数非金属元素不能直接测定。
5
元素周期表中可用原子吸收光谱法分析的元素
6
3.2 原子吸收光谱法的基本原理
3.2.1 原子吸收光谱的产生
• 基态原子吸收其共振辐射,外层电子由基态跃迁至激发态 而产生原子吸收光谱。
收定律,有:
I I 0e
Kvl
• 或
I0 A lg 0.434 K v l I
21
• 采用锐线光源进行测量,则Δv发< < Δv
吸
,在辐射线宽度范围内,Kν可近似
发射线
认为不变,并近似等于峰值时的吸收 系数K0,则:
I0 A lg 0.434 K 0l I
22
• 峰值吸收系数K0与谱线的宽度有关,在通常原子吸收测定条
• 由于原子在空间作无规则热运动所导致的,故也称为热变宽。
2v0 vD c
2(ln 2) RT T 7 7.1610 v0 Ar Ar
• Doppler 变宽随温度升高、谱线频率升高和相对原子质量减小而 变宽。
11
3.压力变宽( 10-3nm)
• 当原子吸收区气体压力变大时,相互碰撞引起的变宽是 不可忽略的。原子之间的相互碰撞导致能级变化,激发 态原子平均寿命缩短,引起谱线变宽。 • 劳伦兹(Lorentz)变宽:待测元素原子和其他粒子碰撞。
第六章原子吸收光谱分析法
例题 计算2000K和3000K时, Na589.0nm的激发态 与基态原子数之比各为多少?已知gi/g0=2
解:
Ei
hc
4.136 1015eV s 3 1010cm s1 589.0nm 107 cm nm1
AAS的基本原理
赫鲁兹马克(Holtzmark)变宽(R或R): 同种原子碰撞,又称为共振变宽, R随着待测
元素原子密度升高而增大,在原子吸收法中,测定 元素的浓度较低,R一般可以忽略不计 。
自吸变宽:
光源辐射共振线被光源周围较冷的同种原子所吸 收的现象叫做自吸,自吸现象使谱线强度降低,同 时导致谱线变宽。
AAS的基本原理
表征吸收线轮廓(峰)的参数: 中心频率O(峰值频率) :最大吸收系数对应的频率 中心波长λ(nm) :最大吸收系数对应的波长
半宽度ΔO(吸收线宽度):峰值吸收值一半处的频率
原子吸收线的宽度约为10-3-10-2nm(折合成波长)。
AAS的基本原理
3.吸收峰变宽原因
自然变宽(N或N): 在无外界条件影响时,谱线的固有宽度称为自
AAS的基本原理
一、共振线
1.原子的能级与跃迁 基态第一激发态,吸收一定频率的辐射能量。产生的吸收
线叫共振吸收线(简称共振线) —— 吸收光谱 激发态基态,发射出一定频率的辐射。所释放的光线叫共
振发射线(也简称共振线) ——发射光谱 2.元素的特征谱线 1)各种元素的原子结构和外层电子排布不同 跃迁吸收能量不同——具有特征性 2)各种元素的基态第一激发态 最易发生、吸收最强、最灵敏线,特征谱线 3)利用特征谱线(共振线)可以进行定量分析。
第七章原子吸收光谱分析法
原子吸收光谱法(也称原子吸收分光光法 )与可 见、紫外分光光度法基本原理相同,都是基于物质 对光选择吸收而建立起来的光学分析法。
2010年1月25日1时53分
组成:阳极(吸气金属)、空心圆筒形(使待测原子集中)阴极(W+ 待测元素)、低压惰性气体(谱线简单、背景小)。
工作过程:高压直流电(300V)---阴极电子---撞击隋性原子---电离(二 次电子维持放电)---正离子---轰击阴极---待测原子溅射----聚集空 心阴极内被激发----待测元素特征共振发射线。
? 自然宽度(约在10-5nm数量级)。
?
?2.多普勒变宽(热变宽):
? 由于多普勒效应而导致的谱线 变宽。由于原子热运动引起的。 其宽度约为 10-3nm数量级。
?3.压力变宽:由于同类原子或 与其它粒子(分子、原子、离子、 电子等)相互碰撞而造成的吸收 谱线变宽。其宽度也约为 10-3nm 数量级。
区别:在可见、紫外分光光度法中,吸光物质 是溶液中被测物质的分子或离子对光的选择吸收, 原子吸收光谱法吸光物质是待测元素的基态原子对 光的选择吸收,这种光是由待测元素制成的空心阴 极灯(称元素灯)作光源。
原子吸收光谱分析的过程:
A元素含量测定----- A元素的空心阴极灯发射特征辐射 --------试样在原子化器中变为气态的基态原子-------吸收空心 阴极灯发射特征辐射---------空心阴极灯发射特征辐射减弱-----产生吸光度------元素定量分析
钨丝灯光源和氘灯,经分光后,光谱通带0.2nm。而原子吸收线
原子吸收光谱的分析方法
定量分析方法
1.校正曲线法
配制一组合适的标准溶液,由 低浓度到高浓度依次喷入火焰 ,将获得的吸光度A数据对应于 浓度c作标准曲线,在相同条件 下测定试样的吸光度A,在标准 曲线上求出对应的浓度值。或 由标准试样数据获得线性方程 ,将试样的吸光度A数据代入计 算。注意在高浓度时,标准曲 线易发生弯曲。
一般选待测元素的共振线作为分析线,测量高浓度时,也可选次灵敏线
(2) 灯电流选择
灯电流过小,光强低且不稳定;灯电流过大,发射线变宽,灵敏度
下降,且影响光源寿命。选择原则:在保证光源稳定且有足够光输出时 ,选用最小灯电流(通常是最大灯电流的1/2~2/3),最佳灯电流通过实 验确定。
(3) 通带(调节狭缝宽度)
b.计算法 设容量瓶A,待测元素浓度cx,吸光度Ax 容量瓶B,待测元素浓度为(cx+cs),吸光度为Ax+s ,可求得被测试液元素的浓度为:
例:用原子吸收分光光度法测定水样中的锌。取1000mL水样加 热浓缩至100mL,吸取25.00mL水样,分别放入两个50.00mL容 量瓶中,其中一个再加入10.00mL(10.0μg·mL-1)锌标准溶液,均 稀释至刻度。分别测得吸光度为0.210和0.686。计算水样中锌的 含量。
解: cZn = Ax·cS /Ax+S-Ax= 0.210 ×10.0 /0.686- 0.210 =4.41 μg/mL
水样中锌的含量: cZn =4.41 × 50.00 × 100/1000 × 25 = 0.822 mg/L
方法评价
(1) 灵敏度(S)——灵敏度(Sensitivity)IUPAC规定,分析标准函数的一次
仪器分析 第七章 原子吸收光谱法
第七章原子吸收光谱法1.原子吸收光谱的历史2.原子吸收光谱的特点3.原子吸收光谱与紫外可见吸收光谱的区别4.原子吸收光谱分析过程第一节概述1. 原子吸收光谱的历史◆1802年,沃拉斯顿(Wollaston)在研究太阳连续光谱时,首次发现太阳连续光谱中出现暗线。
◆1817年,夫琅和费(Fraunhofer)研究太阳连续光谱时再次发现这些暗线,但无法解释暗线产生的原因。
2/1363/1361825年,法国著名哲学家孔德在哲学讲义中说“恒星的化学组成是人类绝对不能得到的知识”◆1859年,本生、基尔霍夫研究碱金属和碱土金属火焰光谱时,发现钠蒸气发出的光通过温度较低的钠蒸气时,会引起钠光的吸收,并且钠在光谱中位置相同。
发射线与暗线D◆太阳光谱暗线:太阳外围大气圈中钠原子对太阳光谱中钠辐射特征波长光进行吸收的结果。
4/1365/136太阳中含有94种稳定和放射性元素:氢(71%)、氮(27%)、氧、碳、氖、硅、铁等。
◆1955年,澳大利亚物理学家Walsh(沃尔什)发表了著名论文《原子吸收光谱法在分析化学中的应用》,奠定了原子吸收光谱法的基础。
◆1960年以后,原子吸收光谱法得到迅速发展,成为微量、痕量金属元素的可靠分析方法。
6/1362. 原子吸收光谱法的特点✓检出限低:10-10~10-14g。
✓准确度高:1%~5%。
✓选择性好:一般情况下共存元素无干扰。
✓应用范围广:可测定70多种元素。
✗缺点:难熔元素、非金属元素测定困难,不能实现多元素同时分析。
7/1363. 原子吸收与紫外可见吸收的区别✓相同点:利用物质对辐射的吸收进行分析。
✗不同点:◆吸收机理不同:紫外可见为溶液中分子或离子宽带吸收,带宽为几纳米至几十纳米;原子吸收为气态基态原子的窄带吸收,带宽仅为10-3nm。
◆光源不同。
◆试样处理、实验方法及对仪器的要求不同。
8/1364. 原子吸收光谱分析过程◆确定待测元素。
◆选择该元素相应锐线光源,发射出特征谱线。
原子发射光谱法和原子吸收光谱法的优缺点
原子发射光谱法和原子吸收光谱法是分析化学中常用的两种技术手段,用于测定样品中的元素含量。
它们在实验原理、仪器设备、分析方法等方面存在一些差异,同时也各自具有一些优点和缺点。
下面将详细介绍这两种光谱法的特点。
一、原子发射光谱法1. 原理:原子发射光谱法是基于原子激发态与基态之间的电子跃迁而进行分析的。
样品先被气体火焰、电弧等高温条件下原子化,然后通过外部能量激发原子使其处于激发态,激发态原子会发射出特定波长的光线。
通过检测和测量这些发射光线的强度和波长,可以确定样品中的元素含量。
2. 优点:- 灵敏度高:原子发射光谱法对于大多数元素都具有较高的灵敏度,可以测定低至微克级别的元素含量。
- 多元素分析:原子发射光谱法可以同时分析多个元素,因为不同元素的激发发射光谱具有独特的特征波长,可以通过同时检测多个波长来分析多种元素。
- 范围广:原子发射光谱法适用于固体、液体和气体样品,可以分析多种不同形态的样品。
3. 缺点:- 精密度较低:原子发射光谱法的精密度相对较低,误差较大。
这是因为在样品原子化和激发过程中,可能会出现非选择性的基态原子和激发态原子共存,导致信号的干扰和背景噪声。
- 不适用于稀释样品:如果样品中元素含量过低,原子发射光谱法的灵敏度可能不足以准确测定元素含量。
- 仪器复杂:原子发射光谱法需要使用高温和高能量的电弧或火焰进行样品原子化和激发,因此仪器设备较为复杂。
二、原子吸收光谱法1. 原理:原子吸收光谱法是基于原子对特定波长的光线的吸收而进行分析的。
样品先被原子化,然后经过光源产生的特定波长的光线通过样品,被原子吸收。
通过测量吸收光线的强度,可以确定样品中的元素含量。
2. 优点:- 精密度高:原子吸收光谱法的精密度相对较高,误差较小。
因为在原子吸收过程中,只有特定波长的光线能够被原子吸收,不会受到其他波长光线的干扰。
- 高选择性:原子吸收光谱法可以通过选择不同的波长来分析不同元素,具有较高的选择性。
原子吸收光谱法(共73张课件)
比尔定律:
▪ 分析中,待测元素的浓度与其吸收辐射的原子总数成正 比。在一定浓度范围和一定火焰宽度L下:
▪ 可以通过测吸光度可求得待测元素的含量。
▪ 原子吸收分光光度A分析k'的c定量基础。待测元素浓度
2024/8/30
27
§4-3 原子吸收分光光度计
一、基本构造
光源
原子化系统
分光系统
检测系统 显示装置
表
处吸收轮廓上两点间的距离
征
(即两点间的频率差)。
▪ 数量级为10-3 -10-2 nm (发射线10-4 -10-3 nm )。
图4.2 原子吸收光谱轮廓图
2024/8/30
12
谱线变宽: 自然宽度 :N
▪ 无外界影响下,谱线仍有一定宽度—自然宽度。
▪ 与原子发生能级间跃迁时激发态原子的平均寿命有关。
2024/8/30
图4.3 峰值吸收测量示意图
21
应用原理: ▪ 光源:
2024/8/30
A lg I0 I
I0
e
0
I0d
I
e
0
Id
I I0eKL
I e 0
I0eKLd
Alg
e
0
I0 d
I e d e
K L
0 0
则:
在满足瓦尔西方法的测量条件时,在积分界限
内 吸可 收以 系认 数为。为常数,并合K理 地使之等于峰值
5%,测定灵敏度极差。
噪音低;
用该元素的锐线光源发射出特征辐射。 特点: 原子吸收分析的主要特点是测定灵敏度高,特效
发射的谱线稳定性好、强度高且宽度窄。
共振线在外光路损失小。
试样在原子化器中被蒸发,解离为气态基态原子。 共Ok振! L线et(’s特Ha征ve谱a线B)re是ak元. 素所有谱线中最容易发生、最灵敏的线,又具有元素的特征,所以分析中用该谱线作为分析线。
《仪器分析》第十二章_原子吸收光谱法
当采用锐线光源时,测量是在原子吸收线附近一定频 率范围内进行,即
I 0 I d
0
I I 0e
K l
I e
0
K l
d
锐线光源的很小,可以近似用峰值吸收系数K0 来表 示原子对辐射的吸收,因此有吸光度A为:
I0 A lg lg I
质的强谱线。
空心阴极灯光的强度与灯的工作电流有很大关系。增
大灯电流,可以增加发射强度。但是,灯电流过大,会导 致一些不良现象,如阴极溅射增强,产生密度较大的电子 云,灯本身发生自蚀现象;加快内充气体的“消耗”而缩 短寿命;阴极温度过高,使阴极物质熔化;放电不正常,
灯光强度不稳定灯。灯电流太小,灯光强低,稳定性和信
(2)峰值吸收 1955年Walsh提出,在温度不太高的稳定火焰情况下,
峰值吸收系数与被测元素的原子浓度也成正比。通常情况下,
吸收轮廓决定于多普勒变宽,吸收系数为
2 ( 0 ) ln 2 D 2
K K 0e
K0 2 D
D 是多普勒 半宽度
K d mc N
于分析化学的原因。
e 2
0
f
m 是电子质量,f是振子强度,即能被入射 辐射激发的每个原子的平均电子数,正比 于原子对特定波长光的吸收概率。
若能测定积分吸收,则可以求出原子浓度。但是,测定谱 线宽度仅仅10-3nm的积分吸收,需要分辨率很高的色散仪器,
难以做到,这也是100多年前发现原子吸收现象却一直未能用
空心阴极灯工作原理:
当正、负两电极间施加适当的直流电压(300V—500V)
时,便开始放电,阴极发射的电子在电场作用下,高速射
原子吸收光谱分析法
对于物理干扰,最好的消除方法 就是配制与试样溶液组成相似的 标准溶液。也可用标准参加法来 进行测定。
三,测定条件的选择: 1.分析线的选择:一般选用共
振线作分析线。 2.灯电流:保正稳定和适当光
强度输出的条件下,尽量选 用较低的工作电流。
5.狭缝宽度:由于原子吸收光谱法谱 线的重叠较少,一般可用较宽的狭 缝,以增强光的强度。但当存在谱 线干扰和背景吸收较大时,那么宜 选用较小的狭缝宽度。
SCV0.0044(g/1% 吸 收 ) A
式中:S为绝对灵敏度;C为试液 中 待 测 元 素 的 浓 度 〔g能检 出的元素的最低浓度或最小质 量。
定义为:能给出信号强度 等于3倍噪声信号强度标准偏差 时所对应的元素浓度或质量。
当在正负电极上施加适当电 压〔一般为200~500伏〕时,在 正负电极之间便开始放电,这时, 电子从阴极内壁射出,经电场加 速后向阳极运动。
电子在由阴极射向阳极的过程中, 与载气〔惰性气体〕原子碰撞使其 电离成为阳离子。带正电荷的惰性 气体离子在电场加速下,以很快的 速度轰击阴极外表,使阴极内壁的 待测元素的原子溅射出来,在阴极 腔内形成待测元素的原子蒸气云。
三.光学系统: 分光系统一般用光栅来进行分光。
光谱通带: W=D×S×10-3
其中:W为光谱通带〔单位nm〕;D为 光 栅 的 倒 线 色 散 率 〔 单 位 nm/mm-1〕 ; S为狭缝宽度〔单位μm〕。
四.检测系统: 检测系统包括检测器、放大器、
对数转换器、显示器几局部。
原子吸收光谱法的分析过程:
计算式为:D c 3 ( g / m L )
A
或 D g 3 ( g )
A
式 中 D 为 检 出 极 限 〔μg/mL 或 g〕 ; σ 为 对 空 白 溶 液 进 行 不 少 于 10 次 测 量时的标准偏差;A为吸光度;g为 质量〔g〕。
原子吸收光谱法PPT课件
消除电离干扰的方法
加入消电离剂 利用富燃火焰也可抑制电离干扰 利用温度较低的火焰 提高溶液的吸喷速率 标准加入法
化学干扰
是指试样溶液转化为自由基态原子的过程中,待 测元素和其他组分之间发生化学作用而引起的干 扰效应.它主要影响待测元素化合物的熔融,蒸发 和解离过程.这种效应可以是正效应,增强原子吸 收信号;也可以是负效应,降低原子吸收信号.化学 干扰是一种选择性干扰,它不仅取决于待测元素与 共存元素的性质,还与火焰类型,火焰温度,火焰状 态,观察部位等因素有关.化学干扰是火焰原子吸 收分析中干扰的主要来源,其产生的原因是多方面 的.
物理干扰
吸喷速率
喷雾量和雾化效率
毛细管形状
物理干扰一般都是负干扰,最终影响火焰分 析体积中原子的密度.
消除物理干扰的方法
配制与待测试液基体相一致的标准溶液; 当前者困难时,可采用标准加入法; 当被测元素在试液中浓度较高时,可以稀释溶液来降低
或消除物理干扰; 在试液中加入有机溶剂,改变试液的粘度和表面张力,
A.
A lg
I0 I
KC
原子吸收光谱仪的构成
光源:提供特征锐线光谱 原子化器:产生原子蒸汽,使被测元素
原子化 分光系统:将被测分析线与光源其他谱
线分开,并阻止其他谱线进入检测器 检测系统:光电倍增管 数据处理系统器
测量条件的选择
吸收线的选择 灯电流的选择 火焰种类的选择 燃烧气和助燃气的流量 火焰高度 石墨炉原子化条件的选择
内标法:分别在标准试样和被测试样中加入已知量的第
三种元素作为内标元素,测定分析线和内标线的吸光度比
D (工D作,曲D线x .)然并后以在D对标应准标曲准线溶上液根中据被测元计素算含出量试或样浓中度待绘测制
原子吸收光谱分析法
四、应用
人体内矿物质含量很低,仅占人体重量0.06%左右,但 是分布却极不均匀.根据矿物在体内含量的高低,可以把 矿物质分为常量元素和微量元素两类: 常量元素 在体内含量比较高,占体重的0.01%以上; (钙、镁、硫、磷、钾、钠、氯) 微量元素 在体内含量很低,占体重的0.01%以下 (人体必须的微量元素有:铁、锌、铜、锰、镍、 钴、钼、硒、铬、碘、氟、锡、硅、钒等14种)
2.标准加入法 取若干份体积相同的试液(cX),依次按比例加入不同 量的待测物的标准溶液(cO),定容后浓度依次为: cX , cX +cO , cX +2cO , cX +3cO , cX +4 cO ……
分别测得吸光度为:AX,A1,A2,A3,A4……。 以A对浓度c做图得一直线,图中cX点即待测溶液浓度。 该法可消除基体干扰; 不能消除背景干扰;
(2)石墨炉法
单位:μSb:标准偏差 Sc(Sm):待测元素的灵敏度,即工作曲线的斜率。
二、测定条件的选择
1.分析线 一般选待测元素的共振线作为分析线,测量高浓度时,也 可选次灵敏线 2.通带(可调节狭缝宽度改变) 无邻近干扰线(如测碱及碱土金属)时,选较大的通带 ,反之(如测过渡及稀土金属),宜选较小通带。 3.空心阴极灯电流 在保证有稳定和足够的辐射光通量的情况下,尽量选较 低的电流。 4.火焰 依据不同试样元素选择不同火焰类型。 5.观测高度 调节观测高度(燃烧器高度),可使元素通过自由原子 浓度最大的火焰区,灵敏度高,观测稳定性好。
一、特征参数
1. 灵敏度
(1)灵敏度(S)——指在一定浓度时,测定值(吸光度)的 增量(ΔA)与相应的待测元素浓度(或质量)的增量(Δc或 Δm)的比值:
Sc=ΔA/Δc
物化地分析中的原子吸收光谱分析
物化地分析中的原子吸收光谱分析原子吸收光谱分析是物化地分析领域中常用的一种分析方法。
它利用原子在特定波长的光线照射下吸收光的特性,对样品中的化学元素进行定量检测和分析。
本文将从原子吸收光谱分析的基本原理、仪器设备和应用领域等方面进行论述。
一、原理与机制原子吸收光谱分析的基本原理是利用原子吸收特定波长的光线时的量子能级跃迁现象。
当样品中的化学元素被激发后,在特定波长的光线照射下,原子内部的电子会发生跃迁到高能级的激发态。
然后,激发态的原子会再次退回到基态,释放出特定波长的光信号。
通过测量吸收光强度的变化,可以推断出样品中化学元素的含量。
二、仪器设备原子吸收光谱分析需要使用专门的仪器设备来进行测量和分析。
常用的原子吸收光谱仪主要由光源、样品室、光路系统、检测系统和数据处理系统等部分组成。
光源通常采用中空阴极灯,能够发射特定波长的光线。
样品室用于容纳待测样品并与光源进行光路的连接。
光路系统包括光栅、滤光片等光学元件,用于选择特定波长的光线。
检测系统用于测量光线的强度变化,常见的检测方式有吸收法和发射法。
数据处理系统用于记录和分析测量结果,通常采用计算机进行数据处理。
三、应用领域原子吸收光谱分析在物化地分析中具有广泛的应用领域。
首先,在环境分析方面,原子吸收光谱分析可以用于监测和分析水体、大气和土壤中的污染物。
例如,通过测定水样中重金属的含量,可以评估水质的安全性。
其次,在食品安全领域,原子吸收光谱分析可以用于检测食品中有害金属元素的含量,如铅、镉等。
此外,在生物医药研究和制药工业中,原子吸收光谱分析也广泛应用于药物成分和微量元素的定量分析。
总结起来,物化地分析中的原子吸收光谱分析是一种基于原子能级跃迁的分析方法,通过测量样品中特定波长光线的吸收情况,来确定样品中化学元素的含量。
该方法具有广泛的应用领域,包括环境分析、食品安全和生物医药等领域。
随着科学技术的不断进步,原子吸收光谱分析仪器设备和分析方法也在不断更新,为物化地分析提供了更为准确和高效的工具。
原子吸收光谱分析法知识详解
原子吸收光谱分析法知识详解原子吸收光谱分析法是实验室元素分析最常用的方法之一。
原子吸收光谱分析(又称原子吸收分光光度分析)是基于从光源辐射出待测元素的特征光波,通过样品的蒸汽时,被蒸汽中待测元素的基态原子所吸收,由辐射光波强度减弱的程度,可以求出样品中待测元素的含量。
一、原子吸收光谱的理论基础1、原子吸收光谱的产生在原子中,电子按一定的轨道环绕原子核旋转,各个电子的运动状态是由4个量子数来描述。
不同量子数的电子,具有不同的能量,原子的能量为其所含电子能量的总和。
原子处于完全游离状态时,具有最低的能量,称为基态。
在热能、电能或光能的作用下,基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到较高能态,它就成为激发态原子。
激发态原于很不稳定,当它回到基态时,这些能量以热或光的形式辐射出来,成为发射光谱。
其辐射能量大小,用下列公式示:ΔE=Eq-E0=hv=hc/λ式中:H:普朗克常数,其数值为:6.626*10-23J·S;C:光速(3*105km/s);V、入:分别为发射光的频率和波长;E0、E q:分别代表基态和激发态原子的能量,它们与原子的结构有关。
由于不同元素的原子结构不同,所以一种元素的原子只能发射由其已与Eq决定的特定频率的光。
这样,每一种元素都有其特征的光谱线。
即使同一种元素的原子,它们的Eq也可以不同,也能产生不同的谱线。
原子吸收光谱是源于发射光谱的逆过程。
基态原子只能吸收频率为:υ=(Eq-E0)/h的光,跃迁到高能态Eq。
因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素有其特征的吸收光谱线。
原子的电子从基态激发到最接近于基态的激发态,称为共振激发。
当电子从共振激发态跃迁回基态时,称为共振跃迁。
这种振跃迁所发射的谱线称为共振发射线,与此过程相反的谱线称为共振吸收线。
元素的共振吸收线一般有好多条,其测定灵敏度也不同。
在测定时,一般选用灵敏线,但当被测元素含量较高时,也可采用次灵敏线(有些元素有好几条线,有的只有一条,次灵敏线能量太低不能使用)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子吸收光谱法是上世纪50年代中期出现并在 以后逐渐发展起来的一种新型的仪器分析方法。
它是基于物质所产生的原子蒸气对特定谱线的 吸收作用来进行定量分析的一种方法。
它在地质、冶金、机械、化工、农业、食品、 轻工、生物医药、环境保护、材料科学等各个领域 有广泛的应用。
2020/5/20
一、概述Generalization
第四章 原子吸收光谱
分析法
Atomic abபைடு நூலகம்orption spectrometry, AAS
第一节 原子吸收光 谱分析基本原理
Basic principle of AAS
2020/5/20
一、概述
Generalization
二、原子吸收光谱的产 生
Formation of AAS
三、谱线轮廓与谱线变 宽
I ν为透过光的强度; K ν为在 辐射频率ν处的吸收系数; L为原子蒸气的厚度;
当L一定时,透射光强度 I ν和吸收系数K ν及辐射频率ν有关。
2020/5/20
吸 收 系 数 Kν 将 随 光 源 的 辐 射 频率ν而改变,这是由于物质的原 子对光的吸收具有选择性,对不
同频率的光,原子对光的吸收也
Shape and broadening of absorption line
四、积分吸收与峰值吸 收
Integrated absorption and absorption in peak max
五、基态原子数与原子 化温度
Relation of atomic amount in ground with temperature of atomization
E1
E0 基态能级 E1、E2、E3、激发态能级
E0
2020/5/20
2.元素的特征谱线
(1)各种元素的原子结构和外层电子排布不同 基态第一激发态或第一激发态基态(共振线) 跃迁吸收或发射能量不同——具有特征性。特征谱线。
(2)各种元素的基态第一激发态(共振线) 最易发生,吸收最强,最灵敏线,分析线。
热变宽。 多普勒效应:一个运动着的原子发出的光,如果运动方向
离开观察者(接受器),则在观察者看来,其频率较静止原
子所发的频率低,反之,高。 这种多普勒效应,使观测者接受到很多频率稍有不同的
半 宽 度:Δ
2020/5/20
2.谱线变宽原因
(1)自然宽度 ΔVN 在无外界影响下,谱线仍有一定的宽度,这种谱线固有
的宽度为自然宽度。它与激发态原子的寿命有关,不同谱线 有不同的自然宽度。在大多数情况下,约为10-5nm数量级。
它与谱线的其它变宽宽度相比,可以忽略不计。
2020/5/20
(2)多普勒变宽(热变宽) ΔVD 这是由于原子在空间作无规则热运动所导致的,故又称
2020/5/20
4.原子吸收光谱分析的特点: (1) 检出限低,10-10~10-14 g; (2) 准确度高,相对误差1%~5%; (3) 选择性高,一般情况下共存元素不干扰,无须
分离; (4) 应用广,可测定70多个元素(各种样品中)。 局限性:难熔元素(如W)、非金属元素测定困难、
不能同时进行多元素分析。
1955年,澳大利亚物理学家 Walsh A(瓦尔西)发表了 著名论文:《原子吸收光谱法在分析化学中的应用》,奠定 了原子吸收光谱法的基础,之后迅速发展。
2020/5/20
1955年Walsh发表了论文“原子吸收光谱在化学分析中的应用” ( The application of atomic absorption spectra to chemical analysis),解决了原子吸收光谱的光源问题,50年代末 PE 和 Varian 公司推出了原子吸收商品仪器。
不相同。
以K ν与ν 作图:在频率O处
,吸收系数有一极大值K0,吸收 线在中心频率O的两侧具有一定
的宽度。用半宽度Δ表征。 吸收线Δ :10-3~10-2nm 发射线Δ:5×10-4~2×10-3nm
表征吸收线轮廓(峰)的参数:
中心频率O(峰值频率) : 最大吸收系数K0对应的频率;
中心波长:λ0(nm)
Hilger, Varian Techtron及Perkin-Elmer公司先后推出了原子吸收 光谱商品仪器,发展了瓦尔西的设计思想。到了60年代中期,原子收光 谱开始进入迅速发展的时期。
Alan Walsh
(1916-1998)和 他的原子吸收光
谱仪在一起
2020/5/20
2. 原子吸收光谱分析法 是基于物质所产生的原子蒸气对特征谱线(通常是待测元素的特征
1.原子吸收现象 原子蒸气对其原子共振辐射吸收的现象; 1802年被人们发现:太阳连续光谱中的暗线。
在1802年,伍朗斯顿(W.H.Wollaston)在研究太阳连续 光谱时,就发现了太阳连续光谱中出现的暗线。
1817年,弗劳霍费(J.Fraunhofer)在研究太阳连续光谱 时,再次发现了这些暗线,由于当时尚不了解产生这些暗线 的原因,于是就将这些暗线称为弗劳霍费线。
谱线)的吸收作用来进行元素定量分析的一种方法。
3. 原子吸收光谱分析的基本过程: (1)用该元素的锐线光源发射出 特征辐射; (2)试样在原子化器中被蒸发、 解离为气态基态原子; (3)当元素的特征辐射通过该元 素的气态基态原子区时,部分光被 蒸气中基态原子吸收而减弱,通过 单色器和检测器测得特征谱线被减 弱的程度,即吸光度,根据吸光度 与被测元素的浓度成线性关系,从 而进行元素的定量分析。
2020/5/20
二、原子吸收光谱的产生 Formation of AAS
1.原子的能级与跃迁
基态第一激发态,吸收一定频率的辐射能量。 产生共振吸收线(简称共振线)----吸收光谱
第一激发态基态,发射出同样频率的辐射。 产生共振发射线(也简称共振线)----发射光谱
E3
AB
E2
A 产生吸收光谱
B 产生发射光谱
(3)利用待测原子蒸气对同种元素的特征谱线(共振线)的吸收可以进 行定量分析
2020/5/20
三、谱线的轮廓与谱线变宽
1.谱线轮廓 原子结构较分子 结构简单,理论上应产生线 状光谱吸收线。 实际上用不同频率辐射光 照射(强度为I0)时,获得一 峰形吸收(具有一定宽度)。
其透过光的强度符合朗伯(Lambert)定律: Iν=I0exp(-K ν L)