计算机组成原理实验

合集下载

计算机组成原理实验报告

计算机组成原理实验报告

实验一:数字逻辑——交通灯系统设计子实验1:7 段数码管驱动电路设计(1)理解利用真值表的方式设计电路的原理;(2)利用Logisim 真值表自动生成电路的功能,设计一个 7 段数码管显示驱动。

二、实验方案设计7 段数码管显示驱动的设计方案:(1)输入:4 位二进制(2)输出:7 段数码管 7 个输出控制信号(3)电路引脚:(4)实现功能:利用 7 段数码管显示 4 位二进制的 16 进制值(5)设计方法:由于该实验若直接进行硬件设计会比较复杂,而7 段数码管显示的真值表较容易掌握,所以我们选择由真值表自动生成电路的方法完成该实验。

先分析设计 7 段数码管显示驱动的真值表,再利用Logisim 中的“分析组合逻辑电路”功能,将真值表填入,自动生成电路。

(6)真值表的设计:由于是 4输入 7输出,真值表共有 16 行。

7输出对应 7个引脚,所以需要依次对照LED 灯的引脚顺序进行设计,如下图所示(注意LED 的引脚顺序):三、实验步骤(1)在实验平台下载实验框架文件RGLED.circ;(2)在Logisim 中打开RGLED.circ 文件,选择数码管驱动子电路;(3)点击“工程”中的“分析组合逻辑电路”功能,先构建4输入和7输出,再在“真值表”中,将已设计好的真值表的所有数值仔细对照着填入表格中,确认无误后点击“生成电路”,自动生成的电路如下图所示:(4)将子电路封装为如下形式:(5)进行电路测试:·自动测试在数码管驱动测试子电路中进行测试;·平台评测自动测试结果满足实验要求后,再利用记事本打开RGLED.circ 文件,将所有文字信息复制粘贴到Educoder 平台代码区域,点击评测按钮进行测试。

四、实验结果测试与分析(1)自动测试的部分结果如下:(2)平台测试结果如下:综上,本实验测试结果为通过,无故障显示。

本实验的关键点在于:在设计时需要格外注重LED 灯的引脚顺序,保证0-9 数字显示的正确性,设计出正确的真值表。

《计算机组成原理》实验报告一

《计算机组成原理》实验报告一

《计算机组成原理》实验报告一一、实验目的:编写程序、上机调试、运行程序是进一步学习和掌握汇编语言程序设计的必要手段。

通过本次实验, 学习、掌握运行汇编程序的相关知识。

1、二、实验内容:2、熟悉实验用微机的软、硬件配置(1)硬件: Intel Celeron 500GHz CPU、128M内存(8M作共享显存)、intel810芯片主板、集成i752显卡、maxtro20G硬盘、ps/2接口鼠标、PS/2接口键盘。

(2)软件:DOS 操作系统Windows98 seMASM汇编语言程序3、熟悉运行汇编语言所需的应用程序汇编程序使MASM连接程序使用LINK程序调试程序使用DEBUG程序4、熟悉汇编语言源程序上机操作过程(1)编辑源文件(选择可使用的文本编辑器)(2)汇编源程序文件(3)连接目标文件(4)运行可执行文件5、汇编操作举例用edit编辑myprog.asm文件;(见下图)用MASM.exe编译myprog.asm生成myprog.obj文件;C:\masm\bin> masm.exe由图中可以看出:0 个警告错误0个严格错误汇编通过, 生成mygrog.obj目标文件(如果有严格错误, 汇编不能通过, 必须返回编辑状态更改程序。

)用link.exe命令链接myhprog.obj生成myprog.exe文件!C:\masm\bin> link.exeC:\masm\bin> myprog.exe运行程序结果为:屏幕显示“Hi! This is a dollar sign terminated string.”三、实验总结:1.可以在DOS或Windows状态编辑汇编源程序2.可以使用EDIT 或记事本编辑汇编源程序, 源程序必须以.asm为扩展名。

在记事本中保存文件时, 可以加双引号“myprog.asm”,文件名就不会出现myprog.asm.txt的错误3.熟悉相关的DOS 命令cd 进入子目录mkdir 建立子目录xcopy *.* /s 拷贝当前目录下所有文件及子目录format a: 格式化A盘4.在Windows 系统下运行汇编程序, 有时会有问题, 建议大家熟悉DOS命令,DOS编辑工具, 在DOS状态下运行汇编程序。

计组实验报告(共10篇)

计组实验报告(共10篇)

计组实验报告(共10篇)计组实验报告计算机组成原理实验报告一一、算术逻辑运算器1. 实验目的与要求:目的:①掌握算术逻辑运算器单元ALU(74LS181)的工作原理。

②掌握简单运算器的数据传输通道。

③验算由74LS181等组合逻辑电路组成的运输功能发生器运输功能。

④能够按给定数据,完成实验指定的算术/逻辑运算。

要求:完成实验接线和所有练习题操作。

实验前,要求做好实验预习,掌握运算器的数据传送通道和ALU 的特性,并熟悉本实验中所用的模拟开关的作用和使用方法。

实验过程中,要认真进行实验操作,仔细思考实验有关的内容,把自己想得不太明白的问题通过实验去理解清楚,争取得到最好的实验结果,达到预期的实验教学目的。

实验完成后,要求每个学生写出实验报告。

2. 实验方案:1.两片74LS181(每片4位)以并/串联形式构成字长为8为的运算器。

2.8为运算器的输出经过一个输入双向三态门(74LS245)与数据总线相连,运算器的两个数据输入端分别与两个8位寄存器(74LS273)DR1和DR2的输出端相连,DR1和DR2寄存器是用于保存参加运算的数据和运算的结果。

寄存器的输入端于数据总线相连。

3.8位数据D7~D0(在“INPUT DEVICE”中)用来产生参与运算的数据,并经过一个输出三态门(74LS245)与数据总线相连。

数据显示灯(BUS UNIT)已与数据总线相连,用来显示数据总线上所内容。

4.S3、S2、S1、S0是运算选择控制端,由它们决定运算器执行哪一种运算(16种算术运算或16种逻辑运算)。

5.M是算术/逻辑运算选择,M=0时,执行算术运算,M=1时,执行逻辑运算。

6.Cn是算术运算的进位控制端,Cn=0(低电平),表示有进位,运算时相当于在最低位上加进位1,Cn=1(高电平),表示无进位。

逻辑运算与进位无关。

7.ALU-B是输出三态门的控制端,控制运算器的运算结果是否送到数据总线BUS上。

低电平有效。

机综实验报告

机综实验报告

一、实验模块计算机组成原理实验二、实验标题计算机组成原理实验报告三、实验内容本次实验主要围绕计算机组成原理展开,通过实际操作和理论分析,加深对计算机硬件组成和工作原理的理解。

四、实验目的1. 理解计算机硬件的基本组成,包括CPU、内存、I/O接口等。

2. 掌握计算机各组成部分之间的数据传输和通信方式。

3. 了解计算机的基本工作原理,包括指令的执行过程和中断处理等。

4. 通过实验,提高动手能力和问题解决能力。

五、实验环境实验地点:学校机房实验设备:计算机组成原理实验箱(EL-JY-II型)实验软件:相关实验软件六、实验步骤及实验结果1. CPU实验(1)实验连线:将CPU、内存、I/O接口等设备按照实验要求进行连接。

(2)写数据:向内存写入数据,通过CPU读取数据并输出。

(3)实验结果:观察数据是否正确传输,分析CPU的工作原理。

2. 内存实验(1)实验连线:将内存与CPU、I/O接口等设备连接。

(2)往存储器写数据:向内存写入数据。

(3)从存储器读数据:从内存读取数据,观察数据是否正确。

(4)实验结果:分析内存的工作原理,验证内存读写功能。

3. I/O接口实验(1)实验连线:将I/O接口与CPU、内存等设备连接。

(2)实验步骤:通过I/O接口进行数据传输。

(3)实验结果:观察数据是否正确传输,分析I/O接口的工作原理。

4. 中断实验(1)实验连线:将中断设备与CPU、内存等设备连接。

(2)实验步骤:模拟中断发生,观察CPU如何响应中断。

(3)实验结果:分析中断处理过程,理解中断在计算机中的作用。

七、实验结果的分析与总结1. 通过本次实验,我们深入了解了计算机硬件的基本组成和工作原理,掌握了CPU、内存、I/O接口等设备的工作方式。

2. 实验过程中,我们学会了如何进行实验连线、数据传输和中断处理等操作,提高了动手能力和问题解决能力。

3. 实验结果表明,计算机硬件各部分之间协同工作,共同完成指令的执行和数据的处理。

华工计组实验报告

华工计组实验报告

实验名称:计算机组成原理实验实验目的:1. 理解计算机组成原理的基本概念和原理。

2. 掌握计算机各个组成部件的功能和相互关系。

3. 通过实验加深对计算机组成原理的理解和应用。

实验时间:2023年X月X日实验地点:计算机实验室实验器材:1. 计算机组成原理实验箱2. 计算机组成原理实验指导书3. 计算器4. 计算机组成原理实验数据记录表实验内容:一、实验一:计算机硬件系统结构1. 实验目的:了解计算机硬件系统的基本结构,包括中央处理器(CPU)、存储器、输入输出设备等。

2. 实验步骤:(1)观察实验箱的硬件组成,识别各个硬件部件。

(2)了解各个硬件部件的功能和相互关系。

(3)记录实验数据。

3. 实验结果与分析:实验结果显示,计算机硬件系统主要由CPU、存储器、输入输出设备等组成。

CPU负责处理数据,存储器负责存储数据,输入输出设备负责与用户进行交互。

二、实验二:CPU工作原理1. 实验目的:了解CPU的工作原理,包括指令周期、时钟周期、数据通路等。

2. 实验步骤:(1)观察实验箱的CPU模块,识别各个部件。

(2)了解CPU各个部件的功能和相互关系。

(3)进行指令周期和时钟周期的实验,记录实验数据。

3. 实验结果与分析:实验结果显示,CPU的工作原理包括指令周期和时钟周期。

指令周期是指执行一条指令所需的时间,时钟周期是指CPU中时钟信号的周期。

实验数据表明,CPU通过数据通路进行指令的执行,完成数据处理。

三、实验三:存储器工作原理1. 实验目的:了解存储器的工作原理,包括随机存储器(RAM)、只读存储器(ROM)等。

2. 实验步骤:(1)观察实验箱的存储器模块,识别各个存储器。

(2)了解存储器的功能和特点。

(3)进行存储器读写实验,记录实验数据。

3. 实验结果与分析:实验结果显示,存储器包括RAM和ROM。

RAM具有读写功能,而ROM只能读。

实验数据表明,存储器通过地址译码器进行寻址,实现数据的读写。

运算器实验-计算机组成原理

运算器实验-计算机组成原理

实验题目运算器实验一、算术逻辑运算器1.实验目的与要求:1.掌握算术逻辑运算器单元ALU(74LS181)的工作原理。

2.掌握简单运算器的数据传送通道。

3.验算由74LS181等组合逻辑电路组成的运算功能发生器运算功能。

4.能够按给定数据,完成实验指定的算术/逻辑运算。

2.实验方案:(一)实验方法与步骤1实验连线按书中图1-2在实验仪上接好线后,仔细检查正确与否,无误后才接通电源。

每次实验都要接一些线,先接线再开电源,这样可以避免烧坏实验仪。

2 用二进制数据开关分别向DR1寄存器和DR2寄存器置数。

3 通过总线输出寄存器DR1和DR2的内容。

(二)测试结果3.实验结果和数据处理:1)SW-B=0时有效,SW-B=1时无效,因其是低电平有效。

ALU-B=0时有效,ALU-B=1时无效,因其是低电平有效。

S3,S2,S1,S0高电平有效。

2)做算术运算和逻辑运算时应设以下各控制端:ALU-B SW-B S3 S2 S1 S0 M Cn DR1 DR23)输入三态门控制端SW-B和输出三态门控制端ALU-B不能同时为“0”状态,否则存在寄存器中的数据无法准确输出。

4)S3,S2,S1,S0是运算选择控制端,有它们决定运算器执行哪一种运算;M是算术逻辑运算选择,M=0时,执行算术运算,M=1时,执行逻辑运算;Cn是算术运算的进位控制端,Cn=0(低电平),表示有进位,运算时相当于在最低位上加进位1,Cn=1(高电平),表示无进位。

逻辑运算与进位无关;、ALU-B是输出三态门控制端,控制运算器的运算结果是否送到数据总线BUS上。

低电平有效。

SW-B是输入三态门的控制端,控制“INPUT DEVICE”中的8位数据开关D7~D0的数据是否送到数据总线BUS上。

低电平有效。

5)DR1、DR2置数完成后之所以要关闭控制端LDDR1、LDDR2是为了确保输入数据不会丢失。

6)A+B是逻辑运算,控制信号状态000101;A加B是算术运算,控制信号状态100101。

计算机组成原理综合实验报告

计算机组成原理综合实验报告

计算机组成原理综合实验报告一、实验目的本次计算机组成原理综合实验旨在深入理解计算机组成的基本原理,通过实际操作和设计,巩固所学的理论知识,并培养实践动手能力和创新思维。

二、实验设备本次实验所使用的设备包括计算机硬件实验平台、数字逻辑实验箱、示波器、万用表等。

三、实验内容1、运算器实验设计并实现一个简单的运算器,能够完成加法、减法、乘法和除法运算。

通过实验,深入理解运算器的工作原理,包括数据的输入、运算过程和结果的输出。

2、控制器实验构建一个基本的控制器,实现指令的读取、译码和执行过程。

了解控制器如何控制计算机的各个部件协同工作,以完成特定的任务。

3、存储系统实验研究计算机的存储系统,包括主存和缓存的工作原理。

通过实验,掌握存储单元的读写操作,以及如何提高存储系统的性能。

4、输入输出系统实验了解计算机输入输出系统的工作方式,实现与外部设备的数据传输。

四、实验步骤1、运算器实验步骤(1)确定运算器的功能和架构,选择合适的逻辑器件。

(2)连接电路,实现加法、减法、乘法和除法运算的逻辑。

(3)编写测试程序,输入不同的数据进行运算,并观察结果。

2、控制器实验步骤(1)分析控制器的工作流程和指令格式。

(2)设计控制器的逻辑电路,实现指令的译码和控制信号的生成。

(3)编写测试程序,验证控制器的功能。

3、存储系统实验步骤(1)连接存储单元,设置地址线、数据线和控制线。

(2)编写读写程序,对存储单元进行读写操作,观察数据的存储和读取情况。

(3)通过改变缓存策略,观察对存储系统性能的影响。

4、输入输出系统实验步骤(1)连接输入输出设备,如键盘、显示器等。

(2)编写程序,实现数据的输入和输出。

(3)测试输入输出系统的稳定性和可靠性。

五、实验结果1、运算器实验结果通过测试程序的运行,运算器能够准确地完成加法、减法、乘法和除法运算,结果符合预期。

2、控制器实验结果控制器能够正确地译码指令,并生成相应的控制信号,使计算机各个部件按照指令的要求协同工作。

计算机组成原理实验报告精品9篇

计算机组成原理实验报告精品9篇

计算机组成原理实验报告课程名称计算机组成原理实验学院计算机专业班级学号学生姓名指导教师20年月日实验一:基础汇编语言程序设计实验1实验目的●学习和了解TEC-XP+教学实验监控命令的用法;●学习和了解TEC-XP+教学实验系统的指令系统;●学习简单的TEC-XP+教学实验系统汇编程序设计。

2实验设备及器材●工作良好的PC机;●TEC-XP+教学实验系统和仿真终端软件PCEC。

3实验说明和原理实验原理在于汇编语言能够直接控制底层硬件的状态,通过简单的汇编指令查看、显示、修改寄存器、存储器等硬件内容。

实验箱正如一集成的开发板,而我们正是通过基础的汇编语言对开发板进行使用和学习,过程中我们不仅需要运用汇编语言的知识,还需要结合数字逻辑中所学的关于存储器、触发器等基本器件的原理,通过串口通讯,实现程序的烧录,实验箱与PC端的通讯。

4实验内容1)学习联机使用TEC-XP+教学实验系统和仿真终端软件PCEC;2)学习使用WINDOWS界面的串口通讯软件;3)使用监控程序的R命令显示/修改寄存器内容、D命令显示存储内容、E命令修改存储内容;4)使用A命令写一小段汇编程序,U命令反汇编输入的程序,用G命令连续运行该程序,用T、P命令单步运行并观察程序单步执行情况。

5实验步骤1)准备一台串口工作良好的PC机器;2)将TEC-XP+放在实验台上,打开实验箱的盖子,确定电源处于断开状态;3)将黑色的电源线一段接220V交流电源,另一端插在TEC-XP+实验箱的电源插座里;4)取出通讯线,将通讯线的9芯插头接在TEC-XP+实验箱上的串口"COM1"或"COM2"上,另一端接到PC机的串口上;5)将TEC-XP+实验系统左下方的六个黑色的控制机器运行状态的开关置于正确的位置,再找个实验中开关应置为001100(连续、内存读指令、组合逻辑、联机、16位、MACH),6)控制开关的功能在开关上、下方有标识;开关拨向上方表示"1",拨向下方表示"0","X"表示任意,其他实验相同;7)打开电源,船型开关盒5V电源指示灯亮;8)在PC机上运行PCEC16.EXE文件,根据连接的PC机的串口设置所用PC机的串口为"1"或"2",其他的设置一般不用改动,直接回车即可; (8)按一下"RESET"按键,再按一下"START"按键,主机上显示:6实验截图及思考题【例3】计算1到10的累加和。

计算机组成原理实验八简单模型计算机实验

计算机组成原理实验八简单模型计算机实验

计算机组成原理实验八简单模型计算机实验关键信息项:1、实验目的2、实验设备3、实验原理4、实验步骤5、数据记录与分析6、注意事项7、故障处理8、实验结果评估标准11 实验目的本实验旨在通过构建和操作简单模型计算机,深入理解计算机组成原理中的核心概念,包括数据存储、运算处理、指令执行等,培养学生的实际动手能力和对计算机系统的综合理解能力。

111 具体目标1111 掌握简单模型计算机的基本结构和工作原理。

1112 熟悉各种指令的编码和执行过程。

1113 能够运用所学知识设计和实现简单的计算任务。

12 实验设备121 硬件设备计算机主机、实验箱、连接线等。

122 软件工具特定的模拟软件、编程环境等。

13 实验原理131 模型计算机结构包括运算器、控制器、存储器、输入设备和输出设备等主要部件,以及它们之间的连接和协同工作方式。

132 指令系统定义了各种操作指令的格式、功能和编码方式。

133 数据存储与传输说明数据在存储器中的存储方式和在各部件之间的传输机制。

14 实验步骤141 连接实验设备按照正确的方式将计算机主机与实验箱等设备进行连接,并确保连接稳定可靠。

142 启动软件工具打开相应的模拟软件和编程环境,进行初始化设置。

143 设计指令序列根据实验要求,设计一系列的指令来完成特定的计算任务。

144 输入指令到模型计算机通过编程环境将指令输入到模型计算机的存储器中。

145 启动模型计算机运行设置相关参数,启动模型计算机执行指令序列。

146 观察运行过程和结果密切观察模型计算机在执行指令过程中的各种状态变化,以及最终的输出结果。

15 数据记录与分析151 记录实验过程中的关键数据包括指令的执行时间、存储器的状态变化、运算结果等。

152 对数据进行分析对比预期结果,分析实验数据的准确性和合理性,找出可能存在的偏差和错误原因。

16 注意事项161 设备操作规范严格按照设备的操作说明进行连接和使用,避免因不当操作造成设备损坏。

计算机组成原理运算器实验报告

计算机组成原理运算器实验报告

计算机组成原理运算器实验报告本次实验的主题为计算机组成原理运算器实验。

在本次实验中,我们通过对运算器的实验进行研究和探究,了解了计算机组成原理方面的相关知识,更加深入地认识了计算机的运作原理。

一、实验目的本次实验的目的是使学生掌握运算器的组成和运算过程,并且了解运算器在计算机中的位置和给计算机的工作。

二、实验原理1、硬件部分运算器是一种计算机硬件,可以进行算术和逻辑运算。

运算器包含一个算术逻辑单元(ALU),一个累加器和一些寄存器。

运算器可以在CPU 中实现简单的算术操作。

运算器由三部分组成:算术逻辑单元(ALU)、寄存器和累加器。

ALU 是计算机CPU中负责完成算术和逻辑运算的部分;寄存器是计算机中用来暂时存放数据的小型存储器,它是CPU中数据存储的主要形式;累加器是CPU中的一种特殊寄存器,在运算过程中用于存储运算结果。

2、软件部分计算机编程中常常涉及到算术和逻辑运算,进行这些运算的方法是在程序中调用运算器中的算术逻辑单元(ALU)。

ALU是计算机CPU中负责完成算术和逻辑运算的部分,用于进行各种算术和逻辑运算,如加、减、乘、除、与、或、非、移位等。

三、实验过程— 1 —本次实验的实验步骤如下:1、打开实验设备,将电源线插进插座,将设备的开关打开,在设备前方的显示器上能够看见下划线。

2、按下NORM键,增益调整。

将x的值设置为“0011”,将y的值设置为“1101”。

3、操作者可以选择不同的操作符。

例如选择ADD操作,将其输入。

4、按下RUN键,运算器开始计算。

5、运算结束后,在屏幕上将显示运算结果。

本例中,结果为“1000”。

四、实验结果与分析在本次实验中,我们利用运算器实现了不同运算的计算过程,并且也成功地输出了运算结果。

这一过程与计算机组成原理中的运算器的定义、作用及组成都有密切的关系。

在本次实验中,我们也进一步加深了对计算机组成原理中该重要部分的理解。

五、实验总结通过本次实验,我们深入了解了运算器在计算机中的作用及其实现方法。

计算机组成原理实验报告_6

计算机组成原理实验报告_6

计算机组成原理实习报告本学期我们开设了计算机组成原理这门课, 主要学习计算机的主要部件以及这些部件组成的原理和如何运行。

除了平时的课堂学习, 我们还有实验课帮助我们更好的了解这门课程。

用于我们实验的机器是TEC-XP, 它是由清华大学计算机系和清华大学科教仪器厂联合研制的适用于计算机组成原理课程的实验系统, 主要用于计算机组成原理和数字电路等的硬件教学实验, 同时还支持监控程序、汇编语言程序设计、BASIC高级语言程序设计等软件方面的教学实验。

它的功能设计和实现技术, 都紧紧地围绕着对课程教学内容的覆盖程度和所能完成的教学实验项目的质量与水平来进行安排。

其突出特点是硬、软件基本配置比较完整, 能覆盖相关课程主要教学内容, 支持的教学实验项目多且水平高。

其组成和实现的功能如图1所示。

图1.硬件实现的实际计算机系统图一.微程序实验步骤1.接通教学机电源。

2.将教学机左下方的5个拨动开关置为11010(单步、手动置指令、微程序、联机、16 位)。

3.按一下“RESET”按键。

4.通过16 位的数据开关SWH、SWL置入指令操作码。

5.在单步方式下, 通过指示灯观察各类基本指令的微码。

(1) 选择基本指令的A组指令中的ADD指令, 观察其节拍流程1) 置拨动开关SW=00000000 00000001;(表示指令ADD R0, R1 )2) 按RESET按键;指示灯Microp亮(只要选择微程序, 该灯在指令执行过程中一直亮),其它灯全灭;3) 按START按键;指示灯CI3~0、SCC3~0显示1110 0000, 微址和下址的指示灯全灭;(本拍完成公共操作0→PC.DI#=0)4) 按START按键;指示灯CI3~0、SCC3~0显示1110 0000, 微址指示灯显示0000 0001, 下址的指示灯全灭;(本拍完成公共操作PC→AR、PC+1→PC)5) 按START按键;指示灯CI3~0、SCC3~0显示1110 0000, 微址指示灯显示0000 0010, 下址的指示灯全灭;(本拍完成公共操作MEM→IR)6) 以上三步为公共操作, 其它指令同;7) 按START按键;指示灯CI3~0、SCC3~0显示0010 0000, 微址指示灯显示0000 0011, 下址的指示灯显示0000 0100;(本拍完成/MAP操作功能)8) 按START按键;指示灯CI3~0、SCC3~0显示0011 0000, 微址指示灯显示0000 0100, 下址的指示灯显示0011 0000 (本拍执行ADD指令, DR←DR+SR 操作)。

计算机组成原理的实验报告

计算机组成原理的实验报告

计算机组成原理的实验报告一、实验目的本次实验的主要目的是深入理解计算机组成原理中的关键概念和组件,通过实际操作和观察,增强对计算机硬件系统的认识和掌握能力。

具体包括:1、了解计算机内部各部件的工作原理和相互关系。

2、熟悉计算机指令的执行流程和数据的传输方式。

3、掌握计算机存储系统的组织和管理方法。

4、培养分析和解决计算机硬件相关问题的能力。

二、实验设备本次实验使用的设备包括计算机、逻辑分析仪、示波器以及相关的实验软件和工具。

三、实验内容1、运算器实验进行了简单的算术运算和逻辑运算,如加法、减法、与、或等操作。

观察运算结果在寄存器中的存储和变化情况。

2、控制器实验模拟了指令的取指、译码和执行过程。

分析不同指令对计算机状态的影响。

3、存储系统实验研究了内存的读写操作和地址映射方式。

考察了缓存的工作原理和命中率的计算。

4、总线实验观察数据在总线上的传输过程和时序。

分析总线竞争和仲裁的机制。

四、实验步骤1、运算器实验步骤连接实验设备,将运算器模块与计算机主机相连。

打开实验软件,设置运算类型和操作数。

启动运算,通过逻辑分析仪观察运算过程中的信号变化。

记录运算结果,并与预期结果进行比较。

2、控制器实验步骤连接控制器模块到计算机。

输入指令序列,使用示波器监测控制信号的产生和变化。

分析指令执行过程中各个阶段的状态转换。

3、存储系统实验步骤搭建存储系统实验电路。

进行内存读写操作,改变地址和数据,观察存储单元的内容变化。

分析缓存的替换策略和命中率的影响因素。

4、总线实验步骤连接总线模块,配置总线参数。

多个设备同时发送数据,观察总线的仲裁过程。

测量数据传输的时序和带宽。

五、实验结果与分析1、运算器实验结果加法、减法等运算结果准确,符合预期。

逻辑运算的结果也正确无误。

观察到在运算过程中,寄存器的值按照预定的规则进行更新。

分析:运算器的功能正常,能够准确执行各种运算操作,其内部的电路和逻辑设计合理。

2、控制器实验结果指令能够正确取指、译码和执行,控制信号的产生和时序符合指令的要求。

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告一、实验目的本次计算机组成原理实验的主要目的是深入理解计算机的内部结构和工作原理,通过实际操作和观察,巩固和拓展课堂上学到的理论知识,培养实践动手能力和解决问题的能力。

二、实验设备本次实验所使用的设备包括计算机主机、逻辑分析仪、示波器、面包板、各种芯片(如 74LS 系列、8255 芯片等)、导线若干。

三、实验内容1、算术逻辑运算单元(ALU)实验通过使用芯片搭建一个简单的算术逻辑运算单元,实现加法、减法、与、或等基本运算,并观察运算结果。

2、存储单元实验构建一个存储单元,了解存储器的读写操作和存储原理,包括随机存储器(RAM)和只读存储器(ROM)。

3、控制器实验设计一个简单的控制器,实现指令的译码和执行,理解计算机如何按照指令序列进行工作。

4、总线结构实验研究计算机内部的总线结构,包括数据总线、地址总线和控制总线,了解它们在信息传输中的作用。

四、实验原理1、算术逻辑运算单元算术逻辑运算单元是计算机中进行算术和逻辑运算的核心部件。

它通常由加法器、减法器、逻辑门等组成。

通过对输入的操作数进行相应的运算操作,产生输出结果。

2、存储单元存储器用于存储程序和数据。

随机存储器(RAM)可以随时读写,但其数据在断电后会丢失;只读存储器(ROM)中的数据在制造时就已确定,只能读取不能修改,且断电后数据不会丢失。

3、控制器控制器是计算机的指挥中心,负责从存储器中取出指令,对指令进行译码,并产生控制信号,控制各个部件的操作。

4、总线结构总线是计算机内部各个部件之间传输信息的公共通道。

数据总线用于传输数据,地址总线用于传输地址信息,控制总线用于传输控制信号。

五、实验步骤(1)按照实验电路图,在面包板上正确连接 74LS 系列芯片,如74LS181 等,构建加法器和逻辑运算电路。

(2)通过改变输入信号的值,使用逻辑分析仪观察输出结果,验证运算的正确性。

2、存储单元实验(1)使用芯片搭建随机存储器(RAM)和只读存储器(ROM)电路。

计算机组成原理 实验报告

计算机组成原理 实验报告
1算术逻辑运算单元ALU(Arithmetic and Logic Unit)
ALU主要完成对二进制数据的定点算术运算(加减乘除)、逻辑运算(与或非异或)以及移位操作。在某些CPU中还有专门用于处理移位操作的移位器。
通常ALU由两个输入端和一个输出端。整数单元有时也称为IEU(Integer Execution Unit)。我们通常所说的“CPU是XX位的”就是指ALU所能处理的数据的位数。
置S3、S2、S1、S0和Cn的数值,并观察数据总线LED显示灯显示的结果。如置S3、S2、S1、
S0为0010加法运算。
如果实验箱和PC联机操作,则可通过软件中的数据通路图来观测实验结果(软件使用说明
请看附录一),方法是:打开软件,选择联机软件的“【实验】—【运算器实验】”,打开运算器
实验的数据通路图,如图1-1-6所示。进行上面的手动操作,每按动一次ST按钮,数据通路图
会有数据的流动,反映当前运算器所做的操作,或在软件中选择“【调试】—【单节拍】”,其作
用相当于将时序单元的状态开关KK2置为‘单拍’档后按动了一次ST按钮,数据通路图也会反
映当前运算器所做的操作。
重复上述操作,并完成表1-1-2。然后改变A、B的值,验证FC、FZ的锁存功能。
计算机组成原理实验报告
实验一 基本运算器实验
一、
1.了解运算器的组成结构
2.掌握运算器的工作原理
3.深刻理解运算器的控制信号
二、
PC机一台、TD-CMA实验系统一套
三、实验原理
1.(思考题)运算器的组成包括算数逻辑运算单元ALU(Arithmetic and Logic Unit)、浮点运算单元FPU(Floating Point Unit)、通用寄存器组、专用寄存器组。

计组综合实验报告(3篇)

计组综合实验报告(3篇)

第1篇一、实验目的1. 理解计算机组成原理的基本概念和组成结构。

2. 掌握计算机各部件的功能和相互关系。

3. 通过实际操作,加深对计算机组成原理的理解和掌握。

4. 培养实验操作能力和问题解决能力。

二、实验环境1. 实验室:计算机组成原理实验室2. 硬件设备:计算机、示波器、逻辑分析仪、信号发生器等3. 软件:计算机组成原理实验软件三、实验内容1. 计算机基本组成原理实验(1)计算机系统结构实验(2)中央处理器(CPU)实验(3)存储器实验(4)输入/输出(I/O)接口实验2. 计算机组成原理综合实验(1)计算机系统结构综合实验(2)CPU组成与工作原理综合实验(3)存储器组成与工作原理综合实验(4)I/O接口组成与工作原理综合实验四、实验步骤1. 计算机基本组成原理实验(1)计算机系统结构实验1.1 打开计算机组成原理实验软件,查看计算机系统结构图。

1.2 根据实验指导书,理解计算机系统结构的组成和功能。

1.3 分析计算机系统结构中各部件之间的关系。

(2)中央处理器(CPU)实验2.1 查看CPU实验指导书,了解CPU的组成和功能。

2.2 使用示波器观察CPU的工作波形,分析CPU的工作原理。

2.3 通过实验软件,验证CPU的控制信号和时序。

(3)存储器实验3.1 查看存储器实验指导书,了解存储器的组成和功能。

3.2 使用逻辑分析仪观察存储器的读写过程,分析存储器的工作原理。

3.3 通过实验软件,验证存储器的读写操作。

(4)输入/输出(I/O)接口实验4.1 查看I/O接口实验指导书,了解I/O接口的组成和功能。

4.2 使用示波器观察I/O接口的信号波形,分析I/O接口的工作原理。

4.3 通过实验软件,验证I/O接口的通信过程。

2. 计算机组成原理综合实验(1)计算机系统结构综合实验5.1 分析计算机系统结构的组成和功能,总结各部件之间的关系。

5.2 使用实验软件,模拟计算机系统结构的工作过程。

计算机组成原理实验报告

计算机组成原理实验报告

实验1 通用寄存器实验一、实验目的1.熟悉通用寄存器的数据通路。

2.了解通用寄存器的构成和运用。

二、实验要求掌握通用寄存器R3~R0的读写操作。

三、实验原理实验中所用的通用寄存器数据通路如下图所示。

由四片8位字长的74LS574组成R1 R0(CX)、R3 R2(DX)通用寄存器组。

图中X2 X1 X0定义输出选通使能,SI、XP控制位为源选通控制。

RWR为寄存器数据写入使能,DI、OP为目的寄存器写选通。

DRCK信号为寄存器组打入脉冲,上升沿有效。

准双向I/O输入输出端口用于置数操作,经2片74LS245三态门与数据总线相连。

图2-3-3 通用寄存器数据通路四、实验内容1.实验连线2.寄存器的读写操作①目的通路当RWR=0时,由DI、OP编码产生目的寄存器地址,详见下表。

通用寄存器“手动/搭接”目的编码②通用寄存器的写入通过“I/O输入输出单元”向R0、R1寄存器分别置数11h、22h,操作步骤如下:通过“I/O输入输出单元”向R2、R3寄存器分别置数33h、44h,操作步骤如下:③源通路当X2~X0=001时,由SI、XP编码产生源寄存器,详见下表。

通用寄存器“手动/搭接”源编码④通用寄存器的读出五、实验心得通过这个实验让我清晰的了解了通用寄存器的构成以及通用寄存器是如何运用的,并且熟悉了通用寄存器的数据通路,而且还深刻的掌握了通用寄存器R3~R0的读写操作。

实验2 运算器实验一、实验目的掌握八位运算器的数据传输格式,验证运算功能发生器及进位控制的组合功能。

二、实验要求完成算术、逻辑、移位运算实验,熟悉ALU运算控制位的运用。

三、实验原理实验中所用的运算器数据通路如图2-3-1所示。

ALU运算器由CPLD描述。

运算器的输出FUN经过74LS245三态门与数据总线相连,运算源寄存器A和暂存器B的数据输入端分别由2个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。

计算机组成原理实验报告_3

计算机组成原理实验报告_3

计算机组成原理实验报告姓名:学院:学号:专业:课程:教师评定:实验一运算器实验(一) 算术逻辑运算器三、实验结果:1.按表二的要求改变实验仪S3S2S1SOMCn的开关状态, 然后通过“BUSUNIT'’显示灯B7-Bo显示相应运算的实验结果, 并把实验结果填入表二的括号里。

通道、控制参数S3.S2.S1.S0、M、Cn的状态, 并将实验结果填入括号里, 开始给定DRl和四、实验分析:(1)SW-B利ALU—B什么时候有效, 什么时候无效, 为什么?答: SW-B是输入三态门的控制端, 控制“INPUTDEVICE”中的8位数据开关D7~Do的数据是否送到数据总线BUS上。

低电平有效。

ALU-B是输出三态门的控制端, 控制运算器的运算结果是否送到数据总线BUS上。

低电平有效。

(2)做算术运算和逻辑运算时, 应设置哪些控制端。

答: M是算术/逻辑运算选择, M=0时, 执行算术运算, M=I时, 执行逻辑运算。

Cn是算术运算的进位控制端, Cn=0(低电平), 表示有进位, 运算时相当于在最低位上加进位1, Cn=l(高电平), 表示无进位。

逻辑运算与进位无关。

(3)将练习一、练习二的结果以及表二、表三的结果都要与理论值进行比较, 分析实验值和理论值是否一致, 如果不一致, 写出原因。

答:实验过程中, 出现过不一致, 原因是S3、S2、S1.S0、M的状态设置错误。

纠正后是一致的。

五、思考问题:(1)、在向DR1.DR2寄存器置数时, 要不要设置S3.S2.S1.S0、Cn、M这些控制端的状态?为什么?答:不需要。

因为控制端S3、S2、S1、S0、M都是用来控制ALU的状态的, Cn是算术运算的进位控制端, 它们都与DR1, DR2寄存器无关。

(2)、DR1置数完成后为什么要关闭控制端LDDRI? DR2置数完成后为什么要关闭控制端LDDR27?答: LDDRl是寄存器DRl存数控制信号。

计算机组成原理全部实验

计算机组成原理全部实验

计算机科学技术系王玉芬2012年11月3日基础实验部分该篇章共有五个基础实验组成,分别是:实验一运算器实验实验二存储器实验实验三数据通路组成与故障分析实验实验四微程序控制器实验实验五模型机CPU组成与指令周期实验实验一运算器实验运算器又称作算术逻辑运算单元(ALU),是计算机的五大基本组成部件之一,主要用来完成算术运算和逻辑运算。

运算器的核心部件是加法器,加减乘除运算等都是通过加法器进行的,因此,加快运算器的速度实质上是要加快加法器的速度。

机器字长n位,意味着能完成两个n位数的各种运算。

就应该由n个全加器构成n位并行加法器来实现。

通过本实验可以让学生对运算器有一个比较深刻的了解。

一、实验目的1.掌握简单运算器的数据传输方式。

2.掌握算术逻辑运算部件的工作原理。

3. 熟悉简单运算器的数据传送通路。

4. 给定数据,完成各种算术运算和逻辑运算。

二、实验内容:完成不带进位及带进位的算术运算、逻辑运算实验。

总结出不带进位及带进位运算的特点。

三、实验原理:1.实验电路图图4-1 运算器实验电路图2.实验数据流图图4-2 运算器实验数据流图3.实验原理运算器实验是在ALU UNIT单元进行;单板方式下,控制信号,数据,时序信号由实验仪的逻辑开关电路和时序发生器提供,SW7-SW0八个逻辑开关用于产生数据,并发送到总线上;系统方式下,其控制信号由系统机实验平台可视化软件通过管理CPU来进行控制,SW7-SW0八个逻辑开关由可视化实验平台提供数据信号。

(1)DR1,DR2:运算暂存器,(2)LDDR1:控制把总线上的数据打入运算暂存器DR1,高电平有效。

(3)LDDR2:控制把总线上的数据打入运算暂存器DR2,高电平有效。

(4)S3,S2,S1,S0:确定执行哪一种算术运算或逻辑运算(运算功能表见附录1或者课本第49页)。

(5)M:M=0执行算术操作;M=1执行逻辑操作。

(6)/CN :/CN=0表示ALU运算时最低位加进位1;/CN=1则表示无进位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一段) (2)检验 )检验DR1、DR2的数据输入是否正确 (P3 第一段) 、 的数据输入是否正确
功能表验证举例: 功能表验证举例: S3~S0=0100 教材P31 ALU功能表 教材 功能表 M =0(算术运算)Cn=1(无进位)A加(A·B反) (算术运算) (无进位) 加 A=01100101 B反=01011000 B=10100111B (A·B反)=01000000(逻辑与) (逻辑与)
排线连接时注意排线的 颜色,中间不要扭转。 颜色,中间不要扭转。
ALU单元与二进制控制信号开关之间的连接: 单元与二进制控制信号开关之间的连接: 单元与二进制控制信号开关之间的连接 S3~S0、Cn、M、LDDR1、LDDR2、ALU-B 、 、 、 、 、 数据单元SW-B与控制信号开关单元之间的连接。 与控制信号开关单元之间的连接。 数据单元 与控制信号开关单元之间的连接
存储器模块( 2. 存储器模块(PRAM UNIT) ) AUJ5 静态RAM6116 静态 6116 74LS273 地址寄存器 74LS161 PC寄存器 寄存器 ADJ6
地址指示灯 AD7~AD0
3. 微控器模块(MICRO-CONTROLLER UNIT) 微控器模块( ) E2PROM 2816 MK23~MK0 MD23~MD0 UA5~UA0 控存( 片 位 控存(3片,24位) 24位微代码输入开关 位微代码输入开关 24位数据指示灯 位数据指示灯 6位微地址指示灯 位微地址指示灯
时序电路( 4. 时序电路(STATE UNIT) ) Ø 时钟源 START KK2 微动开关 微动开关
5. 数据 地址开关 数据/地址开关 SWJ3 数据/地址排针 数据 地址排针 D7~D0 数据/地址指示灯及开关 数据 地址指示灯及开关 指示灯灭—— 1 指示灯灭 指示灯亮—— 0 指示灯亮
TDN-CM实验仪简介 实验仪简介
TDN-CM实验仪是一个计算机的模型机,采用单元电路结构, TDN-CM实验仪是一个计算机的模型机,采用单元电路结构, 实验仪是一个计算机的模型机 实验既可按各单元模块做,也可以将各模块连接成整机运行。 实验既可按各单元模块做,也可以将各模块连接成整机运行。 实验仪主要分为: 实验仪主要分为 运算器模块(ALU UNIT) 运算器模块( ) 主存储器模块( 主存储器模块(PRAM UNIT) ) 微控器模块( 微控器模块(MICRO-CONTROLLER UNIT) ) 时序电路模块( 时序电路模块(STATE UNIT) ) 实验板简介
C.置微地址:在二进制开关单元的S3~CN即UA5~UA0置表 置微地址:在二进制开关单元的 置表3-2 置微地址 即 置表 第一列中的“微地址” 第一列中的“微地址”。
注意:拨微地址时,微地址指示灯不会亮,按动 后地址打入, 注意:拨微地址时,微地址指示灯不会亮,按动START后地址打入, 后地址打入 微地址指示灯才会亮。 微地址指示灯才会亮。
实验二 存储器实验
“写”操作步骤P13 写 操作步骤 存储器读写规定: 存储器读写规定:
CE(CS) 0 0 WE 0 1 操作 读 写
单元地址 00H 01H 02H 03H 04H
单元内容 00010001 00010010 00010011 00010100 00010101
4.存储器的读操作 存储器的读操作 从指定的存储单元读出数据。 从指定的存储单元读出数据。 “读”操作步骤:P14 操作步骤:
电源开关 数据总线
时序电路
微 控 器 运 算 器
地址/数据开关 地址 数据开关
存储器
控制信号开关
1. 运算器模块(ALU UNIT) 运算器模块( ) SN74181 2片 组成 位算术逻辑单元 片 组成8位算术逻辑单元 74LS273 74LS299 74LS245 AUJ3 2片 分别组成数据寄存器 DR1、DR2 片 、 8位移位寄存器 位移位寄存器 2片 分别组成输入三态门和输出三态门 片 数据输出排针 数据输出排针 PC输出排针 输出排针
实验仪上所有指示灯均按此规定 6. 数据总线(BUS UNIT) 数据总线( ) 数据总线由若干排针组成, 数据总线由若干排针组成,B7~B0,总线指示灯指示总线数据 , 几点要求: 几点要求: 1.实验完成后请将排线理好放入实验箱内 实验完成后请将排线理好放入实验箱内。 1.实验完成后请将排线理好放入实验箱内。 2.将电源线放入实验箱内 将电源线放入实验箱内。 2.将电源线放入实验箱内。
*注意把八进制地址转换成二进制地址 注意把八进制地址转换成二进制地址 D.在MK23~MK0开关上置表 中的微代码。 开关上置表3-2中的微代码 在 开关上置表 中的微代码。 E.按动“START”,将微代码写入控存(注意观察微地址指示灯 。 按动“ 注意观察微地址指示灯) 按动 , 注意观察微地址指示灯 F.重复 重复C~E,直至表格输入完成 重复 , (2)校验输入的代码(P20) 校验输入的代码( 校验输入的代码 ) A. 三态开关置为READ。 三态开关置为 。 B. STEP等开关不变。 等开关不变。 等开关不变 C.用二进制开关 用二进制开关UA5~UA0置微地址。 置微地址。 用二进制开关 置微地址 D.按动“START”,读控存微代码, 按动“ 按动 ,读控存微代码, 通过MD0~MD23检验读出的控存数据是否与表 一致。 检验读出的控存数据是否与表3-2一致 通过 检验读出的控存数据是否与表 一致。
实验二完
实验三、 实验三、实验四模块图
微代码输入开关
控 存
微 地 址 指 示 灯 微 指 示 灯
CLR
实验三 微程序控制器组成实验 实验目的 掌握微程序控制器的组成原理 掌握微程序的编写、输入、 掌握微程序的编写、输入、及运行 实验设备 TDN-CM 实验系统 实验内容 1.实验电路分析图 (实验手册 实验电路分析图3-2(实验手册P18) 实验电路分析图 ) ①微代码输入开关 MK0~MK23(24位) ( 位 ②微代码指示灯 MD0~MD23 控存E ③控存 2PROM 2816(24位) ( 位 微地址( 位 微地址(6位)来自微地址寄存器 数据的前18位送数据寄存器 位送数据寄存器, 数据的前 位送数据寄存器,后6位微地址送微地址寄存器 位微地址送微地址寄存器
STEP STOP
微地址指示灯
PROM READ RUN MA5~MA0
SE6~SE1
CLR总清 总清 UA5~UA0
(3)单步运行微程序 单步运行微程序 A. STEP、STOP开关状态分别为: STEP、RUN。 STEP、STOP开关状态分别为 开关状态分别为: STEP、RUN。 三态开关置于“ 开关UA 置为1 三态开关置于“RUN” ,开关 5~UA0置为 。 B.上下拨动 上下拨动 开关一次 上下拨动CLR开关一次。 开关一次。 C.按START开关一次。 按 开关一次。 开关一次 排针取出, 插针上, 将MA5~MA0排针取出,插在 排针取出 插在SE6~SE1插针上, 插针上 按START开关一次,执行图3-5KT中间分支的微指令 (八进制 开关一次,执行图 中间分支的微指令22 八进制) 开关一次 中间分支的微指令 八进制 流程图3-5中 分支的运行: 微地址为20时 流程图 中 KT分支的运行:在微地址为 时, 分支的运行 用上下拨动开关的方式使UA 地址为: 或 。 用上下拨动开关的方式使 5~UA0地址为:21或23。 例如,要产生 ,则将UA 例如,要产生21,则将 0上下拨动一次 要产生23,则将 要产生 ,则将UA0、 UA1都上下拨动一次 、 *按一次 按一次START开关,执行一条微指令。默认执行 、22分支。 开关, 分支。 按一次 开关 执行一条微指令。默认执行20、 分支
18位数据前 位为直接控制位, 位数据前9 ④ 18位数据前9位为直接控制位,后9位作译码器输入信号 微指令共27位,在实验模块中分别有引脚插针 微指令共27位 27 ⑤微地址寄存器(6位)及微地址指示灯 微地址寄存器( 本实验中微地址来自于开关SE 本实验中微地址来自于开关SE1~SE6, ⑥总清开关CLR,将寄存器、微地址清零 总清开关CLR,将寄存器、 CLR ⑦时序信号T1、T2 时序信号T1、 T1 2.实验电路连接 实验手册P19 P19) 2.实验电路连接 图3-6 (图3-6 实验手册P19) 3.实验步骤 3.实验步骤 (1)微代码写入控存 输入表3 (1)微代码写入控存 输入表3-2 步骤: 步骤:P20 ①编程 A.三态开关 置为编程PROM状态。 三态开关: PROM状态 A.三态开关:置为编程PROM状态。 B.STEP、STOP开关状态分别为: STEP、RUN。 B.STEP、STOP开关状态分别为: STEP、RUN。 开关状态分别为
23分支 的运行: 分支RP的运行 分支 的运行: CLR——START——微地址为 时拨动 微地址为20时拨动 产生23 微地址为 时拨动UA0、UA1,产生 、 ——按动 次START,分别执行 、02、10,继续按动 按动3次 按动 ,分别执行01、 、 ,继续按动START 1次,微地址回到01,当微地址再次为 时,拨动相应的 次 微地址回到 ,当微地址再次为10时 UA5~UA0,执行: 11,将11分支执行完。 执行: , 分支执行完。 分支执行完 仿此执行12、13、14等分支。 等分支。 仿此执行 、 、 等分支 在每个分支运行时,注意观察微地址指示灯的变化, 在每个分支运行时,注意观察微地址指示灯的变化,检查微程 序流程是否与图3-5一致。 序流程是否与图 一致。 一致
A加(A·B反)=10100101=A5H(算术加) 加 (算术加) Cn=0(有进位) A加(A·B反) 加1=A6H (有进位) 加 M=1(逻辑运算) (A·B)反 (逻辑运算) ) (A·B): 01100101 · 10100111=00100101 ): (A·B)反:11011010=DAH )
实验一完
相关文档
最新文档