材料力学期末考试复习题及答案知识讲解
《材料力学》——期末考试答案

《材料力学》——期末考试答案一、单选题1.水平冲击的动荷系数与( )和原构件的静变形大小有关。
A.初速度B.末速度C.加速度D.平均速度正确答案:A2.等效长度因子是等效长度与( )的比值。
A.等效长度B.原长C.实际长度D.直线长度正确答案:B3.在冲击应力和变形实用计算的能量法中,因为不计被冲物的重量,所以计算结果与实际相比( )。
A.冲击应力偏大,冲击变形偏小B.冲击应力偏小,冲击变形偏大C.冲击应力和冲击变形均偏大D.冲击应力和冲击变形均偏小正确答案:C4.在下列关于内力与应力的讨论中,说法( )是正确的。
A.内力是应力的代数和B.内力是应力的矢量和C.应力是内力的平均值D.应力是内力的分布集度正确答案:D5.应力状态分类以下不正确的是()A.单向应力状态B.二向应力状态C.三向应力状态D.四向应力状态正确答案:D6.不会引起静定结构产生内力的因素是( )。
A.集中力B.集中力偶C.分布力D.温度变化正确答案:D7.分析内力时,为了便于分析,一般将弹簧的螺旋角视为多少度?()A.30°B.0°C.60°D.90°正确答案:B8.什么是相应位移?()A.载荷作用点沿载荷作用方向的位移B.载荷作用点沿载荷作用反方向的位移C.载荷作用点沿载荷作用垂直方向的位移D.载荷作用点沿载荷作用倾斜方向的位移正确答案:A9.单位长度扭转角与( )无关。
A.杆的长度B.扭矩C.材料性质D.截面几何性质正确答案:A10.在冬天,当水管内的水结冰时,因体积膨胀,水管处于二向拉伸应力状态,故容易破坏,而冰块这时( )应力状态,则不容易破坏。
A.处于三向压缩B.处于二向压缩C.处于单向压缩D.处于极复杂的压缩正确答案:A11.构件抵抗破坏的能力叫做?()A.精度B.强度C.刚度D.刚性正确答案:B12.在单元体上,可以认为( )。
A.每个面上的应力是均匀分布的,—对平行面上的应力相等B.每个面上的应力是均匀分布的,—对平行面上的应力不等C.每个面上的应力是非均匀分布的,—对平行面上的应力相等D.每个面上的应力是非均匀分布的,—对平行面上的应力不等正确答案:A13.在下面关于梁、挠度和转角的讨论中,结论( )是正确的。
材料力学期末复习题库

材料力学期末复习题库一、选择题1. 材料力学中,材料的弹性模量E表示:A. 材料的弹性B. 材料的塑性C. 材料的韧性D. 材料的硬度正确答案:A2. 根据材料力学理论,下列哪项不是材料力学的研究对象?A. 弹性变形B. 塑性变形C. 材料的疲劳D. 材料的热传导正确答案:D3. 在单轴拉伸试验中,材料的屈服强度是指:A. 材料开始发生塑性变形的应力B. 材料发生断裂的应力C. 材料发生弹性变形的应力D. 材料发生蠕变的应力正确答案:A二、填空题1. 当材料受到拉伸时,其应力-应变曲线上的第一个平台表示材料的________。
答案:弹性阶段2. 材料力学中的应力定义为单位面积上的________。
答案:力3. 材料的疲劳破坏是指材料在________下反复加载和卸载,最终导致破坏。
答案:循环应力三、简答题1. 请简述材料力学中材料的三种基本变形类型。
答案:材料的三种基本变形类型包括拉伸和压缩、剪切、扭转。
2. 什么是材料的屈服点,它在材料力学中有什么意义?答案:屈服点是指材料在拉伸过程中,从弹性变形过渡到塑性变形的应力值。
它在材料力学中的意义在于,屈服点是判断材料是否发生永久变形的重要指标,也是工程设计中选材和结构设计的重要依据。
四、计算题1. 某材料的弹性模量E=200 GPa,泊松比ν=0.3。
若材料受到一个力F=10 kN,试计算在该力作用下材料的应变ε。
答案:首先,根据应力的定义,σ = F/A,其中A是受力面积。
由于题目中未给出受力面积,我们可以假设一个单位面积A=1 m²。
那么σ = 10 kN = 10,000 N。
然后,利用弹性模量E和泊松比ν的关系,可以计算应变ε = σ / E = 10,000 N / (200 GPa * 1 m²) =0.00005。
2. 某材料的屈服强度σy=300 MPa,现在要设计一个承受最大应力不超过200 MPa的部件,该部件的厚度至少应该是多少?答案:由于屈服强度σy是材料开始发生永久变形的应力值,为了确保部件在最大应力200 MPa下不发生永久变形,部件的厚度t应该满足σ ≤ σy。
材料力学I期末考试题及答案

材料力学I期末考试题及答案一、选择题(每题2分,共20分)1. 材料力学中,下列哪一项不是基本假设?A. 均匀性假设B. 连续性假设C. 各向同性假设D. 各向异性假设答案:D2. 在拉伸试验中,材料的屈服强度是指:A. 弹性极限B. 屈服极限C. 强度极限D. 断裂强度答案:B3. 影响材料弹性模量的因素不包括:A. 材料种类B. 温度C. 材料的几何形状D. 加载速度答案:C4. 梁的弯曲应力公式为:A. σ = My/IB. σ = Mx/IC. σ = VQ/ID. σ = Vx/I答案:A5. 材料力学中,下列哪一项不是应力状态的描述?A. 正应力B. 剪应力C. 应力集中D. 应力梯度答案:D6. 材料的疲劳破坏通常发生在:A. 最大应力处B. 最小应力处C. 应力集中处D. 应力均匀处答案:C7. 根据材料力学理论,下列哪一项不是材料的强度理论?A. 最大正应力理论B. 最大剪应力理论C. 最大应变理论D. 能量理论答案:D8. 梁的弯曲变形公式为:A. v = (Mx/EI)(1 - x^2/L^2)B. v = (Mx/EI)(1 - x^3/L^3)C. v = (Mx/EI)(1 - x/L)D. v = (Mx/EI)(1 - x^2/L^3)答案:B9. 材料的塑性变形是指:A. 弹性变形B. 永久变形C. 可逆变形D. 弹性和塑性变形的总和答案:B10. 在拉伸试验中,材料的弹性模量可以通过下列哪一项来确定?A. 弹性阶段的斜率B. 屈服阶段的斜率C. 断裂阶段的斜率D. 塑性变形阶段的斜率答案:A二、填空题(每题2分,共20分)1. 材料力学中,__________是指材料在外力作用下发生形变,但当外力移除后,形变能够完全恢复的性质。
答案:弹性2. 当材料受到拉伸时,其内部产生的__________应力称为正应力。
答案:垂直3. 材料力学中,__________是指材料在外力作用下发生形变,但当外力移除后,形变不能完全恢复的性质。
材料力学A期末考试题及答案

材料力学A期末考试题及答案一、选择题(每题3分,共30分)1. 材料力学中,下列哪项不是应力的分类?A. 正应力B. 剪应力C. 拉应力D. 弯应力答案:C2. 在材料力学中,下列哪项不是材料的基本力学性能?A. 弹性B. 塑性C. 韧性D. 硬度答案:D3. 材料力学中,下列哪项不是材料的失效形式?A. 断裂B. 屈服C. 疲劳D. 腐蚀答案:D4. 在拉伸试验中,下列哪项不是材料的基本力学性能参数?A. 弹性模量B. 屈服强度C. 抗拉强度D. 密度答案:D5. 材料力学中,下列哪项不是应力集中的影响因素?A. 材料的几何形状B. 材料的热处理C. 材料的表面粗糙度D. 材料的微观结构答案:B6. 在材料力学中,下列哪项不是梁的弯曲变形的基本形式?A. 平面弯曲B. 空间弯曲C. 扭转D. 剪切变形答案:D7. 材料力学中,下列哪项不是影响材料疲劳寿命的因素?A. 应力幅值B. 应力集中C. 材料的表面处理D. 材料的密度答案:D8. 在材料力学中,下列哪项不是影响材料屈服强度的因素?A. 材料的微观结构B. 材料的热处理C. 材料的表面粗糙度D. 材料的弹性模量答案:D9. 材料力学中,下列哪项不是影响材料断裂韧性的因素?A. 材料的微观结构B. 材料的热处理C. 材料的表面处理D. 材料的密度答案:D10. 在材料力学中,下列哪项不是影响材料蠕变行为的因素?A. 温度B. 应力C. 时间D. 材料的弹性模量答案:D二、填空题(每题2分,共20分)1. 材料力学中,应力定义为_______。
答案:单位面积上的内力2. 材料力学中,材料的弹性模量表示为_______。
答案:E3. 材料力学中,材料的屈服强度通常用符号_______表示。
答案:σy4. 材料力学中,材料的抗拉强度通常用符号_______表示。
答案:σb5. 材料力学中,梁的弯曲应力公式为_______。
答案:σ = My/I6. 材料力学中,材料的疲劳寿命通常用符号_______表示。
材料力学期末考试复习题及答案2

材料力学期末考试复习题及答案配高等教育出版社第五版一、填空题:1.受力后几何形状和尺寸均保持不变的物体称为。
2.构件抵抗的能力称为强度。
3.圆轴扭转时,横截面上各点的切应力与其到圆心的距离成比。
4.梁上作用着均布载荷,该段梁上的弯矩图为。
5.偏心压缩为的组合变形。
6.柔索的约束反力沿离开物体。
7.构件保持的能力称为稳定性。
8.力对轴之矩在情况下为零。
9.梁的中性层与横截面的交线称为。
10.图所示点的应力状态,其最大切应力是。
11.物体在外力作用下产生两种效应分别是。
12.外力解除后可消失的变形,称为。
13.力偶对任意点之矩都。
14.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则杆中最大正应力为。
15.梁上作用集中力处,其剪力图在该位置有。
16.光滑接触面约束的约束力沿指向物体。
17.外力解除后不能消失的变形,称为。
18.平面任意力系平衡方程的三矩式,只有满足三个矩心的条件时,才能成为力系平衡的充要条件。
19.图所示,梁最大拉应力的位置在点处。
20.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。
21.物体相对于地球处于静止或匀速直线运动状态,称为。
22.在截面突变的位置存在集中现象。
23.梁上作用集中力偶位置处,其弯矩图在该位置有。
24.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。
25.临界应力的欧拉公式只适用于杆。
26.只受两个力作用而处于平衡状态的构件,称为。
27.作用力与反作用力的关系是。
28.平面任意力系向一点简化的结果的三种情形是。
29.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则截面C的位移为。
30.若一段梁上作用着均布载荷,则这段梁上的剪力图为。
二、计算题:1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。
材料力学试题及答案期末

材料力学试题及答案期末期末考试是学生们在学期结束时面临的一项重要考核。
在材料力学这门课程中,试题的设计和答案的准确性对于学生的学习成绩至关重要。
本文将为大家提供一套材料力学试题,并给出详细的答案解析。
试题一:弹性模量的计算1. 弹簧的伸长量随外力的大小而变化,如果给定外力-伸长量的关系图,如下图所示,试求该材料的弹性模量。
(图略)解答:根据胡克定律,应力与应变之间的关系为:σ = Eε其中,σ为应力,E为弹性模量,ε为应变。
弹性模量E的计算公式为:E = σ/ε根据图中的数据,我们可以求得外力-伸长量的关系为:外力(F):10 N,20 N,30 N伸长量(ΔL):0.5 mm,1 mm,1.5 mm根据胡克定律以及弹性模量的计算公式,我们可以得到如下关系式:E = σ/ε = F/A / ΔL/L其中,A为横截面积,L为原长。
假设A与L的值为常数,则可以推导得到:E = F/ΔL * L/A根据给定的数据代入公式计算,可以得到:当F = 10 N 时,E = 10 N / 0.5 mm * L/A = 20 / mm * L/A当F = 20 N 时,E = 20 N / 1 mm * L/A = 20 / mm * L/A当F = 30 N 时,E = 30 N / 1.5 mm * L/A = 20 / mm * L/A由此可见,无论外力的大小,材料的弹性模量均为20 / mm * L/A。
试题二:杨氏模量的测定2. 某学生通过实验测得一块金属试样在受力时的应变与应力之间的关系如下图所示。
试求该金属试样的杨氏模量。
(图略)解答:根据实验数据绘制的应力-应变曲线,可以看出,在线段OA区域内,应力与应变呈线性关系。
通过直线OA的斜率可以求得该材料的杨氏模量。
根据图中的数据,我们可以计算出斜率为:斜率K = Δσ/Δε = (350 MPa - 250 MPa) / (0.0025 - 0.0020) = 400 MPa / 0.0005 = 8 * 10^5 Pa根据公式,杨氏模量E等于斜率K乘以应变ε,即:E = K * ε根据给定的数据代入公式计算,可以得到:E = 8 * 10^5 Pa * 0.0025 = 2 * 10^3 Pa所以该金属试样的杨氏模量为2 * 10^3 Pa。
材料力学复习题答案

材料力学复习题答案1. 材料力学中,材料的弹性模量(E)表示材料抵抗形变的能力,其单位是帕斯卡(Pa)。
若某材料的弹性模量为200 GPa,试计算该材料在受到10 MPa应力作用下产生的应变。
答案:根据胡克定律,应变(ε)等于应力(σ)除以弹性模量(E),即ε = σ/E。
将给定的数值代入公式,得到ε = 10 MPa / 200 GPa = 0.00005 或5×10^-5。
2. 简述材料在拉伸过程中的四个阶段,并说明各阶段的特点。
答案:材料在拉伸过程中的四个阶段包括弹性阶段、屈服阶段、强化阶段和断裂阶段。
弹性阶段中,材料在外力作用下发生形变,当外力移除后,材料能恢复原状。
屈服阶段开始时,材料的形变不再与应力成正比,即使应力不再增加,形变也会继续增加。
强化阶段中,材料在屈服后继续承受应力,需要更大的应力才能使形变继续增加。
最后,在断裂阶段,材料因无法承受进一步的应力而发生断裂。
3. 计算圆轴在扭转时的剪切应力。
已知圆轴的直径为50 mm,材料的剪切模量为80 GPa,扭矩为500 N·m。
答案:圆轴在扭转时的剪切应力(τ)可以通过公式τ = T·r/J计算,其中T为扭矩,r为圆轴的半径,J为极惯性矩。
对于直径为50 mm的圆轴,半径r = 25 mm = 0.025 m。
极惯性矩J = π·r^4/2 = π·(0.025)^4/2 ≈ 9.82×10^-6 m^4。
代入公式得到τ = 500 N·m × 0.025 m / 9.82×10^-6 m^4 ≈ 127.6 MPa。
4. 描述梁在弯曲时的正应力和剪切应力的分布规律。
答案:梁在弯曲时,正应力沿着梁的横截面高度线性分布,最大正应力出现在横截面的最外层纤维上,且与中性轴的距离成正比。
剪切应力在梁的横截面上分布不均匀,最大剪切应力出现在中性轴处,向两侧逐渐减小至零。
材料力学I期末考试题及答案

材料力学I期末考试题及答案一、选择题(每题2分,共20分)1. 材料力学中,下列哪个参数不是描述材料弹性性质的?A. 弹性模量B. 屈服强度C. 泊松比D. 剪切模量答案:B2. 在拉伸试验中,材料的屈服点是指:A. 应力达到最大值时对应的应变B. 应力达到最大值时对应的应力C. 材料开始发生塑性变形的应力D. 材料发生断裂的应力答案:C3. 根据胡克定律,下列哪个说法是正确的?A. 应力与应变成正比B. 应力与应变成反比C. 应力与应变成二次方关系D. 应力与应变成对数关系答案:A4. 在材料力学中,下列哪个参数是用来描述材料的韧性的?A. 弹性模量B. 屈服强度C. 硬度D. 冲击韧性答案:D5. 材料力学中,下列哪个参数是用来描述材料的塑性变形能力的?A. 弹性模量B. 屈服强度C. 硬度D. 延伸率答案:D6. 根据材料力学的基本原理,下列哪个说法是错误的?A. 应力是单位面积上的力B. 应变是单位长度的变化量C. 应力和应变都是标量D. 应力和应变之间存在线性关系答案:C7. 在材料力学中,下列哪个参数是用来描述材料的硬度的?A. 弹性模量B. 屈服强度C. 布氏硬度D. 冲击韧性答案:C8. 材料力学中,下列哪个参数是用来描述材料的疲劳强度的?A. 弹性模量B. 屈服强度C. 疲劳极限D. 冲击韧性答案:C9. 在材料力学中,下列哪个参数是用来描述材料的抗拉强度的?A. 弹性模量B. 屈服强度C. 抗拉强度D. 冲击韧性答案:C10. 材料力学中,下列哪个参数是用来描述材料的压缩强度的?A. 弹性模量B. 屈服强度C. 压缩强度D. 冲击韧性答案:C二、填空题(每题2分,共20分)1. 材料力学中,应力的定义是单位面积上的_______。
答案:力2. 材料力学中,应变的定义是单位长度上的_______。
答案:长度变化3. 材料力学中,弹性模量是描述材料_______性质的物理量。
答案:弹性4. 材料力学中,泊松比是描述材料在受到_______作用时,横向应变与纵向应变的比值。
材料力学,期末总复习题,及答案解析

材料力学各章重点1.各向同性假设认为,材料沿各个方向具有相同的 A 。
(A)力学性质; (B)外力; (C)变形; (D)位移。
2.均匀性假设认为,材料内部各点的 C 是相同的。
(A)应力; (B)应变; (C)位移; (C)力学性质。
3.构件在外力作用下 B 的能力称为稳定性。
(A)不发生断裂;(B)保持原有平衡状态;(C)不产生变形;(D)保持静止。
4.杆件的刚度是指 D 。
(A)杆件的软硬程度;(B)件的承载能力;(C)杆件对弯曲变形的抵抗能力;(D)杆件对弹性变形的抵抗能力。
5.低碳钢材料在拉伸实验过程中,不发生明显的塑性变形时,承受的最大应力应当小于 D 的数值,(A)比例极限;(B)许用应力;(C)强度极限;(D)屈服极限。
6.对于低碳钢,当单向拉伸应力不大于 C 时,虎克定律σ=Eε成立。
(A) 屈服极限σs;(B)弹性极限σe;(C)比例极限σp;(D)强度极限σb。
7.没有明显屈服平台的塑性材料,其破坏应力取材料的 B 。
(A)比例极限σp;(B)名义屈服极限σ0.2;(C)强度极限σb;(D)根据需要确定。
8.低碳钢的应力~应变曲线如图所示,其上 C 点的纵坐标值为该钢的强度极限σb。
(A)e; (B)f; (C)g; (D)h。
3题图9.三种材料的应力—应变曲线分别如图所示。
其中强度最高、刚度最大、塑性最好的材料分别是 A 。
(A)a、b、c; (B)b、c、a;(C)b、a、c; (D)c、b、a。
10.材料的塑性指标有 C 。
(A)σs和δ;(B)σs和ψ;(C)δ和ψ;(D)σs,δ和ψ。
11.确定安全系数时不应考虑 D 。
(A)材料的素质;(B)工作应力的计算精度;(C)构件的工作条件;(D)载荷的大小。
12.低碳钢的许用力[σ]= C 。
(A)σp/n;(B)σe/n;(C)σs/n;(D)σb/n。
13.系统的温度升高时,下列结构中的____A______不会产生温度应力。
材料力学期末考试复习试题与答案

材料力学一、填空题:1.受力后几何形状和尺寸均保持不变的物体称为。
2.构件抵抗的能力称为强度。
3.圆轴扭转时,横截面上各点的切应力与其到圆心的距离成比。
4.梁上作用着均布载荷,该段梁上的弯矩图为。
5.偏心压缩为的组合变形。
6.柔索的约束反力沿离开物体。
7.构件保持的能力称为稳定性。
8.力对轴之矩在情况下为零。
9.梁的中性层与横截面的交线称为。
10.图所示点的应力状态,其最大切应力是。
11.物体在外力作用下产生两种效应分别是。
12.外力解除后可消失的变形,称为。
13.力偶对任意点之矩都。
14.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则杆中最大正应力为。
15.梁上作用集中力处,其剪力图在该位置有。
16.光滑接触面约束的约束力沿指向物体。
17.外力解除后不能消失的变形,称为。
18.平面任意力系平衡方程的三矩式,只有满足三个矩心的条件时,才能成为力系平衡的充要条件。
19.图所示,梁最大拉应力的位置在点处。
20.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。
21.物体相对于地球处于静止或匀速直线运动状态,称为。
22.在截面突变的位置存在集中现象。
23.梁上作用集中力偶位置处,其弯矩图在该位置有。
24.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。
25.临界应力的欧拉公式只适用于杆。
26.只受两个力作用而处于平衡状态的构件,称为。
27.作用力与反作用力的关系是。
28.平面任意力系向一点简化的结果的三种情形是。
29.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则截面C的位移为。
30.若一段梁上作用着均布载荷,则这段梁上的剪力图为。
二、计算题:1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。
2.铸铁T梁的载荷与横截面尺寸如图所示,C为截面形心。
材料力学期末考试复习题及答案53154

材料力学一、填空题:1.受力后几何形状和尺寸均保持不变的物体称为。
2.构件抵抗的能力称为强度。
3.圆轴扭转时,横截面上各点的切应力与其到圆心的距离成比。
4.梁上作用着均布载荷,该段梁上的弯矩图为。
5.偏心压缩为的组合变形。
6.柔索的约束反力沿离开物体。
7.构件保持的能力称为稳定性。
8.力对轴之矩在情况下为零。
9.梁的中性层与横截面的交线称为。
10.图所示点的应力状态,其最大切应力是。
11.物体在外力作用下产生两种效应分别是。
12.外力解除后可消失的变形,称为。
13.力偶对任意点之矩都。
14.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则杆中最大正应力为。
实用文档15.梁上作用集中力处,其剪力图在该位置有。
16.光滑接触面约束的约束力沿指向物体。
17.外力解除后不能消失的变形,称为。
18.平面任意力系平衡方程的三矩式,只有满足三个矩心的条件时,才能成为力系平衡的充要条件。
19.图所示,梁最大拉应力的位置在点处。
20.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。
实用文档21.物体相对于地球处于静止或匀速直线运动状态,称为。
22.在截面突变的位置存在集中现象。
23.梁上作用集中力偶位置处,其弯矩图在该位置有。
24.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。
25.临界应力的欧拉公式只适用于杆。
26.只受两个力作用而处于平衡状态的构件,称为。
27.作用力与反作用力的关系是。
28.平面任意力系向一点简化的结果的三种情形是。
29.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则截面C的位移为。
30.若一段梁上作用着均布载荷,则这段梁上的剪力图为。
二、计算题:1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、实用文档B、C处的约束力。
2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。
材料力学期末考试题及答案ab卷

材料力学期末考试题及答案AB卷一、选择题(每题5分,共40分)1. 材料力学中,下列哪个选项不属于材料力学的研究范畴?A. 材料的强度B. 材料的硬度C. 材料的韧性D. 材料的弹性模量答案:B2. 根据胡克定律,当应力超过材料的弹性极限时,以下哪个描述是正确的?A. 材料会发生永久变形B. 材料的应力与应变成正比C. 材料的应力与应变成反比D. 材料的弹性模量会增加答案:A3. 在拉伸试验中,材料的屈服强度是指:A. 材料开始发生塑性变形时的应力B. 材料发生断裂时的应力C. 材料达到最大应力时的应力D. 材料的弹性极限答案:A4. 根据材料力学,下列哪个选项是正确的?A. 应力是力与面积的比值B. 应变是位移与长度的比值C. 应力是位移与面积的比值D. 应变是力与长度的比值答案:A5. 在材料力学中,下列哪个选项是正确的?A. 剪切应力与剪切应变成正比B. 剪切应力与剪切应变成反比C. 剪切应力与剪切应变无关D. 剪切应力与剪切应变成指数关系答案:A6. 材料力学中,下列哪个选项是正确的?A. 材料的塑性变形是可逆的B. 材料的弹性变形是不可逆的C. 材料的塑性变形是不可逆的D. 材料的弹性变形是可逆的答案:C7. 根据材料力学,下列哪个选项是正确的?A. 材料的疲劳寿命与应力循环次数无关B. 材料的疲劳寿命与应力循环次数成正比C. 材料的疲劳寿命与应力循环次数成反比D. 材料的疲劳寿命与应力循环次数无关答案:B8. 在材料力学中,下列哪个选项是正确的?A. 材料的硬度与弹性模量无关B. 材料的硬度与弹性模量成正比C. 材料的硬度与弹性模量成反比D. 材料的硬度与弹性模量无关答案:B二、简答题(每题10分,共20分)1. 请简述材料力学中弹性模量的定义及其物理意义。
答案:弹性模量是材料力学中描述材料弹性特性的一个物理量,它表示材料在受到外力作用时,单位应力下产生的单位应变。
弹性模量的物理意义是衡量材料抵抗形变的能力,弹性模量越大,表示材料的刚度越高,形变越小。
材料力学期末考试试卷(含答案)

材料力学考试试卷姓名 计分 一、填空题 (每空4分,共40分)1.一长l ,横截面面积为A 的等截面直杆,其密度为ρ,弹性模量为E ,则杆自由悬挂时由自重引起的最大应力=max σ ;杆的总伸长l ∆= 。
2.对图中铆钉进行强度计算时,=τ,=bs σ 。
3.矩形截面梁的F smax 、M max 及截面宽度不变,若将截面高度增加一倍,则最大弯曲正应力为原来的 倍,最大弯曲切应力为原来的 倍。
4.图示两梁的材料相同,最小截面面积相同,在相同的冲击载荷作用下,图 所示梁的最大正应力较大。
5.图示等截面梁AC 段的挠曲线方程为)2/(20EI x M w -=,则该段的转角方程为 ;截面B 的转角和挠度分别为 和 。
二、选择题 (每题4分 共20分)1.矩形截面细长压杆,b/h = 1/2。
如果将b 改为 h 后仍为细长压杆,临界压力是原来的多少倍?( )(A)2倍;(B) 4倍;(C) 8倍;(D)16倍。
2. 图示应力状态,用第三强度理论校核时,其相当应力为:( ) (A)τσ=3r ; (B)τσ=3r ;(C)τσ33=r ;(D)τσ23=r 。
第2题图 第3题图3.一空间折杆受力如图,则AB 杆的变形:( )(A) 纵横弯曲 ;(B) 弯扭组合;(C) 偏心拉伸; (D) 拉、弯、扭组合。
4.一内外直径之比D d /=α 的空心圆轴,当两端受力偶矩作用产生扭转变形时,横截面的最大切应力为τ,则横截面的最小切应力:( ) (A) τ; (B) ατ; (C) ()τα31- ; (D) ()τα41-。
5.对于图示交变应力,它是:(A)对称循环交变应力;(B)脉动循环交变应力;(C)静循环交变应力 。
( )三、图示杆系结构中AB 杆为刚性杆,①、②杆刚度为 EA ,外加载荷为 P ,求①、②杆的轴力。
(40分)σσσ材料力学参考答案一、填空题1.g l ρσ=max ,El g 22ρ2.22dP π,dt P3.0.25,0.54.(a)5.EI x M 0-,EI a M 0-,)tan()(2020EI aM a l EI a M ---二、选择题1.(B ) 2.(D ) 3.(C) 4.(B) 5.(B)三、解:(1)静力平衡方程如图b 所示,F N1,F N2为①,②杆的内力;Fx 、F Y 为A 处的约束力,未知力个数为4,静力平衡方程个数为3(平面力系),故为一次超静定问题。
大学期末考试材料力学试题及答案

一、判断题(正确打“√”,错误打“X ”,本题满分为10分) 1、拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。
( )2、圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。
( )3、两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同,因而两梁的剪力图和弯矩图不一定相同。
( )4、交变应力是指构件内的应力,它随时间作周期性变化,而作用在构件上的载荷可能是动载荷,也可能是静载荷。
( )5、弹性体的应变能与加载次序无关,只与载荷的最终值有关。
( )6、单元体上最大切应力作用面上必无正应力。
( )7、平行移轴公式表示图形对任意两个相互平行轴的惯性矩和惯性积之间的关系。
( ) 8、动载荷作用下,构件内的动应力与材料的弹性模量有关。
( )9、构件由突加载荷所引起的应力,是由相应的静载荷所引起应力的两倍。
( ) 10、包围一个点一定有一个单元体,该单元体各个面上只有正应力而无切应力。
( ) 二、选择题(每个2分,本题满分16分)1.应用拉压正应力公式A FN =σ的条件是( )。
A 、应力小于比例极限;B 、外力的合力沿杆轴线;C 、应力小于弹性极限;D 、应力小于屈服极限。
2.梁拟用图示两种方式搁置,则两种情况下的最大弯曲正应力之比 )(m ax )(m ax b a σσ 为( )。
A 、1/4; B 、1/16; C 、1/64; D、16。
3、关于弹性体受力后某一方向的应力与应变关系有如下论述:正确的是。
A 、有应力一定有应变,有应变不一定有应力; B 、有应力不一定有应变,有应变不一定有应力; C 、有应力不一定有应变,有应变一定有应力; D 、有应力一定有应变,有应变一定有应力。
4、火车运动时,其轮轴横截面边缘上危险点的应力有四种说法,正确的是。
A :脉动循环应力: B :非对称的循环应力; C :不变的弯曲应力;D :对称循环应力h4h(a) h4h(b)5、如图所示的铸铁制悬臂梁受集中力F 作用,其合理的截面形状应为图( b )6、对钢制圆轴作扭转校核时,发现强度和刚度均比规定的要求低了20%,若安全因数不变,改用屈服极限提高了30%的钢材,则圆轴的( c ) A 、 强度、刚度均足够;B 、强度不够,刚度足够; C 、强度足够,刚度不够;D 、强度、刚度均不够。
材料力学期末考试复习题及答案

二、计算题:1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。
2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。
已知I z=60125000mm4,y C=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa。
试求:①画梁的剪力图、弯矩图。
②按正应力强度条件校核梁的强度。
3.传动轴如图所示。
已知F r=2KN,F t=5KN,M=1KN·m,l=600mm,齿轮直径D=400mm,轴的[σ]=100MPa。
试求:①力偶M的大小;②作AB轴各基本变形的内力图。
③用第三强度理论设计轴AB的直径d。
4.图示外伸梁由铸铁制成,截面形状如图示。
已知I z=4500cm4,y1=7.14cm,y2=12.86cm,材料许用压应力[σc]=120MPa,许用拉应力[σt]=35MPa,a=1m。
试求:①画梁的剪力图、弯矩图。
②按正应力强度条件确定梁截荷P。
5.如图6所示,钢制直角拐轴,已知铅垂力F1,水平力F2,实心轴AB的直径d,长度l,拐臂的长度a。
试求:①作AB轴各基本变形的内力图。
②计算AB轴危险点的第三强度理论相当应力。
6.图所示结构,载荷P=50KkN,AB杆的直径d=40mm,长度l=1000mm,两端铰支。
已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa,稳定安全系数n st=2.0,[σ]=140MPa。
试校核AB杆是否安全。
7.铸铁梁如图5,单位为mm,已知I z=10180cm4,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa,试求:①画梁的剪力图、弯矩图。
②按正应力强度条件确定梁截荷P。
8.图所示直径d=100mm的圆轴受轴向力F=700kN与力偶M=6kN·m的作用。
已知M=200GPa,μ=0.3,[σ]=140MPa。
材料力学期末复习题答案

材料力学期末复习题答案1. 材料力学中,应力的定义是什么?答:应力是单位面积上的内力,其计算公式为σ=F/A,其中σ表示应力,F表示作用在物体上的力,A表示受力面积。
2. 材料力学中,应变的定义是什么?答:应变是物体受力后形状变化的程度,其计算公式为ε=ΔL/L,其中ε表示应变,ΔL表示长度变化量,L表示原始长度。
3. 弹性模量(E)和剪切模量(G)的定义是什么?答:弹性模量(E)是材料在受力时应力与应变的比值,即E=σ/ε;剪切模量(G)是材料在剪切应力作用下剪切应力与剪切应变的比值,即G=τ/γ。
4. 材料力学中,材料的强度和刚度分别指的是什么?答:材料的强度是指材料在受到外力作用时不发生破坏的最大应力;材料的刚度是指材料在受到外力作用时抵抗变形的能力,通常用弹性模量来衡量。
5. 材料力学中,材料的塑性变形和弹性变形有什么区别?答:塑性变形是指材料在受到外力作用后,即使撤去外力,材料也不能恢复到原来的形状和尺寸;而弹性变形是指材料在受到外力作用后,一旦撤去外力,材料能够恢复到原来的形状和尺寸。
6. 材料力学中,如何计算梁的弯曲应力?答:梁的弯曲应力可以通过公式σ=My/I计算,其中σ表示弯曲应力,M表示弯矩,y表示距离中性轴的距离,I表示截面惯性矩。
7. 材料力学中,如何确定梁的弯曲变形?答:梁的弯曲变形可以通过公式v=Mx/EI计算,其中v表示梁的挠度,M表示弯矩,x表示从梁的一端到计算点的距离,E表示弹性模量,I表示截面惯性矩。
8. 材料力学中,扭转应力的计算公式是什么?答:扭转应力的计算公式为τ=Tr/J,其中τ表示扭转应力,T表示扭矩,r表示距离轴心的距离,J表示截面的极惯性矩。
9. 材料力学中,如何计算轴的拉伸应力?答:轴的拉伸应力可以通过公式σ=F/A计算,其中σ表示拉伸应力,F表示轴上的拉力,A表示轴的横截面积。
10. 材料力学中,如何计算轴的扭转角?答:轴的扭转角可以通过公式θ=Tl/GJ计算,其中θ表示扭转角,T表示扭矩,l表示轴的长度,G表示剪切模量,J表示截面的极惯性矩。
材料力学期末考试复习题及答案

二、计算题:1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。
2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。
已知I z=60125000mm4,y C=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa。
试求:①画梁的剪力图、弯矩图。
②按正应力强度条件校核梁的强度。
3.传动轴如图所示。
已知F r=2KN,F t=5KN,M=1KN·m,l=600mm,齿轮直径D=400mm,轴的[σ]=100MPa。
试求:①力偶M的大小;②作AB轴各基本变形的力图。
③用第三强度理论设计轴AB的直径d。
4.图示外伸梁由铸铁制成,截面形状如图示。
已知I z=4500cm4,y1=7.14cm,y2=12.86cm,材料许用压应力[σc]=120MPa,许用拉应力[σt]=35MPa,a=1m。
试求:①画梁的剪力图、弯矩图。
②按正应力强度条件确定梁截荷P。
5.如图6所示,钢制直角拐轴,已知铅垂力F1,水平力F2,实心轴AB的直径d,长度l,拐臂的长度a。
试求:①作AB轴各基本变形的力图。
②计算AB轴危险点的第三强度理论相当应力。
6.图所示结构,载荷P=50KkN,AB杆的直径d=40mm,长度l=1000mm,两端铰支。
已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa,稳定安全系数n st=2.0,[σ]=140MPa。
试校核AB杆是否安全。
7.铸铁梁如图5,单位为mm,已知I z=10180cm4,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa,试求:①画梁的剪力图、弯矩图。
②按正应力强度条件确定梁截荷P。
8.图所示直径d=100mm的圆轴受轴向力F=700kN与力偶M=6kN·m的作用。
已知M=200GPa,μ=0.3,[σ]=140MPa。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、计算题:1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。
2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。
已知I z=60125000mm4,y C=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa。
试求:①画梁的剪力图、弯矩图。
②按正应力强度条件校核梁的强度。
3.传动轴如图所示。
已知F r=2KN,F t=5KN,M=1KN·m,l=600mm,齿轮直径D=400mm,轴的[σ]=100MPa。
试求:①力偶M的大小;②作AB轴各基本变形的内力图。
③用第三强度理论设计轴AB的直径d。
4.图示外伸梁由铸铁制成,截面形状如图示。
已知I z=4500cm4,y1=7.14cm,y2=12.86cm,材料许用压应力[σc]=120MPa,许用拉应力[σt]=35MPa,a=1m。
试求:①画梁的剪力图、弯矩图。
②按正应力强度条件确定梁截荷P。
5.如图6所示,钢制直角拐轴,已知铅垂力F1,水平力F2,实心轴AB的直径d,长度l,拐臂的长度a。
试求:①作AB轴各基本变形的内力图。
②计算AB轴危险点的第三强度理论相当应力。
6.图所示结构,载荷P=50KkN,AB杆的直径d=40mm,长度l=1000mm,两端铰支。
已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa,稳定安全系数n st=2.0,[σ]=140MPa。
试校核AB杆是否安全。
7.铸铁梁如图5,单位为mm,已知I z=10180cm4,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa,试求:①画梁的剪力图、弯矩图。
②按正应力强度条件确定梁截荷P。
8.图所示直径d=100mm的圆轴受轴向力F=700kN与力偶M=6kN·m的作用。
已知M=200GPa,μ=0.3,[σ]=140MPa。
试求:①作图示圆轴表面点的应力状态图。
②求圆轴表面点图示方向的正应变。
③按第四强度理论校核圆轴强度。
9.图所示结构中,q=20kN/m,柱的截面为圆形d=80mm,材料为Q235钢。
已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa,稳定安全系数n st=3.0,[σ]=140MPa。
试校核柱BC是否安全。
10.如图所示的平面桁架,在铰链H处作用了一个20kN的水平力,在铰链D处作用了一个60kN的垂直力。
求A、E处的约束力和FH杆的内力。
11.图所示圆截面杆件d=80mm,长度l=1000mm,承受轴向力F1=30kN,横向力F2=1.2kN,外力偶M=700N·m的作用,材料的许用应力[σ]=40MPa,试求:①作杆件内力图。
②按第三强度理论校核杆的强度。
12.图所示三角桁架由Q235钢制成,已知AB、AC、BC为1m,杆直径均为d=20mm,已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa,稳定安全系数n st=3.0。
试由BC杆的稳定性求这个三角架所能承受的外载F。
13.槽形截面梁尺寸及受力图如图所示,AB=3m,BC=1m,z轴为截面形心轴,I z=1.73×108mm4,q=15kN/m。
材料许用压应力[σc]=160MPa,许用拉应力[σt]=80MPa。
试求:①画梁的剪力图、弯矩图。
②按正应力强度条件校核梁的强度。
14.图所示平面直角刚架ABC在水平面xz内,AB段为直径d=20mm的圆截面杆。
在垂直平面内F1=0.4kN,在水平面内沿z轴方向F2=0.5kN,材料的[σ]=140MPa。
试求:①作AB段各基本变形的内力图。
②按第三强度理论校核刚架AB段强度。
15.图所示由5根圆钢组成正方形结构,载荷P=50KkN,l=1000mm,杆的直径d=40mm,联结处均为铰链。
已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa,稳定安全系数n st=2.5,[σ]=140MPa。
试校核1杆是否安全。
(15分)16.图所示为一连续梁,已知q、a及θ,不计梁的自重,求A、B、C三处的约束力。
17.图所示直径为d的实心圆轴,受力如图示,试求:①作轴各基本变形的内力图。
②用第三强度理论导出此轴危险点相当应力的表达式。
18.如图所示,AB=800mm,AC=600mm,BC=1000mm,杆件均为等直圆杆,直径d=20mm,材料为Q235钢。
已知材料的弹性模量E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa。
压杆的稳定安全系数n st=3,试由CB杆的稳定性求这个三角架所能承受的外载F。
参考答案二、计算题:1.解:以CB 为研究对象,建立平衡方程B()0:=∑M F C 1010.520⨯⨯-⨯=F:0=∑yFB C 1010+-⨯=F F解得: B 7.5kN =F C 2.5kN =F 以AC 为研究对象,建立平衡方程:0=∑yFA C 0-=y F FA()0:=∑MF A C 1020M F +-⨯=解得: A 2.5kN =y F A 5kN m =-⋅M 2.解:①求支座约束力,作剪力图、弯矩图B()0:=∑M F D 102120340⨯⨯-⨯+⨯=F:0=∑yFB D 102200+-⨯-=F F解得: B 30kN =F D 10kN =F②梁的强度校核1157.5mm =y 2230157.572.5mm =-=y拉应力强度校核 B 截面33B 2tmaxt 12201072.51024.1MPa []6012500010--⨯⨯⨯σ===≤σ⨯z M y IC 截面33C 1tmaxt 121010157.51026.2MPa []6012500010--⨯⨯⨯σ===≤σ⨯z M y I 压应力强度校核(经分析最大压应力在B 截面)33B 1cmaxc 122010157.51052.4MPa []6012500010--⨯⨯⨯σ===≤σ⨯z M y I 所以梁的强度满足要求3.解:①以整个系统为为研究对象,建立平衡方程()0:=∑x M F t 02⨯-=DF M 解得:1kN m =⋅M (3分)②求支座约束力,作内力图 由题可得:A B 1kN ==y y F F A B 2.5kN ==z z F F③由内力图可判断危险截面在C 处22222r332()[]σσ+++==≤y z M M T M T222332() 5.1mm []πσ++∴≥=y z M M T d4.解:①求支座约束力,作剪力图、弯矩图A()0:M F =∑ D 22130y F P P ⨯-⨯-⨯=:0=∑yFA D 20y y F F P P +--=解得:A 12y F P = D 52y F P =②梁的强度校核 拉应力强度校核 C 截面C 22tmax t 0.5[]z zM y Pa y I I ⋅σ==≤σ 24.5kN P ∴≤ D 截面D 11tmax t []z zM y Pa y I I ⋅σ==≤σ 22.1kN P ∴≤压应力强度校核(经分析最大压应力在D 截面)D 22cmax c []z zM y Pa y I I ⋅σ==≤σ 42.0kN P ∴≤所以梁载荷22.1kN P ≤5.解:①② 由内力图可判断危险截面在A 处,该截面危险点在横截面上的正应力、切应力为2221N 2232()()4F a Fl F F M A W d σπ+=+=13p 16F aT W dτπ== 2221222221r323332()()4164()4()F a Fl F F a d d d σστπππ+∴=+++6.解:以CD 杆为研究对象,建立平衡方程C()0:MF =∑ AB 0.80.6500.90F ⨯⨯-⨯=解得:AB 93.75kN F =AB 杆柔度1100010040/4liμλ⨯===229p 6p 2001099.320010ππλσ⨯⨯===⨯E由于p λλ>,所以压杆AB 属于大柔度杆222926cr cr 22200104010248.1kN 41004E dF A ππππσλ-⨯⨯⨯⨯===⨯=工作安全因数cr st AB 248.1 2.6593.75F n n F ===> 所以AB 杆安全 7.解:①②梁的强度校核196.4mm y = 225096.4153.6mm y =-=拉应力强度校核 A 截面A 11tmax t 0.8[]z zM y P y I I ⋅σ==≤σ 52.8kN P ∴≤C 截面C 22tmax t 0.6[]z zM y P y I I ⋅σ==≤σ 44.2kN P ∴≤压应力强度校核(经分析最大压应力在A 截面)A 22cmax c 0.8[]z zM y P y I I ⋅σ==≤σ 132.6kN P ∴≤所以梁载荷44.2kN P ≤8.解:①点在横截面上正应力、切应力3N 247001089.1MPa 0.1F A σπ⨯⨯===⨯33P 1661030.6MPa 0.1T W τπ⨯⨯===⨯ 点的应力状态图如下图:②由应力状态图可知σx =89.1MPa ,σy =0,τx =30.6MPacos 2sin 222x yx yx ασσσσσατα+-=+-o 4513.95MPa σ∴= o 4575.15MPa σ-=由广义胡克定律o o o 65945454511139503751510429751020010()(...).E εσμσ--=-=⨯-⨯⨯=-⨯⨯ ③强度校核r41037MPa [].σσ===≤ 所以圆轴强度满足要求9.解:以梁AD 为研究对象,建立平衡方程A ()0:MF =∑ AB 4205 2.50F ⨯-⨯⨯=解得: BC 62.5kN F =BC 杆柔度1400020080/4li μλ⨯===p 99.3λ=== 由于p λλ>,所以压杆BC 属于大柔度杆222926cr cr 22200108010248.1kN 42004E dF A ππππσλ-⨯⨯⨯⨯===⨯= 工作安全因数cr st AB 248.1 3.9762.5F n n F ===> 所以柱BC 安全10.解:以整个系统为研究对象,建立平衡方程:=∑0x FE 200xF -= :0=∑yF A E 600y y F F +-= A ()0:M F =∑ E 82036060y F ⨯-⨯-⨯=解得:E 20kN xF = E 52.5kN y F = A 7.5kN y F =过杆FH 、FC 、BC 作截面,取左半部分为研究对象,建立平衡方程C ()0:M F =∑ A HF 12405y F F -⨯-⨯= 解得:HF 12.5kN F =-11.解:①②由内力图可判断危险截面在固定端处,该截面危险点在横截面上的正应力、切应力为33N 234301032 1.21029.84MPa 0.080.08z z F M A W σππ⨯⨯⨯⨯=+=+=⨯⨯ 3p 16700 6.96MPa 0.08T W τπ⨯===⨯ 2222r3429.844 6.9632.9MPa []σστσ∴=++⨯=≤所以杆的强度满足要求12.解:以节点C 为研究对象,由平衡条件可求BC F F =BC 杆柔度1100020020/4li μλ⨯=== 229p 6p 2001099.320010ππλσ⨯⨯===⨯E 由于p λλ>,所以压杆BC 属于大柔度杆222926cr cr 2220010201015.5kN 42004E dF A ππππσλ-⨯⨯⨯⨯===⨯= cr st AB 15.5 3.0F n n F F∴==≥=解得: 5.17kN F ≤13.解:①求支座约束力,作剪力图、弯矩图A ()0:MF =∑ B 315420y F ⨯-⨯⨯= :0=∑y F A B 1540y y F F +-⨯=解得:A 20kN y F =B 40kN y F =②梁的强度校核拉应力强度校核D 截面33D 1tmax t 81240/3101831014.1MPa []1.731010z M y I --⨯⨯⨯σ===≤σ⨯⨯ B 截面 33B 2tmax t 8127.5104001017.3MPa []1.731010z M y I --⨯⨯⨯σ===≤σ⨯⨯ 压应力强度校核(经分析最大压应力在D 截面)33D 2tmax c 81240/3104001030.8MPa []1.731010z M y I --⨯⨯⨯σ===≤σ⨯⨯ 所以梁的强度满足要求14.解:①②由内力图可判断危险截面在A 处,该截面危险点在横截面上的正应力、切应力为97.8MPa M W σ=== 3p 166038.2MPa 0.02T W τπ⨯===⨯r3124.1MPa []σσ∴==≤所以刚架AB 段的强度满足要求15.解:以节点为研究对象,由平衡条件可求135.36kN F P == 1杆柔度1100010040/4li μλ⨯===p 99.3λ=== 由于p λλ>,所以压杆AB 属于大柔度杆222926cr cr 22200104010248.1kN 41004E dF A ππππσλ-⨯⨯⨯⨯===⨯=工作安全因数cr st 1248.1735.36F n n F ===> 所以1杆安全16.解:以BC 为研究对象,建立平衡方程B ()0:=∑M FC cos 02a F a q a θ⨯-⨯⨯= 0:x F =∑ B C sin 0x F F θ-=C ()0:MF =∑ B 02y a q a F a ⨯⨯-⨯= 解得: B tan 2x qa F θ= B 2y qa F = C 2cos qa F θ= 以AB 为研究对象,建立平衡方程0:x F=∑ A B 0x x F F -= :0=∑yF A B 0y y F F -=A ()0:=∑M F AB 0y M F a -⨯=解得: A tan 2x qa F θ= A 2y qa F = 2A 2qa M = 17.解:①② 由内力图可判断危险截面在固定端处,该截面危险点在横截面上的正应力、切应力为2223N 1232(2)()4F l F l F F M A W d σπ+=+= 3p 16e M T W dτπ== 222322221r323332(2)()1644()4()e F l F l M F d d d σστπππ+∴=+++18.解:以节点B 为研究对象,由平衡条件可求BC 53F F = BC 杆柔度1100020020/4li μλ⨯=== 229p 6p 2001099.320010ππλσ⨯⨯===⨯E 由于p λλ>,所以压杆AB 属于大柔度杆222926cr cr 2220010201015.5kN 42004E dF A ππππσλ-⨯⨯⨯⨯===⨯=cr st BC 15.535/3F n n F F ∴==≥= 解得: 3.1kN F ≤。