第三章 第四节_水质模型..

合集下载

流域水质模型与模拟课件

流域水质模型与模拟课件

K1L0 K1 K2
(e 1x
e2x )
2
u 2E
1
1
4EK2 u2
(2)忽略河流的弥散作用,则为
解析解
u
dL dx
K1 L
u
dC dx
K1L
K2
Cs
C
L
K1 x
L0e u
L0 e K1t
C
Cs
Cs C0
ek2t k1L0 k1 k2
e e k1t
k2t
氧垂曲线
溶解氧沿程变化曲线被称为氧垂曲线
案例分析——S-P模型
向一条河流稳定排放污水,污水排放量 Qp = 0.2 m3/s, BOD5 浓度为 30 mg/L,河流流量 Qh = 5.8 m3/s,河水平均 流速 v = 0.3 m/s,BOD5 本底浓度为 0.5 mg/L,BOD5降解 的速率常数 k1 = 0.2 d-1,纵向弥散系数 D = 10 m2/s,假定 下游无支流汇入,也无其他排污口,试求排放点下游5 km 处的 BOD5 浓度。
定义 把一个连续的一维空间划分成若干个子空间,每一个 子空间都作为一个完整混合反应器,将上一个反应器 的输出视为下一个反应器的输入
设 C1,C2,…,Ci 为相应河段的污染物浓度,每一个河 段的浓度表达式
C1
C10 1 KdV1
Q1
C2
C20 1 KdV2
Q2
Ci
Ci 0 1 KdVi
河流水质变化过程
河流水质变化过程
河流水质模型分类(按维数) 零维 一维 二维 三维
第三章 河流水质模型
零维水质模型
定义 污染物进入河流水体后,在污染物完全均匀混合断面 上,污染物的指标无论是溶解态的、颗粒态的还是总 浓度,其值均可按节点平衡原理来推求。对河流,零 维模型常见的表现形式为河流稀释模型。

第三章水质模型

第三章水质模型

水质模型
1.1 水质模型的主要问题和分类
一、 问题 (1)为了避免一条河流产生厌氧而使水质保持 在给定的条件,应当在何处建立污水处理厂? 多大规模、什么样的处理效率才能保证溶解 氧浓度不低于水质标准? (2)为了合理地利用某一区域的水资源,该区 域应当发展何种工业以及多大规模的工业才 能使该地区的水资源得以充分利用并保证水 资源不至于受污染。
C0 1 k1x
Q
u
2019/11/25
25
例题2:河流的零维模型
• 有一条比较浅而窄的河流,有一段长1km的河段,稳 定排放含酚废水1.0m3/s;含酚浓度为200mg/L,上游 河水流量为9m3/s,河水含酚浓度为0,河流的平均流 速为40km/d,酚的衰减速率常数k=2 1/d,求河段出 口处的河水含酚浓度为多少?
• 水质模型的分类:
1、按水域类型:河流、河口、河网、湖泊 2、按水质组分:单一组分、耦合组分(BOD-DO模型)、
多重组分(比较复杂,如综合水生态模型) 3、按水力学和排放条件:稳态模型、非稳态模型
水质模型按 空间维数分类
零维水质模型 一维水质模型 二维水质模型 三维水质模型
2019/11/25
0
水质模型
(4)按水质组分是否作为随机变量,可分为随 机模型和确定性模型。
水质模型还可以按模型的其他特征分类。如 按水质组分的迁移特性,可分为对流模型, 扩散模型和对流-扩散模型。按水质组分的 转化特性可分为纯迁移模型,纯反应模型和 迁移-反应模型等。
0
水质模型
1.2 水质模型的发展及建立步骤
一、水质模型的发展过程 第一阶段(1925-1965年):开发了比较简单的 生物化学需氧量(BOD)和溶解氧(DO)的双线 性系统模型,对河流和河口的水质问题采用 了一维计算方法进行模拟。 第二阶段(1965-1970年):研究发展BOD—DO 模型的多维参数估值,将水质模型扩展为六 个线性系统模型。发展河流、河口、湖泊及 海湾的水质模拟,方法从一维发展到二维。

第三章 第四节_水质模型

第三章 第四节_水质模型

3--176
cT cS cP cW 3--110
cW
cT K pcp
1
RT
KT cT KPcP 1
ln 2
t1
2
KT
(cP KP 1)
这一关系说明,吸着的净效应是降低有机毒物从水中消失的总速率,另外还可以
看到颗粒物的吸着将增加半衰期。
20
3. 稳态时的浓度(动态平衡)
假设: 有机毒物输入水体的速率为 RI, 有机毒物在水环境中消失的速率为 RL
化合物迁移转化过程:
负载过程(输入过程):人为排放,大气沉降,陆地 径流
形态过程 :酸碱平衡、吸着作用 迁移过程:沉淀-溶解作用、对流作用 、挥发作用 、
沉积作用 转化过程:生物降解 、光解作用、水解作用、氧化还
原 生物积累过程:生物浓缩 、生物放大
18
1. 有机物的消失速率
有机物因转化和挥发从水环境中消失速率(RT)是各 消失速率(Ri)的总和:
S-P模式的适用条件: ①河流充分混合段;
②污染物为耗氧性有机污染物;
③需要预测河流溶解氧状态;
④河流恒定流动;
⑤连续稳定排放。
6
(1)零维水质模型(完全混合模型)
零维是一种理想状态,把所研究的水体如一条河或一 个水库看成一个完整的体系,当污染物进入这个体系 后,立即完全均匀地分散到这个体系中,污染物的浓 度不会随时间的变化而变化。
7
零维水质模型(河流完全混合模型)
废水排入河流后与河水迅速完全混合,则混合后的污染物浓度为
8
河流完全混合模式的适用条件
①河流充分混合段; ②持久性污染物; ③河流恒速流动; ④废水连续稳定排放。
9
(2)一维水质模型

第三章水环境化学-第四节水质模型介绍

第三章水环境化学-第四节水质模型介绍
第四节 水质模型
水质模型,是一个用于描述物质在水环境中的混合、 迁移、扩散和转化过程(包括物理、化学、生物作用过 程)的数学方程(或方程组) .

水质模型的基本原理是质量守恒原理;建立水质模 型的目的是用来描述污染物数量与水环境影响因素之间 的定量关系,从而为水质分析、预测和水环境管理提供 基础的量化依据。

本节讨论的水质模型主要是:氧平衡模型、湖泊富 营养化模型和有毒有机污染物归趋模型。

一、氧平衡模型
1. Streeter-Phelps(S-P)模型(河流水质自净模型)

S-P模型的建立基于两项假设: (1)只考虑好氧微生物参加的有机物降解反应,并 认为该反应为一级反应。 (2)河流中的耗氧只是有机物降解反应引起的。有 机物的降解反应速率与河水中溶解氧(DO)的减少速 率相同,大气中的氧进入水体的复氧速率与河水中 的亏氧量 D 成正比。

极限距离:
极限溶解氧:
(DC为极限氧亏)
2.托马斯(Thomas)模型

对于一维静态河流,在S—P模型的基础上考虑沉淀、絮 凝、冲刷和再悬浮过程对BOD变化的影响,引入了BOD沉 浮系数k3 dL
u -(k1 k3 ) L dx u dD k L - k D 1 2 dx
湖泊水质模型的类型:
湖泊水质模型可划分为:多元相关模型;输入输出 模型;富营养化预测模型和扩散模型,这里仅讨论富 营养化预测模型。

2. 富营养化预测模型 对于停留时间很长、水质基本处于稳定状态的中小 型湖泊和水库,可视为一个均匀混合的水体。 沃兰伟德假定,湖泊中某种营养物的浓度随时间的 变化率,是输入、输出和在湖泊内沉积的该种营养物量 的函数,用质量平衡方程表示就是:

《水环境化学》水质模型

《水环境化学》水质模型
第四节 水质模型
水质模型的基本原理: 污染物在水环境中的物理化学和生物过程遵守质 量守恒定律,模型发展大体经历了简单的氧平衡 模型阶段、形态模型阶段和多介质环境结合生态 模型阶段。
第四节 水质模型
氧平衡模型
1。 Streeter-Phelps 模型
水体有机污染物(浓度用BOD表示)消耗速率为
L t
便可得出有机毒物在系统内的浓度和半衰期。
K1L
u
L x
K1L
Fick第二定律,河流的离散导致的BOD的变化为
u
L x
Ex
2L x 2
则BOD变化速率为:
L
2L
u x Ex x2 K1L
3.菲克第二定律:解决溶质浓度随时间变化的情况
两个相距dx垂直x轴的平面组成的微体积,J1、J2为进入、
流出两平面间的扩散通量,扩散中浓度变化为 c,则单元体
1
Z (q /V )
2. OECD公式
1
1
7
0.5
Z
V qv
0.6
1
第四节 水质模型
三、有毒污染物的归趋模型 摒弃经验参数,在模型中只出现表征化合物固有性 质的参数(实验室测定,与时间地点无关)和表征 环境特征所测量的参数。 主要考察动力学过程 酸碱平衡,水解,生物降解,光解作用,挥发,沉 淀-溶解作用,吸附解吸作用,生物浓缩,沉积作用 以及污水排放等uxEx2
x 2
K2(s
) K1L
第四节 水质模型
1。 Streeter-Phelps 模型
若忽略河流离散作用
u
L x
K1L
u
x
K2(s
) K1L
t时刻BOD和溶解氧的值分别为

第三章水环境化学

第三章水环境化学
总含盐量(TDS):
TDS=[K++Na++Ca2++Mg2+]+[HCO3-+NO3-+Cl-+SO42-
2、天然水的性质
(Characteristic of Natural Waters) (1)碳酸平衡(Balance of H2CO3) 水体中存在四种化合态:
CO2、CO32-、HCO3-、H2CO3
第三章 水环境化学
(Water Environmental Chemistry)
本章重点
1、无机污染物在水体中进行沉淀-溶解、氧化-还原、 配合作用、吸附-解吸、絮凝-沉淀的基本原理;
2、计算水体中金属存在形态;
3、pE计算;
4、有机污染物在水体中的迁移转化过程和分配系数、 挥发速率、水解速率、光解速率和生物降解速率的 计算方法。
农药
有机氯 有机磷
多氯联苯 (PCBS) 卤代脂肪烃 醚
单环芳香族化合物 苯酚类和甲酚类 酞酸酯类 多环芳烃(PAH) 亚硝胺和其他化合物
2、金属污染物 (Metal Pollutant)
Cd、 Hg、 Pb、 As、 Cr、 Cu、 Zn、 Tl、 Ni、 Be
第二节 水中无机污染物的迁移转化
强酸 弱酸 强酸弱碱盐
总酸度= [H+]+ [ HCO3-] +2[H2CO3*] - [ OH-] CO2酸度= [H+]+ [H2CO3*] - [CO32-] - [ OH-] 无机酸度= [H+]- [ HCO3-]-2 [CO32-] - [ OH-]
二、水中污染物的分布及存在形态
1、有机污染物 (Organic Pollutant)

《水质模型》课件

《水质模型》课件

确保数据质量
实际监测的水质数据质量直接影 响验证与评估的结果,因此要确 保数据的准确性和可靠性。
多种方法综合评估
单一的验证与评估方法可能存在 局限性,应采用多种方法进行综 合评估。
误差的可接受范围
应根据实际情况确定误差的可接 受范围,判断模型是否满足实际 应用的需求。
PART 06
水质模型的应用案例
总结词
预测不同水文条件下的水质变化
详细描述
通过建立水质模型,可以预测在不同水文条件下的水质变 化,为水资源管理和调度提供决策依据,确保供水安全。
水质模型在湖泊中的应用案例
总结词
模拟湖泊中污染物的分布、迁移和归宿
详细描述
水质模型在湖泊中的应用主要集中在模拟湖泊中污染物的 分布、迁移和归宿,探究不同污染物在湖泊中的扩散、转 化和归宿规律,为湖泊污染治理提供科学依据。
总结词
模拟地下水与地表水的相互关系
详细描述
地下水与地表水之间存在密切的相互关系,水质模型可以 模拟地下水与地表水的相互关系,探究不同因素之间的相 互作用和影响机制,为水资源管理和保护提供决策支持。
建立水质模型的常用软件和工具
MATLAB
01
一款功能强大的数学计算软件,可用于水质模型的建立、模拟
和数据分析。
MIKE
02
一款专业的水质模拟软件,具有强大的三维模拟功能和可视化
界面。
HYDSIM
03
一款针对河流、湖泊等水体的水质模拟软件,适用于一维和二
维模型的建立。
PART 04
水质模型的参数估计
水质模型在地下水中的应用案例
总结词
预测地下水中污染物的扩散和迁移
详细描述
地下水是重要的水资源之一,水质模型在地下水中的应用 主要集中在预测地下水中污染物的扩散和迁移,评估地下 水水质状况和变化趋势,为地下水保护提供科学依据。

(完整版)第三章水环境化学

(完整版)第三章水环境化学
化学反应平衡:
分布分数:α0 、α1、α2分别表示化合物在总量中的比 例则:
α0=[H2CO3*]/{[H2CO3*]+[HCO3]+[CO32-] } α1 =[HCO3-]/{[H2CO3*]+[HCO]+[CO32-] } α2=[CO32-]/{[H2CO3*]+[HCO3-]+[CO32-] }
2003年我国万元GDP用水量为465m3,是世界平均水平的4 倍;农业灌溉用水有效利用系数为0.4~0.5,是发达国家 的1/2;水的重复利用率为50%,发达国家已达到了85%; 全国城市供水管网漏损率达20%左右。
水危机的出现
根据水利部《21世纪中国水供求》分析,2010年 我国工业、农业、生活及生态环境总需水量在中 等干旱年为6988亿立方米,供水总量6670亿立方 米,缺水318亿立方米。这表明,2010年后我国 将开始进入严重的缺水期。
CT=[H2CO3*]+[HCO3- ]+[CO32- ]
试计算封闭体系和开放体系中各碳酸形态的表示式? (1)封闭体系
总碳酸量不变 (2)开放体系
[H2CO3*]保持不变
封闭体系:
0
H]
k1k2 [H ]2
)1
1
HCO3 CT
(1
[H k1
]
k2 [H
)1 ]
溶解于水中气体的量可能高于亨利定律表示的量。
氧在25℃ ,1.013X105Pa下溶解度计算:
由亨利定律[G(aq)]=KH*pG
不同温度下,气体在水中溶解度的计算:
CO2在25℃ ,1.013X105Pa下溶解度计算
(4)水体富营养化(eutrophication) 由于水体中氮磷营养物质的富集,引起

水环境化学5第四节水质模型.ppt(共18张PPT)

水环境化学5第四节水质模型.ppt(共18张PPT)

❖一个化合 物与水作用
通常产生较
小的、简单 的有机产物
涉及减少或增 加电子在内的 有机污染物以 及金属的反响 都强烈地影响 环境参数
第十二页,共18页。
生物累积过程
LOGO
生物浓缩作用:通 过可能的手段如通 过鱼鳃的吸附作用, 将有机污染物摄取 至生物体
第十三页,共18页。
生物放大作用:高 营养级生物以消耗 摄取有机毒物进入 生物体的低营养级 生物为食物,使生 物体中有毒物的浓 度随营养级的提高 而逐步增大
❖ 其次,模型中既要有化合物固有性质的参数,又要有表征环境特征的参数, 这样似乎应为二级反响式。但如果一但环境定下来了,那么速率的方程就又 变成准一级反响式了。为此假定有机物的存在不改变环境参数,例如不会改 变水体的pH值、对光(duì guāng)的吸附系数和细菌总数等。由于污染物在 水环境中的浓度很低,这个假定也是符合实际情况的
第八页,共18页。
LOGO
第九页,共18页。
LOGO
负载过程(guò ché ng)〔输入过程(guò ché ng)〕 污水排放速率、大气沉降以及地表径流引入有机毒物至天然水体均将直 接影响污染物在水中的浓度
形态过程:
酸碱平衡:天然水 中pH值决定着有 机酸或碱以中性态 或离子态存在的分 数,因而影响挥发 及其他作用
RT=∑Ri=c∑(Ki·Ei) 式中:Ki—第i过程的速率(sùlǜ)常数; Ei—对于第i过程在动力学上起重要租用的环境参数〔例如,水体pH值、光强、细菌总数 等〕;
c—化合物的浓度 环境参数在一定的环境地区和时间内就保持不变,这样Ki〔Ei) 就可以用准一级反响速率 (sùlǜ)常数表示
RT=c∑ki

V—湖泊容积,m3

水质模型

水质模型
第四节 水质模型
水质模型 — 可较好描述污染物在水环境中 的复杂规律及其影响因素之间的相互关系,因此 水质模型是研究水环境的重要工具。 水质模型的基本原理是根据质量守恒原理。 污染物在水环境中的物理、化学和生物过程 的各种模型,大体经历了三个发展阶段, 即简单的氧平衡模型阶段,形态模型阶段和多介质 环境结合生态模型阶段。
2.Thomas模型(忽略离散作用)
在s—P模型的基础上,增加固悬浮物的沉 淀和上浮引起的删的变化速率(K3L0),则:
二、 湖泊富营养化模型
目前常采用的有多元相关模型、输入输出模 型、富营养化预测模型和扩散模型。
前三种模型实际上只能预测未来湖泊水质的 平均发展趋势,而扩散模型可反映湖泊水质的空 间变化,预测污水人湖口附近局部水域可能出现 的严重污染程度。 实际应用时可根据湖泊的污染特征和基础资 料等情况选用相应模型。

一、 氧平衡模型
1.Streeter—Phelps模型(S—P模型)
假定河流的自净过程中存在着两个相反的过程.
a.
有机污染物在水体中先发生氧化反应,消耗水体 中的氧,其速率与其在水中的有机污染物浓度成 正比
b.
大气中的氧不断进入水体,其速率与水中的氧亏z 值成正比.
根据质量守衡原理,提出一维稳态河流的 BOD—DO藕合模型的基本方程式如下:
当人湖污染物为氮、磷等营养物时,根据质量守恒原理.湖水中污染物 的变化不仅与进出湖泊的数量有关,而且还受其沉降速率的影响。

环境化学复习总结全部(戴树桂)

环境化学复习总结全部(戴树桂)

第三章:水环境化学第一节:天然水的基本特征及污染物的存在形式1.水中八大离子:K+,Ca+,Na+,Mg+,HCO3-,NO3-,Cl-,SO4(2-)2.气体在水中的溶解度服从Henry定律:一种气体在液体中的溶解度正比于液体所接触的该种气体的分压。

溶解度【X(aq)】=K H×p G K H为气体一定温度下Henry定律常数,p G分压3.氧在水中的溶解度CO2的溶解度P150页4.:BOD(生化需氧量):在一定体积水中有机物降解所需消耗的氧的量。

BOD5=DO1-DO55.碳酸平衡P152-P157计算题重点区域★★★6.水中污染物的分布和存在形态:A.有机污染物:农药(有机氯、磷,氨基甲酸醇),多氯联苯PCBs,卤代脂肪烃,醚类,单环芳香族化合物,苯酚类和甲酚类,钛酸酯类,多环芳烃PAH,亚硝胺和其他化合物B.金属污染物:镉,汞,铅,砷,铬,铜,锌,铊等7.优先污染物:有毒物质品种繁多,在众多的污染物中筛选出潜在危险大的作为优先研究和控制对象。

8.水中的营养元素:N,P,C,O和微量元素9.水体富营养化:生物所需的N,P等营养物质大量进入湖泊,河口等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,鱼类及其他生物大量死亡的现象。

10.N/P>100,贫营养化;N/P<10,富营养化;第二节:水中无机污染物的迁移转化一,颗粒物与水之间的迁移:1水中颗粒物类别:矿物微粒和黏土矿物,金属水合氧化物,腐殖质,水体悬浮沉积物2.水环境中胶体颗粒物的吸附作用类别:表面吸附,离子交换吸附,专属吸附。

3.表面吸附:胶体具有巨大的比表面积和表面能,因此固液界面存在表面吸附作用,属于物理吸附。

4.离子交换吸附:环境中大部分胶体带负电荷,容易吸附阳离子,在吸附过程中,胶体每吸附一部分阳离子,同时也放出等量的其他阳离子。

5.专属吸附:除了化学键的作用外,尚有加强的憎水键和范德华力或氢键在起作用。

河流水质模型

河流水质模型

二.重金属水质模型
进入河流的重金属,除了前面提到的基本运动过程外,还 存在悬浮物的吸附和解吸附作用,重金属的存在形态还与水流 的PH值有关。
3.5 河口水质模型
河口的水质特征
河口:入海河流受到潮汐作用的一段水体。受到潮汐的 影响,水质显示出明显的时空特征 河口水质特征:
由海潮带来大量的溶解氧,与上游下泄的水流相汇,形成强烈的混 合作用,使污染物分布更趋近均匀。 由于潮汐的顶托作用,延长了污染物在河口的停留时间,有机物的 降解会进一步降低水中的溶解氧,使水质下降。 潮汐使河口含盐量增加。
S-P模型—描述河流水质的第一个模型,由斯特里特(H •
Streeter)和菲而普斯(E • Phelps)在1925年建立。
基本假设:河流中的BOD的衰减和溶解氧的复氧都是一级反应,反 应速度为常数;河流中的耗氧是由BOD衰减引起的,而河流中 的溶解氧来源则是大气复氧。
S-P氧垂公式
Kd L0 O= Os-D = Os[e-Kd t - e-Ka t] - D0 e-Ka t Ka - Kd
3.
1966年, K· Bosko研究了河流中生化作用的BOD衰减速度 常数Kd和实验室的数值Kc之间的关系:
Kd= Kc +
ux
H
η为河床活度常数,综合反映河流对有机物生化降解作 用的影响。 4. 稳态河流中BOD的变化规律满足下式: x -Kc Lc=L〔exp(
0
ux
)〕
5. 含氮有机物排入河流后,同样发生生物化学氧化过程: LN =LN0〔exp( -KN
-Kc*t
L-t时刻有机物的剩余生物化学需氧量
L -初始时刻有机物的总生物化学需氧量 0 Kc —含碳有机物的降解速度常数,为温度的函数

水质模型

水质模型
水质模型分类
• 水质模型是一个用于描述物质在水中混合、迁移等变 水质模型是一个用于描述物质在水中混合、 是一个用于描述物质在水中混合 化过程的数学方程,即描述水体中污染物与时间、 化过程的数学方程,即描述水体中污染物与时间、空 间的定量关系。 间的定量关系。 • 水质模型的分类: 水质模型的分类:
1、按水域类型:河流、河口、湖泊(水库)以及地下水水质 、按水域类型 河流 河口、湖泊(水库) 河流、 模型 2、按水质组分:单一组分、耦合组分(BOD-DO模型)、多 、按水质组分:单一组分、耦合组分( 模型)、 模型)、多 重组分(比较复杂,如综合水生态模型) 重组分(比较复杂,如综合水生态模型) 3、按水力学和排放条件:稳态模型、非稳态模型 、按水力学和排放条件:稳态模型、 4、根据研究水质维度:零维、一维、二维、三维水质模型。 、根据研究水质维度:零维、一维、二维、三维水质模型。
河流的混合稀释模型
在最早出现的水质完全混合断面, 在最早出现的水质完全混合断面,有:
C hQh + C P Q P C = QE + QP
式中: 河水流量, /s; 式中:Qh-河水流量, m3/s; 河水背景断的污染物浓度, mg/L; Ch-河水背景断的污染物浓度, mg/L; 废水中污染物的浓度, mg/L; CP-废水中污染物的浓度, mg/L; 废水的流量, /s; QP-废水的流量, m3/s; 完全混合的水质浓度, mg/L。 C-完全混合的水质浓度, mg/L。
x + D0 exp − K 2 86400u
( 6 ) C s = 4 6 8 /(3 1 .6 + T ) (7 ) D = C s − C (O ) (8 ) D c = C s − C c ( 9 ) D 0 = C s − C 0 (O ) (10)Co = (11)Do = C pQ p + C hQ h Q p + Qh D pQ p + D hQ h Q p + Qh

第四节 水质模型PPT课件

第四节 水质模型PPT课件
The foundation of success lies in good habits
16
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End 演讲人:XXXXXX 时 间:XX年XX月XX日
温度 1965—1970,光和作用、藻类的呼吸作用,沉降,悬
浮,计算机的应用 1970 —1975,线性化体系,生态水质模型,有限元模
型,有限差分技术 最近30年,改善模型的可靠性和评价能力
4
水质模型的发展趋势
模型不确定性的分型 基于人工神经网络的水质模型 基于地理信息系统的水质模型的研究
6
零维水质模型(完全混合模型)
零维是一种理想状态,把所研究的水体如一条河或一 个水库看成一个完整的体系,当污染物进入这个体系 后,立即完全均匀地分散到这个体系中,污染物的浓 度不会随时间的变化而变化。
7
零维水质模型(完全混合模型)
废水排入河流后与河水迅速完全混合,则混合后模式的适用条件
水质模型(water quality model)
水质模型(water quality model) 根据物质守恒原理用 数学的语言和方法描述参加水循环的水体中水质组分所发 生的物理、化学、生物化学和生态学诸方面的变化、内在 规律和相互关系的数学模型。
描述环境污染物在水中的运动和迁移转化规律,为水资源 保护服务。它可用于实现水质模拟和评价,进行水质预报 和预测,制订污染物排放标准和水质规划以及进行水域的 水质管理等,是实现水污染控制的有力工具。
5

第三章 水质模型

第三章 水质模型

2021/7/18
一般用于持久性污染物
23
稳态条件下的河流的零维模型
C C0
C0
1kt 1k( x )
86400u
式中:C-流出河段的污染物浓度,mg/L; C0-完全混合模型计算出的浓度值, mg/L; x-河段长度,m。 k-污染物的衰减速率常数 1/d; u-河水的流速,m/s; t-两个断面之间的流动时间。
36
例题3:河流的一维模型
• 一个改扩工程拟向河流排放废水,废水量为0.15m3/s, 苯酚浓度为30mg/L,河流流量为5.5m3/s,流速为0.3 m/s,苯酚背景浓度为0.5mg/L,苯酚的降解系数k= 0.2/d,纵向弥散系数D为10m2/s。求排放点下游10km处 的苯酚浓度。
2021/7/18
答案:731mg/L,超标0.46倍
20
稳态条件下基本模型的解析解
• 什么是稳态? 在环境介质处于稳定流动状态和污染源连
续稳定排放的条件下,环境中的污染物分布状 况也是稳定的。这时,污染物在某一空间位置 的浓度不随时间变化,这种不随时间变化的状 态称为稳定。
2021/7/18
21
河流的一维模型 [考虑弥散的一维稳态模型]
CC0exp[2uD(1m)x]
m 1 4k1D 86400u2
2021/7/18
• 式中:C-下游某一点的污染物浓度, mg/L ; C0-完全混合断面的污染物浓度, mg/L; u-河水的流速,m/s; D-x方向上的扩散系数, m2/s ; k1-污染物降解的速率常数(1/d); x-下游某一点到排放点的距离,m。
水质模型
水质模型
是一个用于描述物质在水环境中的混合、输 运过程的数学方程,描述水体中污染物与时 间、空间的定量关系;它通常涉及到解基本 方程的技术,而其结果的可靠性不会超过所 使用的方程的可靠性。在一个综合的河流水 质模型中,有许多影响河流水质的因素,如 物理的、化学的、水力学的、生物学以及气 象学的因素。

第11讲_水中有机污染物的迁移转化

第11讲_水中有机污染物的迁移转化
子被活化是由体系吸收光子进行的。 ❖ 分子被活化后,它可能进行光反应,也可能通过光
辐射的形式进行“去活化”再回到基态
(2) 光量子产率与直接光解速率
❖ 进行光化学反应的光子占吸收总光子数之比, 称为光量子产率(Φ)。
生成或破坏给定物种的摩尔数 体系吸收光子的摩尔数
波长为的光所引起的直接光解速率 : dc
dt
I '
K c
假设与波长无关,则全波段光所引起的直接光解速率 :
RP
dc
dt
K c d c
K
d
设, KP K d,
则, RP
dc dt
KPc
c c0 exp(KPt),
t1/ 2 0.693 / K P
(3)水中化合物的直接光解反应
水解速率与pH的关系
❖ Mabey等把水解速率归纳为
◎酸性催化过程 ◎碱性催化过程 ◎中性催化过程
❖ 水解速率为三个催化过反应速度的和:
-
d[RX] dt
K
h [RX]
Kh KA[H ] K N KB[OH-] KA[H ] K N KBK W /[H ]
式中:
KA—酸性催化二级反应水解速率常数; KB—碱性催化二级反应水解速率常数; KN—中性催化二级反应水解速率常数; Kh—在某一pH值下总水解速率常数。
速率
E(酶)+S(底物)
ES
E+P(产物)
R
dB dt
Y
dc dt
max
Bc Ks c
1 1 Ks 1
R B max max c
式中:c—污染物(底物)浓度; B—细菌浓度; Y—消耗一个单位碳所产生的生物量; µm a x — 最 大 的 比 生 长 速 率 ; K s — 半 饱 和 常 数 , 即 R / B = µm a x / 2 时 的 底 物 浓 度 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s)
最早出现的水质完全混合断面
14
二、水体富营养化预测模型 (Prediction Model of Eutrophic Water Body)
水体的富营养化是由磷、氮的化合物过多排放引 起的污染。主要表现为水体中藻类的大量繁殖,严重 影响了水质。
式中:c —湖水平均总磷浓度 mg/L, IP —输入湖泊磷的浓度 g/d PW —水力冲刷系数 PW = q / V,d-1 q —出湖河道流量 m3/d, V- 湖泊容积 m3 λP —磷的沉降速率常数 d-1 t —河水入湖时间 d
16
三、有毒有机物的归趋模型
对于一种有机物,仅仅看它的毒性是不够的,还必须考察它进入环境分解为无害 物的速度快慢如何。因此研究水环境中各种有机毒物的预测模型十分重要。 这种模型主要研究化合物的各种迁移转化过程的机理,并且特别着重动力学的研 究。如图所示,可以把图中这些迁移转化过程归纳为如下几个过程:
河流、湖泊、河口、海湾、地下水模型; 溶解氧、温度、重金属、有毒有机物、放射性模型; 对流、扩散模型以及迁移、反应、生态学模型等 。
3
水质模型的理论:质量平衡理论,灰色理论
随机理论、模糊理论
水质模型的应用:
过程模拟、水环境质量评价、环境行为预测、水生 生物污染分析、水资源科学管理规划、水环境保护
4
湖水营养化程度 总磷 是指正磷酸盐、聚合磷酸盐、可水解磷酸盐以 及有机磷的总浓度。 总氮 是指水体中氨氮、亚硝酸氮、硝酸氮和有机氮 的总浓度。 叶绿素含量 是指水体中绿色物质的含量。
15
富营养化预测模型 dc V ( ) I P qc P V c dt
dc I P (P W P ) c dt V
ux x 4 KE x 0 exp[ (1 1 )] 2 2E x ux
10
河流一维稳态模式的适用条件:
①河流充分混合段; ②非持久性污染物;
③河流恒速流动;
④废水连续稳定排放
11
(3)二维水质模型

该模型描述水质组分的迁移变化在两个 方向上是重要的,在另外一个方向上是 均匀分布的,这种水质模型称为二维水 质模型。
水质模型的发展阶段





1925-1960,S—P模型,BOD—DO耦合模型 (简单的氧平衡模型阶段) 1960—1965,新发展,引进空间变量,动力学系数、 温度 (形态模型阶段) 1965—1970,光合作用、藻类的呼吸作用,沉降,悬 浮,计算机的应用 1970 —1975,线性化体系,生态水质模型,有限元模 型,有限差分技术 (多介质环境结合生态模型阶段) 最近30年,改善模型的可靠性和评价能力
河流的混合稀释二维模型
污水注入点 背景段 河水流量QE (m3/s), 污染物浓度为CE (mg/L) 混合段 完全混合点
二维模型
均匀混合段
L
混合段总长度 完全混合段是指污染 物浓度在断面上均匀分 布的河段,当断面上任 意一点的浓度与断面平 均浓度之差小于平均浓 度的5%时,可以认为达 到均匀分布。
7
零维水质模型(河流完全混合模型)
废水排入河流后与河水迅速完全混合,则混合后的污染物浓度为
8
河流完全混合模式的适用条件
①河流充分混合段;
②持久性污染物; ③河流恒速流动; ④废水连续稳定排放。
9
(2)一维水质模型
某一水团沿水流运动方向移动,同时存在于该水团中 的污染物亦随之移动,在运动过程中,污染物由于降 解或转化成其它形式而发生浓度变化,这一变化往往 与河流状态有关如:水温、溶解氧浓度等等,一维模 型适用的假设条件是横向和垂直方向混合相当快,认 为断面中的污染物浓度是均匀的。
S-P模式的适用条件: ①河流充分混合段; ③需要预测河流溶解氧状态; ⑤连续稳定排放。
②污染物为耗氧性有机污染物; ④河流恒定流动;
6
(1)零维水质模型(完全混合模型)
零维是一种理想状态,把所研究的水体如一条河或一 个水库看成一个完整的体系,当污染物进入这个体系 后,立即完全均匀地分散到这个体系中,污染物的浓 度不会随时间的变化而变化。
第三章 水环境化学
(Water Environmental Chemistry)
第四节 水质模型 (Water Quality Model)
1
水质模型(water quality model)
水质模型(water quality model) 根据物质守恒原 理用数学的语言和方法描述参加水循环的水体中水质组分 所发生的物理、化学、生物化学和生态学诸方面的变化、 内在规律和相互关系的数学模型。
描述环境污染物在水中的运动和迁移转化规律,为水 资源保护服务。它可用于实现水质模拟和评价,进行水质 预报和预测,制订污染物排放标准和水质规划以及进行水 域的水质管理等,是实现水污染控制的有力工具。
2
水质模型的类型
1、从空间维数上分 零维、一维、二维和三维模型 2、是否含有时间变量(上游来水和排污随时间的变化情况) 可分为动态和稳态模型 3、从模型的数学特征 随机性、确定性模型和线性、非线性模型 4、从描述的水体、对象、现象、物质迁移和反应动力学性质可分为
5
一、S-P模型
S-P模型的基本假设是:①河流中的BOD的衰减和DO的复氧都是一级反应; (复氧速度与氧亏成正比。) ②反应速度是恒定的;③河流中的耗氧是由BOD 衰减引起的,而河流中的溶解氧来源则是大气复氧。
S - P模型只考虑了有机物降解和大气复氧对DO的影响,没有考虑有机物沉浮、底 泥吸附等对DO的影响,因此其结果与实际有一定的差别。有很多学者对其进行了改进, 主要有以3种模型: ( 1 ) Thomas模型:对一维稳态河流,在S---P模型基础上增加了一项因悬浮物的沉淀与 浮所引起的BOD速率变化。 ( 2 ) Camp—Dobbins模型:在Thomas的基础,增加了底泥释放BOD和地表径流所引起 的BOD变化速率和藻类光合作用和呼吸作用以及地表径流引起的溶解氧速率变化。 ( 3 ) Oconnor模型:假定总的BOD是由含碳BOD(CBOI))和含氮BOD(NBOD) 两项组成,模型不仅考虑了含碳化合物的耗氧,而且也考虑了含氮化合物的耗氧。
相关文档
最新文档