光催化材料的基本原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二,光催化材料的基本原理
令狐采学
半导体在光激发下,电子从价带跃迁到导带位置,以此,在导带形成光生电子,在价带形成光生空穴。利用光生电子-空穴对的还原氧化性能,可以降解周围环境中的有机污染物以及光解水制备H2和O2。
高效光催化剂必须满足如下几个条件:(1)半导体适当的导带和价带位置,在净化污染物应用中价带电位必须有足够的氧化性能,在光解水应用中,电位必须满足产H2和产O2的要求。(2)高效的电子-空穴分离能力,降低它们的复合几率。(3)可见光响应特性:低于420nm左右的紫外光能量大概只占太阳光能的4%,如何利用可见光乃至红外光能量,是决定光催化材料能否在得以大规模实际应用的先决条件。常规anatase-type TiO2 只能在紫外光响应,虽然通过搀杂改性,其吸收边得以红移,但效果还不够理想。因此,开发可见光响应的高效光催化材料是该领域的研究热点。只是,现在的研究状况还不尽人意。
三,光催化材料体系的研究概况
从目前的资料来看,光催化材料体系主要可以分为氧化物,硫化物,氮化物以及磷化物
氧化物:最典型的主要是TiO2及其改性材料。目前,绝大部分氧化物主要集中在元素周期表中的d区,研究的比较多的是含Ti,Nb,Ta的氧化物或复合氧化物。其他的含W,Cr,Fe,Co,
Ni,Zr等金属氧化物也见报道。个人感觉,d区过渡族金属元素氧化物经过炒菜式的狂轰乱炸后,开发所谓的新体系光催化已经没有多大潜力。目前,以日本学者J. Sato为代表的研究人员,已经把目光锁定在p区元素氧化物上,如含有Ga,Ge,Sb,In,Sn,Bi元素的氧化物。
硫化物:硫化物虽然有较小的禁带宽度,但容易发生光腐蚀现象,较氧化物而言,稳定性较差。主要有ZnS,CdS等
氮化物:也有较低的带系宽度,研究得不多。有Ta/N,Nb /N等体系
磷化物:研究很少,如GaP
按照晶体/颗粒形貌分类:
(1)层状结构
**半导体微粒柱撑于石墨及天然/人工合成的层状硅酸盐
**层状单元金属氧化物半导体如:V2O5,MoO3,WO3等
**钛酸,铌酸,钛铌酸及其合成的碱(土)金属离子可交换层状结构和半导体微粒柱撑于层间的结构
**含Bi层状结构材料,(Bi2O2)2+(An-1BnO3n+1)2- (A=Ba,Bi,Pb;B=Ti,Nb,W),钙钛矿层(An-1BnO3n+1)2-夹在(Bi2O2)2+层之间。典型的有:Bi2WO6,Bi2W2O9,Bi3TiNbO9
**层状钽酸盐:RbLnTa2O7(Ln=La,Pr,Nd,Sm)
(2)通道结构
比较典型的为BaTi4O9,A2Ti6O13(A=K,Na,Li,等)。这类结构往往比层状结构材料具有更为优异的光催化性能。研究认
为,其性能主要归咎于金属-氧多面体中的非对称性,产生了偶极距,从而有利于电子和空穴分离
(3)管状结构:在钛酸盐中研究较多
(4)晶须或多晶一维材料
经由VLS,VS,LS(如水热合成,熔盐法)机制可制备一维材料;
液相合成中的软模化学法制备介孔结构的多晶一维材料
对于该种行貌的材料,没有迹象表明,其光催化性能得以提高(5)其他形状复杂的晶体或粉末颗粒
最典型的是ZnO材料,根据合成方法不同,其行貌也相当丰富四,提高光催化材料性能的途径
(1)颗粒微细纳米化
降低光生电子-空穴从体内到表面的传输距离,相应的,它们被复合的几率也大大降低。
(2)过度金属掺杂和非金属掺杂
金属:掺杂后形成的杂质能级可以成为光生载流体的捕获阱,延长载流子的寿命。Choi以21种金属离子对TiO2光催化活性的影响,表明Fe3+,Mo5+,Re5+,Ru3+,V4+,Rh3+能够提高光催化活性,其中Fe3+的效果最好。具有闭壳层电子构型的金属离子如Li+,Al3+,Mg2+,Zn2+,Ga2+,Nb5+,Sn4+对催化性影响甚微
非金属:TiO2中N,S,C,P,卤族元素等
对于掺杂,个人的认识,其有如下效应:
**电价效应:不同价离子的掺杂产生离子缺陷,可以成为载流子的捕获阱,延长其寿命;并提高电导能力
**离子尺寸效应:离子尺寸的不同将使晶体结构发生一定的畸变,晶体不对性增加,提高了光生电子-空穴分离效果
**掺杂能级:掺杂元素电负性大小的不同,带隙中形成掺杂能级,可实现价带电子的分级跃迁,光响应红移
(3)半导体复合
利用异种半导体之间的能带结构不同,复合后,如光生电子从A 粉末表面输出,而空穴从B表面导出。也即电子和空穴得到有效分离
(4)表面负载
将半导体纳米粒子固定技术在不同的载体上(多孔玻璃、硅石、分子筛等)制备分子或团簇尺寸的光催化剂。
(5)表面光敏
利用具有较高重态的具有可见光吸收的有机物,在可见光激发下,电子从有机物转移到半导体粉末的导带上。该种方法不具有实用性,一方面,有机物的稳定性值得质疑;另一考虑的是经济因素
(6)贵金属沉积
贵金属:Pt, Au, Pd, Rh,
Ni, Cu, Ag,等
(7)外场耦合
热场,电场,磁场,微波场,超声波场
目前,研究较多的是电场效应。其他场的研究也不少见,效果一般