发电机轴电流的危害及防范措施

发电机轴电流的危害及防范措施
发电机轴电流的危害及防范措施

浅谈发电机轴电流的危害及其预防

浅谈发电机轴电流的危害及其预防 发表时间:2010-04-02T22:49:12.043Z 来源:《价值工程》2010年第1月上旬供稿作者:孙勇;吴全军[导读] 黑龙江省逊克县库尔滨河流域先后建起了四座水电站,属于典型的梯级开发方式孙勇Sun Yong;吴全军Wu Quanjun(黑龙江省逊克县库尔滨流域水电有限公司,逊克 164400)摘要:发电机产生轴电流会使发电机机组产生强烈振动,使轴承及镜板受损,瓦温升高,将严重影响发电机的安全运行。轴电流产生的主 要原因是轴绝缘被破坏,另外同步交流发电机的轴电流大小与负载的性质有关,发电机的无功功率增大,其轴电流也增大,相反有功功率越大,则轴电流反而越小。 关键词:轴电流;预防;瓦温升高;同心度;机械磨损;振动;绝缘破坏;有功功率;无功功率;满载;试验;气隙磁场;励磁磁场;电枢磁场;磁轭 中图分类号:TV74 文献标识码:A 文章编号:1006-4311(2010)01-0058-01 黑龙江省逊克县库尔滨河流域先后建起了四座水电站,属于典型的梯级开发方式。其中库尔滨水电建成已经25年,装有三台完全相同的1600千瓦的发电机,近来发现三号机组强烈振动,瓦温升高,经过多次更换轴承这种现象仍重复出现。但重新调整水平和同心度后仍然没有解决问题。后经详细观察轴承和镜板的损坏情况,发现并非是一般的机械磨损,而是接触面形成了波纹引起发电机振动。我们想到了可能是受轴电流的影响所致。经过细致检查,发现推力头与镜板及导瓦之间的绝缘为零,使轴电流流经轴承及镜板,造成轴承和镜板被腐蚀。经处理以后已经运行二年没有发生类似现象。 事实说明以上分析和处理方法是正确的。 为了进一步掌握发电机轴电流的形成及规律,我们作了如下观察及试验:(1)推力头对导瓦及镜板绝缘破坏是形成轴电流通路的主要原因,这些部位原设计为绝缘隔离,轴电流是无法形成的。但在运行实践中,由于润滑油油质变坏,这其中主要有两方面因素,第一,油中含有轴瓦研磨带来的金属粉沫。第二,北方地区室内外温差可达50℃这样冷却水进入冷却装置后由于温差过大造成冷却器出汗,久而久之使润滑油中含水量过大。以上两种原因使其绝缘水平急聚降低。另外由于种种原因轴承密封端盖碰轴都会使绝缘下降,轴电流直接流通。(2)为了了解轴电流大小与发电机有功、无功之间的关系,我们作了四个实验: ①使发电机的有功功率为零,改变其无功功率,在不同的无功条件下测量发电机的轴电流变化情况,测量结果见表1和曲线1。 ②使发电机的无功功率为零,改变其有功功率,在不同的有功条件下测量发电机的轴电流变化情况,其测量结果见表2及曲线2。 ③使发电机的无功功率固定在1000千瓦,改变其有功功率,在不同的有功条件下测量发电机的轴电流变化情况,其结果见表3和曲线3。 ④使发电机的有功功率满载(1600千瓦)不变,在不同的无功条件下测量发电机的轴电流变化情况,其结果见表4和曲线4。从以上的试验我们可以知道:同步交流发电机的轴电流大小与其负载的性质有关,发电机的无功功率增大,其轴电流也增大,相反有功功率越大,则轴电电流反面越小。根据电磁学理论可知,发电机的气隙磁场∮t 是电枢磁场∮l和电枢磁场∮d组成的,产生轴电流主要是电构磁场:根据发电机的负载性质,电枢磁场又可分解为纵坐标轴磁场和横坐标磁场。当发电机的负载为纯电感时,即其无功电流增大,此时电枢磁场为纵轴磁场,纵坐标磁场与转子(磁轭)是垂直交的,所以在转子轴上感应电势也大,这就是无功增在使轴电流增加的原因。当负载为纯电阻时,即有功电流增大,电枢磁场为横坐标磁场,横坐标磁场与转子(磁轭)是平行的所以在轴电势也小,这就是有功越大轴电流反而越小的原因。 所以我们可以得出以下结论: (1)要预防发电机的轴电流产生,就要避免轴绝缘被破坏。 (2)如果轴绝缘被破坏,在一定负荷条件下尽可能减小无功功率。

水轮发电机组轴电流异常原因分析及处理

水轮发电机组轴电流异常原因分析及处理 摘要:本文简要介绍了轴电流保护的功用和原理;通过采用排除法找到了轴电流异常超标的原因,得出了机组一次轴电流并无异常,而其以转频为主的二次轴电流异常问题与机组励磁电流和机组转速有关,其产生原因系转子上部的励磁空间磁场在轴CT中产生电磁感应所致;提出了行之有效的处理对策解决了机组轴电流异常超标问题。 关键词:水轮发电机组轴电流空间磁场原因分析处理对策 引言 闽东水电开发公司周宁水电站位于福建省周宁县境内,是穆阳溪梯级开发的第二级电站,装有2台设计水头为400m的混流式水轮发电机组,其单机容量为125MW,额定转速为428.6r/min。其发电机型号为SF125-14/5380,采用具有上下两个导轴承的立轴悬式结构,其推力轴承位于转子上方并布置在上机架中心体上部,上导轴承布置在上机架中心体内。 轴CT采用哈尔滨市华新电力电子设备厂生产的专用穿心式轴电流互感器,其变比为 2/0.005,饱和倍数为10倍,二次输出绕组共有2组,分别为工作绕组和试验绕组。轴CT安装在上机架中心体下部,亦即转子和上机架中心体之间。据发电机组厂家推荐,轴电流二次输出报警整定值为5mA,即对应一次轴电流为2A。 轴电流保护作为水轮发电机的一套后备保护,对机组的安全运行起着不可或缺的作用。周宁水电站两台机组自2005年4月投产以来,一直存在轴电流严重超标问题。轴电流保护装置一直在误发报警信号,根本无法起到轴电流保护作用。 1 轴电流保护的原理 由于定、转子之间的气隙不均匀以及定子铁芯的局部磁阻较大、磁路不对称等原因,导致发电机的定子磁场存在不平衡,这会使得水轮发电机的转子上产生与轴相交的交变磁通和轴向的感应电势即轴电压。在轴承绝缘良好时,轴电流是相当小的,而当轴承某一部位绝缘不良或轴电压大于油膜的击穿值时,轴电流将明显增大,该轴电流将使轴瓦发生电蚀而损伤甚至毁坏,并加速轴承润滑油的变质老化。 轴电流保护装置由轴CT和轴电流信号装置组成,主要用于监测轴电流中的工频基波50Hz 分量及其三次谐波150Hz分量。当机组运行时,如果发电机大轴中产生了轴电流,套在发电机大轴上的轴CT将该电流检测出来,送人信号装置,经过整流、滤波、放大后,当轴电流超

杂散电流腐蚀机理及防护措施

杂散电流腐蚀机理及防护措施 地铁或轻轨一般采用直流电力牵引的供电方式,一般接触网(或第三轨)为正极,而走行 轨兼作负回流线。由于回流线轨存在着电气阻抗,牵引电流在回流轨中产生压降,并且回流轨 对地存在着电位差,回流线对道床、周围土壤介质、地下建筑物、埋设管线存在着一定的泄 漏电流,泄漏电流沿地下建筑物、埋设管线等介质至负回馈点附近重新归入钢轨,此泄漏电流 即称迷流,又称地铁杂散电流。地铁迷流主要是对地铁周围的埋地金属管道、电缆金属铠装 外皮以及车站和区间隧道主体结构中的钢筋发生电化学腐蚀,它不仅能缩短金属管线的使用 寿命,而且还会降低地铁钢筋混凝土主体结构的强度和耐久性,甚至酿成灾难性的事故。如煤 气管道的腐蚀穿孔造成煤气泄漏、隧道内水管腐蚀穿孔而被迫更换等。另外,地铁迷流同时 也对地铁沿线城市公用管线和结构钢筋产生“杂散电流腐蚀”,影响地铁以外沿线公共设施的安全及寿命。本文结合我公司参与的多条地铁线施工和运营维护管理的经验,针对杂散电流 腐蚀机理及防护措施方面浅谈管见。 1杂散电流腐蚀机理 1.1杂散电流腐蚀机理 地铁迷流对埋地金属管线和混凝土主体结构中钢筋的腐蚀在本质上是电化学腐蚀,属 于局部腐蚀,其原理与钢铁在大气条件下或在水溶液及土壤电解质中发生的自然腐蚀一样,都 是具有阳极过程和阴极过程的氧化还原反应。即电极电位较低的金属铁失去电子被氧化而 变成金属离子,同时金属周围介质中电极电位较高的去极化剂,如金属离子或非金属离子得到 电子被还原。地铁直流牵引供电方式形成的迷流及其腐蚀部位如图1所示。图中,I为牵引 电流,Ix、Iy分别为走行轨回流和泄漏的迷流。 由图1可得地铁迷流所经过的路径可概括为两个串联的腐蚀电池,即 电池I:A钢轨(阳极区)+B道床、土壤+C金属管线(阴极区); 电池II:D金属管线(阳极区)+E土壤、道床+F钢轨(阴极区)。 当地铁迷流由图1中A、D(阳极区)的钢轨和金属管线部位流出时,该部位的金属铁便与其 周围电解质发生阳极过程的电解作用,此处的金属随即遭到腐蚀。概括起来可将发生腐蚀的 氧化还原反应分为两种:当金属铁周围的介质是酸性电解质,即pH<7时,发生的氧化还原反 应是析氢腐蚀,以H+为去极化剂;当金属铁周围的介质是碱性电解质,即pH≥7时,发生的氧化还原反应是吸氧腐蚀,以O2为去极化剂。 1.2杂散电流大小 当钢轨为悬浮系统时(指全线钢轨采取对地绝缘,在任何地点不直接接地或通过其它 装置接地),虽然钢轨对地采取了一系列措施,但钢轨对地泄漏电阻在工程实施中不可能无限大,一般在5~100Ω·km范围内。同时随着地铁运营时间的推移,由于受到不可避免的污染、潮湿、渗水、漏水和高地应力作用等影响,使地铁车站以及区间隧道中的轨、地绝缘性能降 低或先期防护措施失效,势必增大了由走行轨泄漏到土壤介质中的杂散电流。当列车在两牵 引变电所间运行时,钢轨电位如图2所示,列车位置处为阳极区,钢轨电位为正,牵引变电所附 近为阴极区,钢轨电位为负。钢轨电位产生的原因是牵引回流在钢轨上产生了纵向电压。研 究表明,钢轨电位的大小与钢轨泄漏电阻的关系不大,当钢轨对地泄漏电阻在5~100Ω·km范围内变化时,受从牵引变电所至列车位置处的钢轨纵向电压钳制,钢轨对地电位基本不变。杂

风力发电机轴电压轴电流的研究。

风力发电机轴电压轴电流对轴承影响及防范措施 摘要:风力发电机轴承失效频繁发生,在研究应用条件和调查轴承失效的基础上,基本确认了造成轴承失效的根本原因:双馈感应发电机变频驱动所导致的轴承过电流和相应的电腐蚀及润滑、磨损等。本文概述分析了轴电压轴电流产生的原理和造成的危害,详述了对轴电压的抑制措施,并在风电场推广应用,实践验证了轴电流抑制技术的有效性。 关键词:风力发电;轴承;轴电流;解决方案 Wind turbine generator shaft voltage and shaft current on the bearing and preventive measures CHEN Guo-qiang,CHEN Guo-zhong,XXX Shen Hua Ji Tuan Guo Hu(TongLiao)Wind power Abstract:Bearing failures of windturbine generator are occurring frequently. Based on application studies and bearing investigations main root causes have been identified: electrical current passage, electrical erosion respectively, due to frequency converter supply of doubly-fedinduction generator sand lubrication and wear related problems.This paper analyzed the cause of shaft voltage and shaft current and its related harm in doubly-fed wind turbine architecture. Measures to suppress the shaft voltage and shaft current are detailed and put into practice in pilot wind farms. The effectiveness of the measures are approved by field data. Key words:wind power generation;Bearing;Shaft current;The solution 一、研究背景 xx风电场,装有56台华锐SL1500机组,于2015年1月并网发电,在运行的2年中由于发电机轴承的损坏给机组正常运行产生了严重的影响,造成一定的经济损失。经统计2013年共计更换发电机驱动侧轴承19次,年损坏率达28%,更换非驱动侧轴承22次,年损坏率达33%,造成直接和间接经济损失近百万元,因此,研究发电机轴承的损坏原因并提出改进措施显得尤为重要。 二、研究目的

杂散电流的腐蚀及防护

一、杂散电流干扰方式 杂散电流是指在地中流动的设计之外的直流电,它来自直流的接地系统,如直流电气轨道、直流供电所接地极、电解电镀设备的接地、直流电焊设备及阴极保护系统等。其中,以城市和矿区电机车为最甚。它的干扰途径如图10-60所示。从图中可以划分三种情况: 图10-60 杂散电流干扰示意图 1—供电所2—架空线3—轨道电流4—阳极区5—腐蚀电流6—交变区7— 阴极区 1.靠近直流供电所的管道属于阳极区,杂散电流从管道上流出,造成杂散电 流电解。 2. 在干扰段中间部位的管道属于极性交变区,杂散电流可能流入也可能流 出。当电流流出时,造成腐蚀。 3.在电机车附近的管道属于阴极区,杂散电流流入管道,它起着某种程度的 阴极保护作用。 以上是一般规律。实际上杂散电流干扰源是多中心的。如矿区电机车轨道已形成网状,供电所很多,当多台机车运行时会产生杂乱无章的地下电流。作用在

管道上的杂散电流干扰电位如图10-61所示。 图10-61 杂散电流干扰电位曲线 埋地钢质管道因直流杂散电流所造成的腐蚀称为干扰腐蚀。因属电解腐蚀,所以有时也称电蚀。这是管道腐蚀穿孔的主要原因之一。例如:东北地区输油管道受直流干扰的约占5%,腐蚀穿孔事故原因的80%是由杂散电流引起的;北京地下铁路杂散电流腐蚀已经形成公害,引起了有关部门的重视。 随着阴极保护技术的推广应用,也会给地下带来大量的杂散电流。如近些年来城市地下燃气管道给水管道、地下电缆等采用了外加电流保护,在它的阳极地床附近可能会造成阳极地电场干扰。在被保护的管道(或电缆)附近可能会造成阴极电场的干扰。其干扰形式如图10-62和图10-63所示。其干扰范围与阳极排放电流和阴极保护电流密度成正比。当单组牺牲阳极输出电流大于100mA时,也应注意其干扰。 二、杂散电流腐蚀的特点 1.强度高、危害大埋地钢质管道在没有杂散电流时,只发生自然腐包蚀。大部分属腐蚀原电池型。腐蚀电池的驱动电位只有几百毫伏,而所产生的腐蚀电流只有几

2020版大型交流异步电动机轴电流的危害与防治

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020版大型交流异步电动机轴 电流的危害与防治 Safety management is an important part of production management. Safety and production are in the implementation process

2020版大型交流异步电动机轴电流的危害 与防治 大同二电厂装机容量为6×200MW,其中5,6号机为国内首批空冷式机组,与之相配套的循环泵电动机为匈牙利生产的立式电机,型号为FVKO906M16,额定功率为1200kW。与1~4号机湿冷机组循环泵电动机不同之处是电机采用滚动轴承,每台电动机有2盘导向轴承(型号为NU238)和1盘推力轴承(型号为29340E),导向轴承润滑脂原为二硫化钼现为XO(倍力)润滑脂,推力轴承润滑油为20号透平油。电动机转子轴上部安装一个巨大的风扇,静子圆周设有通风散热管。 1存在问题 5,6号机循环泵共配5台电动机,每机2台,1台备用。从1989年投产到1999年电动机运行基本良好。但此后运行状况逐步变差,

如检修后的电动机,在运行一段时间后出现异常声音,且声音逐步增大,不得不换用备用电动机。据统计,5,6号机循环泵电动机1998年检修2次,1999年4次,2000年7次,2001年9次,2002年8次,2003年10次。电动机运行周期越来越短,造成检修工作量剧增,材料消耗增大。特别是电动机每次检修需更换3盘SKF进口轴承,价值近2万元,占用日常维护费用的很大一部分。更为严重的是循环泵电动机运行不稳定,已经影响到5,6号机组的安全、稳定长周期运行。 2原因分析 经分析研究,认为循环泵电动机运行周期缩短是由于轴承受损所致,而造成循环泵电动机轴承受损的主要原因为,磁通脉动造成的轴电压累积,使油膜击穿形成轴电流,轴电流持续不断地对轴承内圈放电,导致轴承滚道产生麻点,这种损害不断扩大,在滚道上形成搓板状的伤痕。此时,电动机的异常声音非常明显,只得换用备用电动机。此外由于电动机的多次检修,风扇互换及紧力面的磨损等原因造成风扇动平衡不好,从而加剧了轴承的损坏。另外,如

发电机轴电压产生的原因、危害及处理措施

随着电源建设的迅猛发展, 单机容量的逐渐增大, 轴电压成为大型发电机采用静止自并励磁系统后的一个严重问题。研究轴电压、轴电流有着很重要的意义。轴电压的波形具有复杂的谐波脉冲分量, 对油膜绝缘特别有害当轴电压未超过油膜的破坏值时, 轴电流非常小。若轴电压超过轴承油层击穿电压, 则在轴承上形成很大的轴电流, 即所谓电火花加工电流, 将烧蚀轴承部件, 造成很大危害。磁路不对称、单极效应、电容电流、静电效应、静态励磁系统、外壳、轴等的永久性磁化均有可能引起轴电压。【文献2】 轴电压是指在电机运行时,电机两轴承端或电机转轴与轴承间所产生的电压。在正常情况下,轴电压较低时,燃气发电机转轴与轴承间存在的润滑油膜能起到较好的绝缘作用。但是,如果由于某些原因使得轴电压升高到一定数值时,就会击穿油膜放电,构成轴电流产生的回路。轴电流不但会破坏油膜的稳定性,使润滑冷却的油质逐渐劣化,同时,由于轴电流从轴承和转轴的金属接触点通过,金属接触点很小,电流密度很大,在瞬间会产生高温,使轴承局部烧熔。被烧熔的轴承合金在碾压力的作用下飞溅,将在轴承内表面烧出小凹坑。最终,轴承会因机械磨损加速而破损,严重时会烧坏轴瓦,造成事故被迫停机。【文献12】 发电机轴电压一直是存在的,但一般不高,通常不超过几V~十几V,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。 1、发电机轴电压产生的原因 (1)、磁不对称引起的轴电压它是存在于汽轮发电机轴两端的交流型电压。由于定子铁芯采用扇形冲压片、转子偏心率、扇形片的导磁率不同,以及冷却和夹紧用的轴向导槽等发电机制造和运行原因引起的磁不对称,结果产生包括轴、轴承和

水轮发电机轴电流保护装置调试报告

四川华能太平驿有限责任公司发电机轴电流保护装置 安装调试竣工报告 一、概述 四川华能太平驿水电站4#水轮发电机组单机容量65MW,水轮机为混流式,发电机为悬吊式。发电机由天津发电设备厂制造,发电机大轴直径725mm,其主要技术参数分别为: 发电机 型号:SF65—24/6440;额定容量:76.47MVA 额定电压:10500V;额定电流:4205A; 励磁电压:198V;励磁电流:1021A; 功率因素:cosΦ=0.85;额定频率:f=50HZ; 相数:3;定子接法:2Y; 绝缘等级:B(后改造为F级);励磁方式:可控硅励磁; 电机重量:457T。 二、工程概况 本工程于2012年12月至2013年3月,利用1、2、4号机组检修停电进行了发电机轴电流监测装置的安装及调试,3号机组由于检修时装置尚未到货,该机组另行找停电机会安装。从1、2、4号机组安装的情况来看,该装置工作状态稳定,测量数据准确,报警信号灵敏,且厂家承诺在3号机组安装时如有任何安装及设备本身问题,无偿提供服务,故本项目提前竣工。 1、ZDL-M轴电流监测装置功能 装置采用高性能单片机为核心控制部件构成控制器,采用空心环形互感器做为轴电流传感器,监测发电机大轴电流变化,以判断发电机轴瓦绝缘、以及定子是否电流平衡等状况。单片机实时监测轴电流传感器的变化值,该值与大轴电流呈线性变化关系,经滤波、数值变换处理后,确认轴电流超过整定值后,输出报警或跳闸信号。 2、技术参数

三、 安装工艺 1. 仪表安装:仪表安装于各机组自动制柜上方。A1、A2、B1、B2分别对应传感器1、3、2、4,报警接点接入监控系统。设置报警值0.5A ,未设置跳闸出口。 2. 传感器安装:轴电流传感器安装在能反应大轴电流的静止部分,即发电机大轴接地碳刷上方,经外部支架与发电机机架固定,将分半传感器合抱在大轴上,连接合缝处(用塞尺测量对接间隙小于0.1mm ),用螺栓将传感器与支架固定牢靠。

发电机频繁启停机危害分析

发电机频繁启停机危害分析 发电机作为电厂最重要的一次设备之一,其安全运行和检修维护一直备受关注,而威胁发电机安全运行的因素很多,文章主要阐述的是频繁启停机对发电机的危害及维护检修措施。 标签:同期并网;相位差;幅值差 目前,发电厂运行方式受电网调度和某些特殊运行方式下,存在长期调峰频繁启停机,此类发电机的运行工况是比较恶劣的。 首先,发电机会在短时间内(如一周内)多次开机并列。同期并列过程实际上对发电机存在影响,虽然自动准同期并网方式已经广泛应用,但由于目前技术还无法做到完全无扰并网,在并网瞬间存在着电压差、相角差和频率差,会对发电机定子和转子造成一定损伤(取决于压差、频差和相角差幅值),特别是会在发电机转子上产生以较大的扭矩,长时间密集同期并列会对发电机定、转子产生危害,造成诸如线圈绑扎松动,铁芯松动,端部发热等机械应力伤害和绝缘下降。具体分析如下: 1 电压幅值差对发电机造成的影响 假设带并侧U和系统侧Us 同相位,且带并侧f =系统侧fs ,而电压幅值不同,并列时会产生冲击电流。发电机阻抗是感性的,这时发电机电流Ij 属于无功性质,其有效值为Ij=Ud/jX″d。当U>Us时,Ij滞后Ud90°,该电流对发电机起去磁作用,使U降低,发电机并列后立即输出无功负荷。当U

电机轴电流的分析

电机轴电流的分析 电 机 轴 电 流 的 分 析轴电流的存在对电动机轴承的使用寿命具有极大的破坏性, 根据现场实际运 行情况,分析其产生的原因,采取装设转轴接地碳刷、加强非轴伸端轴承座与支 架的绝缘等有效措施,从而从根本上解决轴电流危害的问题。 1 轴电流的危害 在电动机运行过程中,如果在两轴承端或电机转轴与轴承间有轴电流的存 在,那么对于电机轴承的使用寿命将会大大缩短。轻微的可运行上千小时,严重 的甚至只能运行几小时,给现场安全生产带来极大的影响。同时由于轴承损坏及 更换带来的直接和间接经济损失也不可小计。 2 轴电压和轴电流的产生 (1) 磁不平衡产生轴电压 电动机由于扇形冲片、 硅钢片等叠装因素, 再加上铁芯槽、 通风孔等的存在, 造成在磁路中存在不平衡的磁阻,并且在转轴的周围有交变磁通切割转轴,在轴 的两端感应出轴电压。 (2) 逆变供电产生轴电压 电动机采用逆变供电运行时,由于电源电压含有较高次的谐波分量,在电压 脉冲分量的作用下,定子绕组线圈端部、接线部分、转轴之间产生电磁感应,使转轴的电位发生变化,从而产生轴电压。 (3) 静电感应产生轴电压 在电动机运行的现场周围有较多的高压设备,在强电场的作用下,在转轴的 两端感应出轴电压。 (4) 外部电源的介入产生轴电压由于运行现场接线比较繁杂,尤其大电机保护、 测量元件接线较多,哪一根带电线头搭接在转轴上,便会产生轴电压。 (5) 其他原因 如静电荷的积累、测温元件绝缘破损等因素都有可能导致轴电压的产生。 轴电压建立起来后,一旦在转轴及机座、壳体间形成通路,就产生轴电流。 3 轴电流对轴承的破坏 正常情况下,转轴与轴承间有润滑油膜的存在,起到绝缘的作用。对于较低 的轴电压,这层润滑油膜仍能保护其绝缘性能,不会产生轴电流。但是当轴电压 增加到一定数值时,尤其在电动机启动时,轴承内的润滑油膜还未稳定形成,轴 电压将击穿油膜而放电,构成回路,轴电流将从轴承和转轴的金属接触点通过, 由于该金属接触点很小,所以这些点的电流密度大,在瞬间产生高温,使轴承局 部烧熔,被烧熔的轴承合金在碾压力的作用下飞溅,于是在轴承内表面上烧出小 凹坑。一般由于转轴硬度及机械强度比轴承烧熔合金的高,通常表现出来的症状 是轴承内表面被压出条状电弧伤痕。 4 轴电流的防范 针对轴电流形成的根本原因,一般在现场采用如下防范措施: (1) 在轴端安装接地碳刷,以降低轴电位,使接地碳刷可靠接地,并且与 转轴可靠接触,保证转轴电位为零电位,以此消除轴电

发电机轴电压产生的原因、危害及处理措施实用版

YF-ED-J2993 可按资料类型定义编号 发电机轴电压产生的原因、危害及处理措施实用 版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

发电机轴电压产生的原因、危害及处理措施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 随着电源建设的迅猛发展, 单机容量的逐 渐增大, 轴电压成为大型发电机采用静止自并 励磁系统后的一个严重问题。研究轴电压、轴 电流有着很重要的意义。轴电压的波形具有复 杂的谐波脉冲分量, 对油膜绝缘特别有害当轴 电压未超过油膜的破坏值时, 轴电流非常小。 若轴电压超过轴承油层击穿电压, 则在轴承上 形成很大的轴电流, 即所谓电火花加工电流, 将烧蚀轴承部件, 造成很大危害。磁路不对 称、单极效应、电容电流、静电效应、静态励

磁系统、外壳、轴等的永久性磁化均有可能引起轴电压。【文献2】 轴电压是指在电机运行时,电机两轴承端或电机转轴与轴承间所产生的电压。在正常情况下,轴电压较低时,燃气发电机转轴与轴承间存在的润滑油膜能起到较好的绝缘作用。但是,如果由于某些原因使得轴电压升高到一定数值时,就会击穿油膜放电,构成轴电流产生的回路。轴电流不但会破坏油膜的稳定性,使润滑冷却的油质逐渐劣化,同时,由于轴电流从轴承和转轴的金属接触点通过,金属接触点很小,电流密度很大,在瞬间会产生高温,使轴承局部烧熔。被烧熔的轴承合金在碾压力的作用下飞溅,将在轴承内表面烧出小凹坑。最终,轴承会因机械磨损加速而破损,严重时会烧坏轴瓦,造成事故被迫停

一起水轮发电机轴电流超标故障的分析与处理过程

一起水轮发电机轴电流超标故障的分析与处理过程 金华峰1,2,伏虹润1 (1.大唐国际彭水水电开发有限公司,重庆市彭水县,409600;2.重庆大学电气工程学院) 概要:观察分析了彭水水电站3#发电机轴电流的变化特点,推断出故障原因后,经返厂处理后消除缺陷。目前天津阿尔斯特水轮发电机组在国内投运的较多,可供同类型机组在处理轴电流时参考。 关键词:轴电流;超标;分析;处理 0 引言 乌江彭水水电站设计单机容量350MW,水轮发电机组采用天津阿尔斯通公司生产的三相立轴双导半伞式、单路径向密闭自循环无风扇空冷同步发电机。发电机转子轴分为三段,即上端轴、转子中心体、下端轴,上端轴由轴身、滑转子组成,下端轴为三段焊接而成。由于发电机上端轴采用阿尔斯通公司新型滑转子结构,有别于常见的轴领结构,从而对发电机轴电流的防护提出了新的课题。 1 发电机轴电流运行情况描述 彭水水电站自2008年2月机组陆续投产以来,3#和5#发电机在运行期间有不同程度的轴电流存在。轴电流的大小随发电机输出功率的增加而增大,且在零功率输出加励磁工况下即有轴电流存在,此时3#机轴电流为0.42A,5#机轴电流为0.42A。在输出功率为300MW时3#机轴电流为1.36A,5#机轴电流为1.05A.在输出功率相同工况下,不存在轴电流的大小随发电机运行时间的增加而增大的现象。严重影响机组安全运行。针对3号机组进行现场机验,发现3号机组轴电流与发电机定子磁场关系密切,定子电流越大轴电流越大,再从机组状态监测数据发现,3号机组上导摆度超标,达到0.35mm,以上两因素表明3号机组存在定转子磁场旋转中心严重偏移缺陷,并且3号机组投产以来转子绝缘一直偏低,500V绝缘测试表测试绝缘值为0,因此需进一步采取综合措施限制轴电流的上升,保证机组的安全运行。 表1 3号机组轴电流记录

浅谈发电机轴电流的危害及其预防

浅谈发电机轴电流的危害及其预防 摘要:发电机产生轴电流会使发电机机组产生强烈振动,使轴承及镜板受损, 瓦温升高,将严重影响发电机的安全运行。轴电流产生的主要原因是轴绝缘被破坏,另外同步交流发电机的轴电流大小与负载的性质有关,发电机的无功功率增大,其轴电流也增大,相反有功功率越大,则轴电流反而越小。 关键词:轴电流;预防;瓦温升高;同心度;机械磨损;振动;绝缘破坏;有功 功率;无功功率;满载;试验;气隙磁场;励磁磁场;电枢磁场;磁轭 中图分类号:TV74 文献标识码:A 文章编号:1006-4311(2010)01-0058-01 黑龙江省逊克县库尔滨河流域先后建起了四座水电站,属于典型的梯级开发 方式。其中库尔滨水电建成已经25年,装有三台完全相同的1600千瓦的发电机,近来发现三号机组强烈振动,瓦温升高,经过多次更换轴承这种现象仍重复出现。但重新调整水平和同心度后仍然没有解决问题。后经详细观察轴承和镜板的损坏 情况,发现并非是一般的机械磨损,而是接触面形成了波纹引起发电机振动。我 们想到了可能是受轴电流的影响所致。经过细致检查,发现推力头与镜板及导瓦 之间的绝缘为零,使轴电流流经轴承及镜板,造成轴承和镜板被腐蚀。经处理以 后已经运行二年没有发生类似现象。 事实说明以上分析和处理方法是正确的。 为了进一步掌握发电机轴电流的形成及规律,我们作了如下观察及试验: (1)推力头对导瓦及镜板绝缘破坏是形成轴电流通路的主要原因,这些部位原设计为绝缘隔离,轴电流是无法形成的。但在运行实践中,由于润滑油油质变坏,这其中主要有两方面因素,第一,油中含有轴瓦研磨带来的金属粉沫。第二,北方地区室内外温差可达50℃这样冷却水进入冷却装置后由于温差过大造成冷却 器出汗,久而久之使润滑油中含水量过大。以上两种原因使其绝缘水平急聚降低。另外由于种种原因轴承密封端盖碰轴都会使绝缘下降,轴电流直接流通。 (2)为了了解轴电流大小与发电机有功、无功之间的关系,我们作了四个实验: ①使发电机的有功功率为零,改变其无功功率,在不同的无功条件下测量发 电机的轴电流变化情况,测量结果见表1和曲线1。 ②使发电机的无功功率为零,改变其有功功率,在不同的有功条件下测量发 电机的轴电流变化情况,其测量结果见表2及曲线2。 ③使发电机的无功功率固定在1000千瓦,改变其有功功率,在不同的有功 条件下测量发电机的轴电流变化情况,其结果见表3和曲线3。 ④使发电机的有功功率满载(1600千瓦)不变,在不同的无功条件下测量发电机的轴电流变化情况,其结果见表4和曲线4。 从以上的试验我们可以知道:同步交流发电机的轴电流大小与其负载的性质 有关,发电机的无功功率增大,其轴电流也增大,相反有功功率越大,则轴电电 流反面越小。根据电磁学理论可知,发电机的气隙磁场∮t 是电枢磁场∮l和电枢 磁场∮d组成的,产生轴电流主要是电构磁场:根据发电机的负载性质,电枢磁 场又可分解为纵坐标轴磁场和横坐标磁场。当发电机的负载为纯电感时,即其无 功电流增大,此时电枢磁场为纵轴磁场,纵坐标磁场与转子(磁轭)是垂直交的,所以在转子轴上感应电势也大,这就是无功增在使轴电流增加的原因。当负载为 纯电阻时,即有功电流增大,电枢磁场为横坐标磁场,横坐标磁场与转子(磁轭)

发电机失磁危害及处理方法

发电机失磁危害及处理方法 [摘要]分析了发电机失磁的原因及对电力系统和发电机本身的危害,提出了切实可行的处理方法及预防措施。 【关键词】发电机;失磁保护;判据 1、发电机失磁的原因 引起发电机失去励磁的原因很多,一般在同轴励磁系统中,常由于励磁回路断线(转子回路断线、励线机电枢回路断线励磁机励磁绕组断线等)、自动灭磁开关误碰或误掉闸、磁场变阻器接头接触不良等而使励磁回路开路,以及转子回路短路和励磁机与原动机在连接对轮处的机械脱开等原因造成失磁。大容量发电机半导体静止励磁系统中,常由于晶闸管整流元件损坏、晶体管励磁调节器故障等原因引起发电机失磁。 2、发电机失磁对发电机本身影响 (1)发电机失去励磁后,由送出无功功率变为吸收无功功率,且滑差越大,发电机的等效电抗越小,吸收的无功功率越大,致使失磁发电机的定子绕组过电流。(2)转子的转速和定子绕组合成的旋转磁场的转速出现转差后,转子表面(包括本体、槽楔、护环等)将感应出滑差频率电流,造成转子局部过热,这对发电机的危害最大。(3)异步运行时,其转矩发生周期性变化,使定、转子及其基础不断受到异常的机械力矩的冲击,机组振动加剧,威胁发电机的安全运行。(4)当失磁适度严重时,如果有关保护不及时动作,发电机及汽轮机转子将马上超速,后果不堪设想。 3、发电机失磁对电力系统影响 (1)当一台发电机发生失磁后,由于电压下降,电力系统中的其它发电机,在自动调整励磁装置的作用下,将增加其无功输出,从而使某些发电机、变压器或线路过电流,其后备保护可能因过流而误动,使事故波及范围扩大。 (2)低励和失磁的发电机,从系统中吸收无功功率,引起电力系统的电压降低,如果电力系统中无功功率储备不足,将使电力系统中邻近的某些点的电压低于允许值,破坏了负荷与各电源间的稳定运行,甚至使电力系统电压崩溃而瓦解。 (3)一台发电机失磁后,由于该发电机有功功率的摇摆,以及系统电压的下降,将可能导致相邻的正常运行发电机与系统之间,或电力系统各部分之间失步,使系统发生振荡。 (4)发电机的额定容量越大,在低励磁和失磁时,引起无功功率缺额越大,电力系统的容量越小,则补偿这一无功功率缺额的能力越小。因此,发电机的单机容量与电力系统总容量之比越大时,对电力系统的不利影响就越严重。 4、发电机失磁保护原理 (1)低电压判据 为了避免发电机失磁导致系统电压崩溃同时对厂用电的安全构成了威胁,因此设置了低电压判据。 一般电压取自主变高压母线三相电压,也可选择发电机机端三相电压。三相同时低电压判据:UppPzd 失磁导致发电机失步后,发电机输出功率在一定范围内波动,P取一个振荡周期内的平均值。

轴流式水轮机的结构

第二节 轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1— 1— 1— 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢轴;6—转 轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数 。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保

水轮发电机产品说明书-00SM

SF90-28/6800 S129-00SM 四川东风电机厂 有限公司水轮发电机 产品说明书 1. 总则 1.1 本说明书适用于SF90-28/6800水轮发电机。本发电机为立轴悬式结构,采用密闭自循环空气冷却器冷却的三相凸极同步水轮发电机。 1.2 本发电机的性能符合国家标准GB/T7894-2001《水轮发电机基本技术条件》及GB/T755-2000《旋转电机定额和性能》的规定。 1.3 本发电机由水轮机直接拖动。 2.基本规格、数据与参数 2.1 主要规格: 型号: SF90-28/6800 额定容量: 102857 kVA 额定功率: 90000 kW 额定电压: 13800 V 额定电流: 4303.2 A 额定功率因数: 0.875(滞后) 额定频率: 50 Hz 额定转速: 214.3 r/min 飞逸转速: 410 r/min 相数: 3 定子接法: Y 额定励磁电压: 285 V 额定励磁电流: 1100 A 励磁方式:自并激静止可控硅励磁 旋转方向:俯视顺时针 2.2 主要数据及参数 定子铁芯外径: Da = 6800 mm 定子铁芯内径: Di = 6060 mm

定子铁芯长: lt = 1900 mm 气隙:δ = 22 mm 转子铁芯长: lp =1890 mm 定子绕组15℃时的电阻: R1(15) = 0.004 Ω 转子绕组15℃时的电阻: R2(15) = 0.1766 Ω 定子漏抗: Xe = 0.125 标么值 纵轴同步电抗: Xd = 1.0195 标么值 纵轴瞬变电抗: Xd′ = 0.3224 标么值 纵轴超瞬变电抗: Xd″ = 0.1977 标么值 横轴同步电抗: Xq = 0.6661 标么值 横轴超瞬变电抗: Xq″ = 0.1993 标么值 负序电抗: X2 = 0.1985 标么值 保梯电抗: Xp = 0.2579 标么值 定子绕组开路时、励磁绕组的时间常数:Tdo′=7.99 s 励磁绕组短路时、定子绕组的时间常数:Ta = 0.2334 s 短路比: fko = 1.113 (计算值) 效率:η = 98.2% (计算值) 3.主要结构 本发电机为立轴悬式结构,具有上、下两个导轴承,分别在上机架中心体和下机架中心体内。推力轴承位于上机架上方的推力油槽内。采用无风扇密闭自循环空气冷却系统。它主要由定子、转子、上机架、下机架、推力轴承、辅助接线、灭火水管、制动器管路、空气冷却器装置等组成,其结构特点分述于下: 3.1 定子 定子由机座、铁芯及定子绕组等组成。由于运输条件限制,定子分为四瓣。定子在工地组圆、叠片、下线及试验。定子在机坑外组圆、叠片后,用专用吊具吊入机坑内进行下线、试验等。

燃煤火力发电机组职业病危害因素的综合识别

燃煤火力发电机组职业病危害因素的综合识别 (一)粉尘类 燃煤火力发电机组粉尘类职业病危害因素主要来源于燃煤运输与制备、锅炉炉渣和飞灰处理、脱硫装置和锅炉维修四个方面。 1燃煤运输与制备 锅炉需要燃烧大量经预处理后的煤炭,一个大型燃煤电厂每天耗煤均在数千吨至数万吨之间。因此在燃煤的运输、装卸、筛选、破碎、磨煤等机械加工过程中均产生煤尘。特别是在煤的筛分和破碎过程中,如果除尘效果不佳,即会导致严重的煤尘危害。 2锅炉炉渣和飞灰处理 煤在锅炉内燃烧后产生大量的固体废物,包括灰分和炭黑两部分。炭黑是煤未燃尽的固定碳,灰分是燃烧后剩余的固体残余物。其中随烟气排放的部分称为飞灰,从炉底排放的部分称为炉渣,统称为炉灰渣。其产生量决定于燃料煤的灰分含量和锅炉燃烧效率。化学成分主要决定于煤质化学组分。煤灰分含量高会降低煤的品质,给燃烧造成困难,可能使锅炉积灰、结渣,并磨损金属受热面。我国煤的灰分随煤种变化很大,少则4%~5%,多则60%~70%,大多数煤中灰分的组成如表2-1. 对人体的危害性主要决定于炉灰渣中游离二氧化硅含量以及某些重金属和 放射性元素的含量。因此,不同产地的煤燃烧后产生的炉灰渣对人体的危害性差异较大。我国煤炭燃烧后产生的炉灰渣游离二氧化硅含量绝大多数在10%~20%之间,少数游离二氧化硅含量超过50%,其危害性较大,应予以重视。 3脱硫装置 目前国内外用于烟气脱硫的工艺较多,但国内最常用的方法是石灰石石膏湿法脱硫工艺。 石灰石石膏湿法脱硫工艺采用石灰石作脱硫吸收剂,石灰石破碎、运输、投料等过程产生石灰石尘,石膏脱水、浓缩、运输等过程产生石膏尘。 4锅炉维修 锅炉及保温器件维修过程中需对炉体耐火材料、各类保温材料进行拆卸与修复,因此可能短时间接触高浓度的耐火泥尘、玻璃棉尘等硅酸盐类矿石尘,其中炉门密封垫等维修还可能接触石棉尘。 (二)物理性有害因素 1噪声

电动机轴电流的防范措施详细版

文件编号:GD/FS-6143 (解决方案范本系列) 电动机轴电流的防范措施 详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

电动机轴电流的防范措施详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 一、轴电压、轴电流的产生 在电动机运行过程中,如果在电机两轴承端或转轴与轴承间存在轴电流时,将会大大缩短电机轴承的使用寿命,严重时只能运行几小时。 1.磁不平衡产生轴电压 交流异步电动机在正弦交变的电压下运行时,其转子处在正弦交变的磁场中。由于电动机定转子扇形冲片、硅钢片等叠装因素,再加上铁芯槽、通风孔等的存在,在磁路中造成不平衡的磁阻。当电动机的定子铁芯圆周方向上的磁阻发生不平衡时,便产生与轴相交链的交变磁通,从而产生交变电势。当电动机转动即磁极旋转,通过各磁极的磁通发生了变化,在轴

的两端感应出轴电压,产生了与轴相交链的磁通。随着磁极的旋转,与轴相交链的磁通交替变化,这种电压是延轴向而产生的,如果与轴两侧的轴承形成闭合回路,就产生了轴电流。一般情况下这种轴电压大约为1-2V。 2.逆变供电产生轴电压 电动机采用逆变供电运行时,供电电压含有高次谐波分量,使定子绕组线圈端部、接线部分、转轴之间产生电磁感应从而产生轴电压。 异步电动机的定子绕组是嵌人定子铁芯槽内的,定子绕组的匝间以及定子绕组和电动机机座之间均存在分布电容,当通用变频器在高载频下运行时,逆变器的共模电压产生急剧变化,会通过电动机绕组的分布电容由电动机的外壳到接地端之间形成漏电流。该漏电流有可能形成放射性和传导性两类电磁干扰。而

相关文档
最新文档