八年级上册期末试卷测试卷附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册期末试卷测试卷附答案
一、八年级数学全等三角形解答题压轴题(难)
1.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:
()1当a 为多少时,能使得图()2中//AB CD ?说出理由,
()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.
【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.
【解析】
【分析】
(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;
(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.
【详解】
()1当a 为15时,//AB CD ,
理由:由图()2,若//AB CD ,则30
BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒,
所以,当a 为15时,//AB CD .
注意:学生可能会出现两种解法:
第一种:把//AB CD 当做条件求出a 为15,
第二种:把a 为15当做条件证出//AB CD ,
这两种解法都是正确的.
()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒
证明: ,30FEM CAM C C ∠=∠+∠∠=︒,
30FEM CAM ∴∠=∠+︒,
EFM BDC DBM ∠=∠+∠,
DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,
180,45EFM FEM M M ∠+∠+∠=∠=︒,
3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,
1803045105DBM CAM BDC ∴∠+∠+∠=︒--=︒,
所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.
【点睛】
此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.
2.(1)已知△ABC 是等腰三角形,其底边是BC,点D 在线段AB 上,E 是直线BC 上一点,且∠DEC=∠DCE,若∠A 等于60°(如图①).求证:EB=AD ;
(2)若将(1)中的“点D 在线段AB 上”改为“点D 在线段AB 的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.
【答案】(1)证明见解析(2)证明见解析
【解析】
试题分析:(1)作DF∥BC 交AC 于F ,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC 是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF 是等边三角形,∠DFC=120°,得出AD=DF ,由已知条件得出∠FDC=∠DEC,ED=CD ,由AAS 证明△DBE≌△CFD,得出EB=DF ,即可得出结论;
(2)作DF∥BC 交AC 的延长线于F ,同(1)证出△DBE≌△CFD,得出EB=DF ,即可得出结论.
试题解析:(1)证明:如图,作DF ∥BC 交AC 于F ,
则△ADF 为等边三角形
∴AD=DF ,又∵ ∠DEC=∠DCB ,
∠DEC+∠EDB=60°,
∠DCB+∠DCF=60° ,
∴ ∠EDB=∠DCA ,DE=CD ,
在△DEB 和△CDF 中,
120EBD DFC EDB DCF DE CD ,,
∠=∠=︒⎧⎪∠=∠⎨⎪=⎩
∴△DEB
≌△CDF ,
∴BD=DF ,
∴BE=AD .
(2). EB=AD 成立;
理由如下:作DF ∥BC 交AC 的延长线于F ,如图所示:
同(1)得:AD=DF ,∠FDC=∠ECD ,∠FDC=∠DEC ,ED=CD ,
又∵∠DBE=∠DFC=60°,
∴△DBE ≌△CFD
(AAS ),
∴EB=DF ,
∴EB=AD.
点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.
3.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.
(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;
(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.
【答案】(1)CF=CG;(2)CF=CG,见解析
【解析】
【分析】
(1)结论CF=CG,由角平分线性质定理即可判断.
(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.
【详解】
解:(1)结论:CF=CG;
证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,
∴CF=CG(角平分线上的点到角两边的距离相等);
(2)CF=CG.理由如下:如图,
过点C作CM⊥OA,CN⊥OB,
∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,
∴CM=CN(角平分线上的点到角两边的距离相等),
∴∠AOC=∠BOC=60º(角平分线的性质),
∵∠DCE=∠AOC,
∴∠AOC=∠BOC=∠DCE=60º,
∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,
∴∠MCN=30º+30º=60º,