高频开关电源的工作原理
高频开关电源工作原理
高频开关电源工作原理高频开关电源是一种将交流电转换为直流电的电源,其工作原理如下:
1. 输入变压器:将交流电输入到变压器中,变压器将交流电转换为高频交流电。
2. 整流滤波:将高频交流电通过整流器,将其转换为直流电。
然后通过电容滤波器滤掉直流电中的脉动成分,使得输出电压更加稳定。
3. 高频开关:通过控制高频开关管的导通和截止,使得输入电流以高频脉冲的形式流入变压器。
4. 输出变压器:高频脉冲电流在输出变压器中进行变压,输出所需的稳定直流电压。
5. 输出电路:将变压器输出的电压通过输出电路输出,供电给所需的设备。
总之,高频开关电源通过控制高频开关管的导通和截止,使输入电流以高频脉冲的形式流入变压器,再经过整流滤波,最终输出稳定的直流电压,从而实现将交流电转换为直流电的目的。
1/ 1。
开关电源的工作原理和常见故障分析及维修
开关电源的工作原理和常见故障分析及维修开关电源的主要电路是由:防雷电路,输入电磁干扰滤波器(Electromagnetic Interference,简称EMI),输入整流滤波电路,功率变换电路,脉宽调制(PWM)控制器电路,输出整流滤波电路组成。
辅助电路有输入过压,欠压保护电路, 输出过压,欠压保护电路,输出过流保护电路,输出短路保护电路等。
开关电源的电路组成方框图如下:高频脉冲电压。
把高频脉冲电压送给高频变压器,高频变压器的次级(二次侧)就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波。
经高频整流滤波后便可得到我们所需的各种直流电压。
输出电压下降或者上升时,由取样电路将取样信号通过光电耦合器(PC817),送入控制电路,经过其内部调制,由控制电路的输出端将变宽的或者变窄的驱动脉冲送到开关功率管的栅极(G 极),使变换电路产生的高频脉冲方波也随之变宽或者变窄,由此改变输出电压平均值的大小,从而使直流电压基本稳定在所须的电压值上。
开关电源的电路原理图如下:开关电源电路原理图开关电源的常见故障分析及维修由于开关电源的输入部份工作在高压,大电流的状态下,故障率最高,如高压大电流整流二极管,滤波电容,开关功率管等较易损坏。
其次就是输出整流部分的整流二极管,保护二极管,滤波电容,限流电阻等较易损坏;再就是脉宽调制控制器的反馈部份和保护部份。
下面就对开关电源常见故障产生的原因作一分析及如何排除这些故障的维修方法。
一.保险丝熔断普通情况下,保险丝熔断说明开关电源的内部电路存在短路或者过流的故障。
由于开关电源工作在高电压,大电流的状态下,直流滤波和变换振荡电路在高压状态工作时间太长,电压变化相对大。
电网电压的波动,浪涌都会引起电源内电流瞬间增大而使保险丝熔断。
重点应检查电源输入端的整流二极管,高压滤波电解电容,开关功率管,UC3842本身及外围元器件等。
检查一下这些元器件有无击穿,开路,损坏,烧焦,炸裂等现象。
开关电源给电池充电的原理
开关电源给电池充电的原理主要是利用了电路开关管开通和关断的特点,通过高频电源转换电路,将交流电转变为直流电,并供给电池进行充电。
具体来说,首先,输入的交流电经过滤波电路滤除交流成分,然后通过高频发生电路产生高频率的交流电,该交流电的电压、频率都在不断变化,形成一种高频脉冲电流。
接下来,这些变化的电流通过整流电路整流为脉动直流电。
在整流的同时,控制电路会根据电池电压或电流的变化控制高频开关功率管的工作状态,产生对应于输入交流电的脉冲电流。
同时,控制电路还通过调节脉冲电功率的大小来控制充电的电流,以实现恒流充电的目的。
在充电过程中,当电池电压上升到一定值时,充电电流会减至额定值的5%左右,此时充电已基本结束。
当充电电源具有短路保护功能时,开关电源会自动进入待机保护状态,当控制电路接收到短路信号后,会自动关闭开关管并断开开关电源,从而达到安全保护的目的。
同时,开关电源对电池充电还有一定的智能性。
例如,当电池已达到满充状态时,电源不会继续提供电流。
对于没有满充状态的电池,开始进行快速充电,并保持高功率充电。
当电池达到90%的满充状态后,充电功率会逐渐减小并变为50%的额定值,这可以看作是涓流充电过程。
总的来说,开关电源给电池充电的原理是基于现代电子技术的一种电源转换方式,它可以将交流电转变为直流电并供给电池进行充电。
这个过程中,控制电路的角色非常重要,它可以根据电池状态调整电源输出,并实现安全保护和智能充电的功能。
铁路通信系统中高频开关电源原理及使用维护分析
・ 5 ・
铁 路通信 系统 中高频开 关 电源原理及 使 用维 护分析
韩 友
( 哈 尔滨铁 路 局 哈 尔滨 通 信段 , 黑龙 江 哈 尔滨 1 5 1 0 0 1 )
摘 要: 随着铁路速度的不 断提升 , 对铁路 通信提 出了更 高的要求。只有保证铁路 通信 系统稳定的运行 , 才能确保铁 路运输的安全 性 。将 高频 开关电源在铁路通信 系统 中进行应 用, 能够有效的提 高铁路通信 系统通信电源的可靠性和安全性。分析 了高频开关电源工作 原理及特 点, 并对高频开关电源在铁路通信 系统 中的应 用的重要性进行 了具体 阐述 。 关键词 : 铁 路 通信 系统 ; 高频开关电源; 整流器; 整 流 模 块 电解液减少 , 也会导致 电池寿命缩短。因此 , 一定要保证蓄电 高频开关 电源主要整流模块 、 配 电模块 、 主监控 单元及交 流配 增 高, 保持在 2 5  ̄ C 左右最佳 。在夏天应该采取开启空调制 电单元等几 部分组成 , 利用其代替传 统的硅整流 电源 系统 , 不 仅有 池组室 的温度 , 利于扩大交流输入 电压 的范 围,而且能够有效 的提高 电压频率 , 确 冷 的方式来保障温度不会过高 , 而冬天由于机器本身发热机房温度 但在寒冷 的北方也需要 开启空调来维持温度 。 保 电源 系统稳 定 、 可靠的运行 , 而且对系统维护 管理 带来 了更 多便 不会太低 , 利 。将 高频开关 电源在铁路通信系统 中进行应用 , 能够有效的提高 2 . 4正确使用 电修工具 在对高频开关电源系统进行检修过程中 , 很大一部分检修人员 铁 路通 信系统运行 的高效性和可靠性 , 对保证铁 路运 输安全具 有非 缺乏安全意识。因此需要对检修工作进行规 范 , 检修人员要使用专 常重要的意义。 1 高 频 开 关 电源 工 作 原 理 及特 点 用 的绝缘工具 , 并采取有效 的安全 防护措施 , 确保检修过程 中人员 高频开关 电源其 模块能够叠加输 出 , 动态 响应较快 , 输 出波纹 安全能够得到保障。 极低 , 而且 自身重量轻 , 体 积小 , 效 率较 高 , 因此在铁路通信系统 中, ( 1 ) 散热装置 的维护 。 高频开关电源开始取代磁饱和式 电源或是相控电源。 高频开关 电源大多都是使用 的通信电源的散 热装 置 , 散热风道 虽然有的强迫风冷 , 有的是 自然冷却 , 但对其 自 在开关 断开时 , 输入电源能量 的供 给会 中断 , 开关接通后 , 输入 大多是对外 敞开式 , 电源通过滤波电路和开关 提供能量给负载 , 因此为了能够连续为负 身散热性能还是具有较高的要求 。 因此在设置时散热装置的通风 口 载提供能量 , 需要 在开关 电源 中配套 一套 储能装置 , 将一部分 能量 应该朝 向相对空旷的地方 , 以免影 响散热 的效果 。同时还要定期对 以免灰尘堵住通 风 口导致散热装置 出现故障。 储 存起 来。 在开关接通 时, 存储 能量则被提供给负载 。 当开关按一定 通 风 口进行清扫 , 频率开关 时 , 越长 时间 的导通输 出电压则会越高 , 反之输 出电压则 ( 2 ) 新设 备 、 新技术经试用后才可投入使用 。 会变得较低 。通 常情况下 当开关频率一定时 , 可以通过高速开关电 在铁路通信系统中 , 一些新设备 和新技术投入使用前需要进行 源时间的长短来控 制输 出电压 的高低 , 同时通过改变开关 频率来改 试运行 , 通过试运行后才能投入到系统 中进行使用 。特别是铁路通 变 输 出 电压 的 高 低 。 信 系统的安全 、 稳定运行直接关 系到铁路 运输 的安全 , 因此需 要确 高频开关电源中应用 了硅链分级调压装置 , 这不仅有效的提高 保新设备和新技术应用的安全性后才能投入使用 , 有效的保证铁路 了电源稳流稳压的精 确度 ,而且避免 了蓄 电池欠充及过充现象 , 确 通 信系统运行的可靠性 , 确保铁路通讯 的畅通性。 保了蓄电池运行 的稳定性 。 在高频开关电源系统 中还应用 了微机绝 2 . 5合理使用电池检测仪 缘监测 装置 ,能够实 时监测到线路对地 电阻和直流系统绝缘情况 , 目前 , 铁路通信 系统的小站机房一般都是无人值守 的 , 依 靠电 在较短的时间内就 能够查 找到直流系统接地故障。 同时并联运行时 池巡检仪在线检测装置对 电池 的运行状况进行监控。 电池巡检仪能 整流模块均充功能也有将我保证 了系统运行 的安全性 。 在整流模块 够 检测 电池组 的温度是否正常 , 还 能发现 出现故障 的电池 , 但是 , 电 中设置有微 处理器 , 不仅设备 的先进性有 了较大程度 的提 高 , 而且 池巡检仪也不是万能的 , 比如说 , 当直流系统工作 时 , 由于输出的电 给安装调试带来更多的便利 。 在面板上即能够 直接看到模块 的运行 流比较小 , 电池巡检仪就很难观测 到电池容量不足等 问题 。 因此 , 我 状况。高频开关 电源还具有效率高 、 功率 因小女生高及可闻噪声低 们在实 际操作 中可以运用 电池巡检仪来减少我们 的工作量 ,但是 , 等特点。另外 , 高频开关 电源 中采用的是 N + I 模块冗余并联组合的 我 们不能完全依靠 它来 发现问题 ,适当的定期人为检查也是 必须 供 电方式 , 即一个高频开关出现问题后 , 其负载 由会 由其余 的承担 , 的。 有效的保证 了供 电的持续性 , 而且电源成本也得 以降低。 2 . 6适当接入负载 , 进行均流调节 2 高频 通 信 开 关 电 源 系统 的使 用 和 维 护 在整流模块处于 自动控制 的状态下的时候 , 设备 的运行完全 由 2 . 1 保持工作 区域 内的清洁卫 生 内部监控模块来控制 , 均流 自动调节 , 人为无法对其进行干涉 。 如果 高频开关 电源系统在运行过程 中对环 境 的清 洁度具有较 高的 是在设备运行相对正常的情况下 , 就不需要人为来对整流 电模块进 要求。 由于铁路 车站工作 区域 内灰尘较多 , 大量灰尘的沉积会对机 行均 流调节 。 但是 , 当系统处于轻载状态时 , 我们会发现有些模块电 器的正常散热带来影 响 , 因此需要做好 高频开关电源工作环境区域 流会很小 , 有 的系统会认为模块无输 出 , 上报告警信息 , 这时 , 我们 内的清洁 , 定期进行清扫 , 同时还要保持环境 的干燥 。 就 可以适 当的接入一些负载 , 使设备 的运行更加稳定 。 2 . 2 加强专业人员对设备的检查 3 结 论 高频通信开关 电源运行 的稳定性 , 需要 我们 在 日常工作中要做 将高频开关 电源在铁路通信系统中进行应用 , 有效 的提高 了铁 好故障预防 , 加强对设备检查的力度 。 在实际工作中 , 要对蓄电池工 路通信 系统 电源的可靠性 和安全性 。 而且高频开关电源系统在实际 作温度 、 电压 、 电阻等情况进行定期检查 , 确保各项参 数都在规定的 操 作过程 中更为直观 和简单 , 功能更具 多样性 , 有效 的保证 了铁路 范围内 , 而且接头处没有松动及漏 液等问题 发生。新 安装的电池需 通信 系统运行的稳定性和可靠性 , 保证 了铁路运营过程 中信息传递 要 对电池容 量进行考核后才能进行使用 。对于高负载运作情况下 、 的畅通性 , 为铁路运营安全奠定了良好 的基础。 雷雨季节及 高温天气下 , 要加强对设备 的检查力度 , 保证设备 运行 参 考 文 献 的安全。 【 1 ] 王忠贵. 高频 开关电源的技 术与发展『 J 】 . 科技资讯 , 2 0 1 0 ( 1 0 ) : 3 . 2 . 3保证蓄电池组室温度 正常 [ 2 ] 刘建 国, 彭岩磊. 智能高频开关 电源 系统在 变电站的应用I J ] . 中州
高频开关的工作原理
高频开关的工作原理
高频开关是一种基于电子元件的电子设备,其工作原理是通过快速开关的方式来控制电路中的电流流动情况。
具体来说,高频开关通过周期性地开关电流,使其以高频率进行快速转换。
高频开关通常由一个或多个晶体管、场效应管或其他类似的电子元件组成。
这些元件被配置成一个开关电路,其工作原理可以简单地用开关的两个状态来描述:开或关。
当高频开关处于“开”状态时,电路中的电流可以流动。
此时,高频开关的导通状态会导致电流通过开关电路。
相反,当高频开关处于“关”状态时,电路中的电流无法流动。
此时,高频开关的断开状态会阻止电流通过开关电路。
高频开关的工作原理基于快速的开关速度。
通过将开关的状态快速转换,高频开关可以控制电流的流动情况。
例如,高频开关可以以高频率在开和关状态之间切换,使电流以相应的高频率进行流动或停止流动。
利用高频开关的工作原理,我们可以实现各种电子设备和应用,如轻松实现高频调制解调、变频器、逆变器等。
高频开关的工作原理是现代电子技术的重要基础之一,它在无线通信、电子制造等领域中得到了广泛的应用,并对现代社会的发展产生了深远的影响。
机载高频开关电源工作原理及设计简介
机载高频开关电源工作原理及设计简介机载高频开关电源产品专门用于输入交流400Hz的场合,这是特意为了满足军用雷达、航空航天、舰船、机车以及导弹发射等专门用途所设计的。
应用户要求,研制出机载高频开关电源产品对电子武器装备系统的国产化,打破国际封锁,提高我军装备的机动性,高性能都有重要的意义。
机上可供选择的供电电源有两种输入方式:115V/400Hz中频交流电源和28V 直流电源。
两种输入方式各有优缺点,115V/400Hz电源波动小,需要器件的耐压相对较高;而28V直流电源却相反,一般不能直接提供给设备部件使用,必须将供电电源进行隔离并稳压成为需要的直流电源才能使用。
机载电源的使用环境比较恶劣,必须适应宽范围温度正常工作,并能经受冲击、震动、潮湿等应力筛选试验,因此设计机载电源的可靠性给我们提出了更高的要求。
下面主要介绍115V/400Hz中频交流输入方式所研制的开关电源,它的输出电压270~380Vdc可以调节,输出功率不小于3000W,环境温度可宽至-40℃~+55℃,完全适应军品级电源的需要。
系统构成及主回路设计图1所示为整机电路原理框图。
它的设计主要通过升压功率因数校正电路及DC/DC变换电路两部分完成。
115Vac/400Hz中频交流电源经输入滤波,通过升压功率因数校正(PFC)电路完成功率因数校正及升压预稳、能量存储,再通过DC/DC半桥变换、高频整流滤波器、输出滤波电路以及反馈控制回路实现270~380Vdc可调节输出稳压的性能要求。
图1 整机电路原理框图升压功率因数校正电路主要使输入功率因数满足指标要求,同时实现升压预稳功能。
本部分设计兼顾功率因数电路达到0.92的要求,又使DC/DC输入电压适当,不致使功率因数校正电路工作负担过重,因此设定在330~350Vdc。
隔离式DC/DC变换器电路拓扑结构形式主要有以下几种:正激、反激、全桥、半桥和推挽。
反激和正激拓扑主要应用在中小功率电源中,不适合本电源的3000W输出功率要求。
基于48V直流高频开关电源简单原理图解
基于48V直流高频开关电源简单原理图解 什幺是48v开关电源 48V开关电源就是用通过电路控制开关管进行高速的导通与截止。
将直流电转化为高频率的交流电提供给变压器进行变压。
从而产生所需要的一组或多组电压,转化为高频交流电的原因是高频交流在变压器变压电路中的效率要比50HZ高很多,所以开关变压器可以做的很小,而且工作时不是很热。
成本很低.如果不将50HZ变为高频那开关电源就没有意义,什幺是48v开关电源,48V开关电源大体可以分为隔离和非隔离两种,隔离型的必定有开关变压器,而非隔离的未必一定有。
48v直流开关电源电路图 48V直流电源是什幺 48V直流电源是什幺,能使电路中形成恒定电流的装置,如干电池、蓄电池、直流发电机等,称为直流电源。
而在48V电压范围内又叫48V直流电源。
直流电源有正负两个电极,正极的电势高,负极的电势低;当两个电极与电路连通后,直流电源能维持两个电极之间的恒定电势差,从而在外电路中形成由正极到负极的恒定电流。
要使直流电源两极间的电势差保持恒定必须使在外电路中由正极流到负极的正电荷,在电源内部逆着电场力的方向,由负极返回到正极去。
这个过程不能靠静电力,只能靠某种与静电力方向相反的“非静电力”来实现。
因此,电源就是一种提供非静电力的装置,通过非静电力做功,把非电能转化为正负电极之间的电势能。
48v开关电源原理介绍 48v开关电源是把交流电转换成直流的,具有特殊的信号能很好的控制开关管,这样就可以把直流能加到变压器最基本的一级之上,变压器感应到以后就会经过处理然后供给负载,然后一部分会反馈给控制电路,这样能保证输出的比较稳定。
48v开关电源在交流电经过的时候会经过一些特殊的东西来过滤一些对电网有干扰的额东西,这样能保证电网能不受干扰,正常运行。
48v开关电源在功率一样大的时候,如果开关频率高,则变压器的体积是比较小的,但是开关管的要求是高的。
开关电源的结构和基本原理
电路构造
抗干扰电路(EMI) 整流滤波电路 开关电路 PFC电路 保护电路
PFC电路
PFC(Power Factor Correction)即“功率因数校正”,主要用来表 征电子产品对电能旳利用效率。功率因数越高,阐明电能旳利用 效率越高。经过CCC认证旳电脑电源,都必须增长PFC电路。
PC电源采用老式旳桥式整流、电容滤波电路会使AC输入电流产生 严重旳波形畸变,向电网注入大量旳高次谐波,所以网侧旳功率 因数不高,仅有0.6左右,并对电网和其他电气设备造成严重谐波 污染与干扰。
开关电路——关键部分
关键元件:PS-ON、精密稳压电路 、 PWM 控制芯片、推动管(由两个 三极管构成)、驱动变压器、主开关变压器
原理:由推动管和PWM (Pulse Width Modulation)控制芯片构成振荡 电路,产生高频脉冲
待机时,主板启闭控制电路旳电子开关断开, PWM 控制芯片封锁调制 脉宽输出,使T2推动变压器,T1主电源开关变压器停振,停止提供输出 电压。
EMI电路
整流滤波电路
高压整流滤波电路由一种全桥(由四个二极管构成) 和两个高压电解电容构成。把220V交流市电转换成 300V直流电。
低压整流滤波电路由二极管和电解电容构成(12V使用 快恢复管,5V和3.3V使用肖特基管 ),如图。
辅助电源电路
关键元件:辅助电源开关管、辅助电源变压器、三端稳压器 300V直流电经过辅助电源开关管成为脉冲电流,经过辅助电源变压器输出 二组交流电压,一路经整流 、三端稳压器稳压,输出+5VSB,加到主板上 作为待机电压;另一路经整流滤波,输出辅助+12V电源,供给PWM等芯 片工作。
输入电压能够从90V到270V; 高于0.99旳线路功率因数,并具有低损耗和高可靠等优 点; 有源PFC电路可用作辅助电源,而不再需要辅助电源变 压器; 输出不随输入电压波动变化,所以可取得高度稳定旳 输出电压; 有源PFC输出DC电压纹波很小,且呈100Hz/120Hz(工 频2倍)旳正弦波,所以采用有源PFC旳电源不需要采 用很大容量旳滤波电容。
铁路通信系统中高频开关电源原理及使用维护分析
铁路通信系统中高频开关电源原理及使用维护分析摘要:伴随当前铁路行车速度的持续提升,铁路行车安全逐渐成为社会关注的热点话题。
铁路通信系统作为铁路行车安全的重要影响因素之一,能够为铁路的安全运行提供非常可靠的通信保障,这就要求需要我们为铁路通信系统提供可靠的动力系统。
基于此,文章就铁路通信系统中高频开关电源原理及使用维护张详细论述。
关键词:铁路通信系统;高频开关电源;电源原理;使用维护引言在铁路通信系统中,电源系统有着非常高的重要性,高频开关电源更是其中的重要组成部分。
高频开关电源不仅包括了主电路和控制电路,而且还有检测电路和辅助电源等多各组成部分,相互之间的协调工作实现了系统的多功能性、可靠性、稳定性。
高频开关电源在铁路通信系统中的安全使用也成为整个铁路通信系统的高效、安全运行的重要保障。
因此,在其使用过程中首先要清楚铁路通信系统中高频开关电源的工作原理,并且根据其工作特点采取科学、合理的维护措施,确保铁路通信系统中高频开关电源的稳定性。
1高频开关电源的工作原理概述高频开关电源主要包括主电路和控制电路,而且还具备检测反馈电路、保护电路、辅助电源等等,其电源工作原理拓扑图如下图1所示。
图1 电源工作原理拓扑图电源工作原理如下:开关电源输入单相220V交流电,经过AC断路器和输入保险丝等保护元件后,进入到EMI滤波器中,这一功能是过滤交流电网上各种干扰谐波和杂讯,同时能够阻止电源内自生的各种谐波串入交流电网。
单相交流电源经桥式整流器整流为直流后,再经功率因素校正电路(PFC Boost Converter),经PFC控制器转换成高功率因素(PF>0.99),低失真因素(THD<5%)的要求,产生约400V的直流电压供给DC/DC转换器,同时为辅助电源电路提供能源,产生内部所有控制电路使用的工作电源。
接着400VDC经DC/DC电路产生一稳定的输出电压,此部分电路选择全桥串联谐振零电流切换技术,大约按照100Khz切换频率将直流400V切换成交流脉波;再经过高频变压器降压成为适当波幅的交流脉波。
开关电源的工作原理和常见故障分析及维修
开关电源的工作原理和常见故障分析及维修开关电源的主要电路是由:防雷电路,输入电磁干扰滤波器(Electromagnetic Interference,简称EMI),输入整流滤波电路,功率变换电路,脉宽调制(PWM)控制器电路,输出整流滤波电路组成。
辅助电路有输入过压,欠压保护电路, 输出过压,欠压保护电路,输出过流保护电路,输出短路保护电路等。
开关电源的电路组成方框图如下:高频脉冲电压。
把高频脉冲电压送给高频变压器,高频变压器的次级(二次侧)就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波。
经高频整流滤波后便可得到我们所需的各种直流电压。
输出电压下降或上升时,由取样电路将取样信号通过光电耦合器(PC817),送入控制电路,经过其内部调制,由控制电路的输出端将变宽的或变窄的驱动脉冲送到开关功率管的栅极(G 极),使变换电路产生的高频脉冲方波也随之变宽或变窄,由此改变输出电压平均值的大小,从而使直流电压基本稳定在所须的电压值上。
开关电源的电路原理图如下:开关电源电路原理图开关电源的常见故障分析及维修由于开关电源的输入部分工作在高压,大电流的状态下,故障率最高,如高压大电流整流二极管,滤波电容,开关功率管等较易损坏。
其次就是输出整流部分的整流二极管,保护二极管,滤波电容,限流电阻等较易损坏;再就是脉宽调制控制器的反馈部分和保护部分。
下面就对开关电源常见故障产生的原因作一分析及如何排除这些故障的维修方法。
一.保险丝熔断一般情况下,保险丝熔断说明开关电源的内部电路存在短路或过流的故障。
由于开关电源工作在高电压,大电流的状态下,直流滤波和变换振荡电路在高压状态工作时间太长,电压变化相对大。
电网电压的波动,浪涌都会引起电源内电流瞬间增大而使保险丝熔断。
重点应检查电源输入端的整流二极管,高压滤波电解电容,开关功率管,UC3842本身及外围元器件等。
检查一下这些元器件有无击穿,开路,损坏,烧焦,炸裂等现象。
高频开关电源说明书
指导:上海瑞进电源 ◆ 3、找出电源输入线,分别接好引线,将远控线对好插座的凹凸部位插牢并旋紧。 ◆ 4、机器外壳有“┴”标识,请接入大地,预防静电。 ◆ 5、将功率调节旋钮逆时针旋转到底(最小状态)。 ◆ 6、闭合空气开关,此时风扇开始转动,电源指示灯亮。 ◆ 7、顺时针旋转调节旋钮,电压表读数随着增加,工作灯亮。 ◆ 8、将调节旋转调到最大,此时电压表应指示额定电压值 ,电流表根据负载大小做出相应指示。 ◆ 9、断开空气开关,关闭整流器。 ◆ 10、机器正常工作时,外壳由于机内高频磁场的影响会产生涡流使外壳发热,关且有静电,属正常
以免损坏元器件。 ◆ C、检查电源是否正常检查空气开关分断是否可靠。 ◆ D、检查风扇工作是否异常,有无杂声。 ◆ E、检查输出铜排有无氧化现象,要及时进行清理。 ◆ F、检查螺丝,螺帽有无松动等。
开关电源操作规程 一.产品介绍: 此电源为高频开关电源,电流电压均为数字显示.具有稳压稳流转换功能. 二.开机方法: 1. 启动前,将面板开关置"待机"位置,输出调节旋钮逆时针旋到最小;"稳压/稳流"开关根据用
同配置和功能的产品。 ■ 如在仔细阅读说明书后,仍不能正常安装和操作整流器,本厂可以派技术人员为您现场安装。 ■ 如您有什么特殊的要求以及建议欢迎来电来函,本公司将竭诚为您服务。
三、 技术参数
输入
三相 380V±10% 50HZ±5HZ
输出电流 输出电压 纹波系数
0-500A 0-35V 1%
调整精度 冷却方式
高频开关电源的工作流程
高频开关电源的工作流程在现代电子设备中,高频开关电源被广泛应用,其高效能和稳定性使其成为电源领域的主流选择。
高频开关电源通过快速的开关操作来改变电源的频率,以便将电能转换为所需的输出形式。
下面将介绍高频开关电源的工作流程。
输入电压调整高频开关电源首先接收来自电网或其他电源的交流输入电压。
这个输入电压可能会有所波动,因此首先需要进行调整以确保稳定的工作。
一般会使用整流电路将交流电转换为直流电,然后通过滤波电路将电流波动降至最低。
开关控制接下来是高频开关电源的核心部分:开关控制器。
开关控制器通过控制开关管的通断来改变电流的通路,从而实现电源的调节。
当开关闭合时,电流可以在电感等元件中储存能量;当开关断开时,这些储存的能量释放出来,经过整流和滤波后变成我们需要的输出电压。
脉冲宽度调制为了实现对输出电压的精确调节,高频开关电源通常采用脉冲宽度调制(PWM)技术。
PWM技术通过调整开关管通断时间的长短,改变每个周期内的有效传导时间比,从而控制输出电压的大小。
通过反馈回路监测输出电压,并与设定值进行比较,控制器可以实时调整脉冲宽度,使输出电压保持在恒定水平。
输出滤波和稳压经过脉冲宽度调制后的输出信号仍然可能含有一定的纹波和噪声,为了确保输出电压的稳定性和纯净性,通常会加入输出滤波电路。
这些滤波元件可以去除多余的高频成分,使输出电压更平稳、更接近理想值。
同时,稳压电路也需要确保在负载变化时输出电压能够保持恒定,保证连接设备的正常工作。
保护措施作为电源设备,高频开关电源还需要考虑各种保护措施,以确保系统的稳定性和安全性。
常见的保护功能包括过压保护、过流保护、短路保护等,这些保护功能可以在电路出现异常情况时及时切断电源,避免对设备和用户造成损害。
总结高频开关电源通过精密的开关控制,在输入电压调整、开关控制、脉冲宽度调制、输出滤波和稳压等过程中完成电能的高效转换和稳定输出。
同时保护措施的加入,也确保了电源设备和连接设备的安全可靠。
高频开关电源工作原理
高频开关电源工作原理高频开关电源是一种高效、稳定、可靠的电源,正在被广泛应用于各种电子设备中。
它的工作原理是将交流电压转换为高频脉冲信号后,在经过滤波、调整和反馈等电路处理之后,输出直流电压,从而为各种电子设备提供稳定的电力支持。
一、高频开关电源的基本构造高频开关电源的基本构造包括变压器、开关管、滤波电容、调整电路和反馈电路等五个部分。
1.变压器:变压器是高频开关电源的核心部件,它能够将输入的交流电压转换为高频脉冲信号,输出到开关管上。
因此,变压器的质量和性能是影响高频开关电源输出效果的关键因素之一。
2.开关管:高频开关电源采用晶体管或MOS管作为开关管,通过控制其导通和截止时间来实现电流的开断和转换。
由于开关管的开关频率很高,达到几十千赫,因此它的响应速度、频响特性和损耗情况对高频开关电源的性能有很大的影响。
3.滤波电容:滤波电容用于过滤高频干扰和跨越电压,将输出脉冲信号转换为直流电压。
它的作用是保证高频开关电源的输出稳定性和纹波电压小,也就是电源的纹波系数小。
4.调整电路:调整电路用于调整输出电压或电流,使高频开关电源能够满足不同的电子设备工作要求。
调整电路采用稳压器进行调整,可以通过电压分压器、电流限制器等方式实现输出电压或电流的稳定控制。
5.反馈电路:反馈电路也是高频开关电源关键部分之一,它通过检测输出电压或电流大小并输出反馈信号,控制开关管的工作状态,从而实现高频开关电源的自动稳压、限流和保护等功能。
二、高频开关电源的工作原理高频开关电源的工作原理可以分为三个步骤:输入、转换和输出。
1.输入阶段:高频开关电源的输入电源是交流电源,经过整流电路转换为直流电压,输入到变压器端口。
2.转换阶段:通过变压器将输入的电压转换为高频脉冲信号,输出到开关管上。
当开关管闭合时,电流会通过变压器和地线形成电磁场,从而将变压器中的能量存储在磁场中;当开关管断开时,电磁场就会将这些能量释放出来,形成一个脉冲信号输出到滤波电容上。
高频开关电源原理
高频开关电源(电源技术讲座四)1:高频开关电源的组成与分类开关电源具有体积小、效率高等一系列优点,在各类电子产品中得到广泛的应用。
但由于开关电源的控制电路比较复杂、输出纹波电压较高,所以开关电源的应用也受到一定的限制。
电子装置小型轻量化的关键是供电电源的小型化,因此需要尽可能地降低电源电路中的损耗。
开关电源中的调整管工作于开关状态,必然存在开关损耗,而且损耗的大小随开关频率的提高而增加。
另一方面,开关电源中的变压器、电抗器等磁性元件及电容元件的损耗,也随频率的提高而增加。
目前市场上开关电源中功率管多采用双极型晶体管,开关频率可达几十kHz;采用MOSFE的开关电源转换频率可达几百kHz。
为提高开关频率必须采用高速开关器件。
对于兆赫以上开关频率的电源可利用谐振电路,这种工作方式称为谐振开关方式。
它可以极大地提高开关速度,原理上开关损耗为零,噪声也很小,这是提高开关电源工作频率的一种方式。
采用谐振开关方式的兆赫级变换器已经实用化。
开关电源的集成化与小型化已成为现实。
然而,把功率开关管与控制电路都集成在同一芯片上,必须解决电隔离和热绝缘的问题。
1.1 开关电源的基本构成开关电源采用功率半导体器件作为开关器件,通过周期性间断工作,控制开关器件的占空比来调整输出电压。
开关电源的基本构成如图1所示,其中DC/DC变换器进行功率转换,它是开关电源的核心部分,此外还有起动、过流与过压保护、噪声滤波等电路。
输出采样电路(R1、R2)检测输出电压变化,与基准电压Ur比较,误差电压经过放大及脉宽调制(PWM电路,再经过驱动电路控制功率器件的占空比,从而达到调整输出电压大小的目的。
图2 是一种电路实现形式。
DC/DC变换器有多种电路形式,常用的有工作波形为方波的PWMS换器以及工作波形为准正弦波的谐振型变换器。
图1 开关电源的基本构成图2 开关型稳压电源的原理电路对于串联线性稳压电源,输出对输入的瞬态响应特性主要由调整管的频率特性决定。
高频开关电源的工作原理
推挽电路原理图
V1
W1
- Uin +
V2
W2
Uce 2Uin
L
Uin
+
0
Ton
Toff
t
Ic
0
T
t
4、半桥电路
半桥电路有两个功率开关管,通过两个串连的电容器来构成 工作回路,这两个功率管交替导通驱动高频变压器进行能量 传递,变压器是双向激励的。半桥电路同样存在变压器磁偏 现象,会出现“直通”问题。同样的变压器的情况,半桥的 输出功率大于推挽电路。如下图所示:C1和C2的作用主要是 实现静态时分压,使Ua=1/2Uin。当V1导通,V2截止时, 输入电流方向为图中虚线方向,向C2充电;当V1截止,V2 导通时,输入电流方向为图中实线方向,向C1充电。当V1导 通,V2截止时,V2两端承受的电压为输入直流电压Uin。
APFC电路,是有源功率因数校正电路。它是一
个升压电路,电路结构采用的是BOOT电路,输出电压
一般规定在410VDC左右。由于开关电源所采用的器件 全部工作在非线性状态,电路上有电感和电容,所以会 造成交流输入电压和电流的相位存在相位差,导致交流 电不能全部做功,一部分在电感和电容中转换。另外交 流电压和电流波形出现畸变,造成谐波分量增加,干扰 增加。功率因数校正电路就是将电压和电流相位强制到 一致,同时对波形给予修正。
高频开关电源工作原理
作者:湖南常德分公司传动中心郝书韬
1、开关电源的概念 2、开关电源的组成 3、开关电源的常用电路类型与原理 4、通信用开关电源的基本要求
1、开关电源的概念
开关电源是一个能量转换器,作为电源的功率器件工作 在开关状态(开关管、电感、高频变压器、电容、整流 二极管)-开或关状态,其特点是频率高、功耗低、工 作效率高、体积小、输入范围宽(SwitchingRegulator -- A switching circuit that operates in a closed loopsystem to regulate the power supply output) 通过闭环系统调节,使输出电压保持稳定。
高频开关电源工作原理
波分量增加,干扰增加。功率因数校正电路就是将电压和电流相位强制
7
到一致,同时对波形给予修正。
8
二、开关电源的电路组成
二、开关电源的电路组成
开关电源APFC电路
二、开关电源的电路组成
输入缓启动电路原理图
将PFC输出的410VDC高压进行变换,变成高频高压脉冲电压,然后驱 动高频变压器,变压器将高压脉冲电压变成低压脉冲电压。该部分的主 要器件是开关功率器件和高频变压器。
开关电源的主要指标
一、开关电源的概念
4、开关电源的主要指标 ④负载调整率 指的是输出负载变化时,引起的输出电压的变化。 SL=(△V0÷V0 )%。 ⑤输出纹波(峰-峰值) 这个指标衡量了开关电源的电磁兼容性,纹波越小越好。一般小于输 出电压的百分之三毫伏,例如对于53.5V电压来说,输出纹波就位150毫 伏。
三、开关电源的常用电路类型
正激电路原理图(单管正激)
三、开关电源的常用电路类型
正激电路原理图(双管正激)
推挽式功率变换电路原理图,如图下图所示。推挽电路要求输入电压
1
低,两个开关管的耐压要求是输入电压的2倍,所以一般用在DC/DC电源
2
中。推挽电路一般用在中型功率电路上,变压器双向激励,变压器效率
02
%,工作频率是振荡频率的一半,所使用的控制芯片一般是UC3844和
03
UC3845。可以做中型功率的开关电源,使用双管正激电路,其功率可以
04
做得更高一点。虽然功率变压器不像反激式电路要开气隙,但是一般要
05
在变压器中加去磁绕组,在关断时将付边的能量反射到交流输入上。
06
单端正激电路
三、开关电源的常用电路类型
高频开关电源的基本原理
第一节高频开关电源的基本原理一、高频开关电源的组成高频开关整流器通常由工频滤波电路、工频整流电路、功率因数校正电路、直流-直流变换器和输出滤波器等部分组成,其组成方框图如图1-3-1所示。
图1-3-1高频开关整流器组成方框图图中输入回路的作用是将交流输入电压整流滤波变为平滑的高压直流电压;功率变换器的作用是将高压直流电压转换为频率大于20KHZ的高频脉冲电压;整流滤波电路的作用是将高频的脉冲电压转换为稳定的直流输出电压;开关电源控制器的作用是将输出直流电压取样,来控制功率开关器件的驱动脉冲的宽度,从而调整开通时间以使输出电压可调且稳定。
从框图中可见,由于高频变压器取代了笨重的工频(50HZ)变压器,从而使稳压电源的体积和重量大小减小。
开关整流器的特点:①重量轻,体积小采用高频技术,去掉了工频变压器,与相控整流器相比较,在输出同等功率的情况下,开关整流器的体积只上相控整流器的1/10,重量也接近1/10。
②功率因数高相控整流器的功率因数随可控硅导通角的变化而变化,一般在全导通时,可接近0.7以上,而小负载时,仅为0.3左右。
经过校正的开磁电源功率因数一般在0.93以上,并且基本不受负载变化的影响(对20%以上负载)。
③可闻噪音低在相控整流设备中,工频变压器及滤波电感工作时产生的可闻噪声较大,一般大于60dB。
而开关电源在无风扇的情况下可闻噪声仅为45dB左右。
④效率高开关电源采用的功率器件一般功耗较小,带功率因数补偿的开关电源其整机效率可达88%以上,较好的可做到91%以上。
⑤冲击电流小开机冲击电流可限制的额定输入电流的水平。
⑥模块式结构由于体积不,重量轻,可设计为模块式结构,目前的水平是一个2m高的19英寸(in)机架容量可达48V/1000A以上,输出功率约为60KW。
二、高频开关电源的分类(二)开关整流器分类1、按激励方式可分为自激式和他激式。
自激式开关电源在接通电源后功率变换电路就自行产生振荡,即该电路是靠电路本身的正反馈过程来实现功率变换的。
开关电源基本原理
开关电源基本原理
开关电源基本原理是利用开关元件(如MOSFET、BJT等)
通过控制开关转态,实现电能的高频开关和调节,将交流电能转换为直流电能的电源。
以下为开关电源基本工作原理的说明:
1. 输入电路:将交流电源连接到输入端,包括输入滤波电路、变压器和整流电路。
输入滤波电路主要用于滤除电源中的高频噪声,以保证整个开关电源系统的可靠性和稳定性。
2. 变压器:将输入电压经过变压器的变换,得到适合开关电源工作的中间电压。
变压器通过电磁感应原理,将输入电压高低变换,同时实现电压和电流的隔离。
3. 稳压电路:在变压器输出端经过整流后,得到的直流电压仍然可能存在波动。
稳压电路主要通过电容滤波、电感滤波和稳压器件(如稳压二极管、稳压管等)来实现输出电压的稳定。
4. 开关控制电路:开关电源的核心部分,由开关元件(如MOSFET、BJT)和驱动电路组成。
开关元件通过开关转态的
控制,实现对输入电源的高频开关和调节。
驱动电路则负责给开关元件提供正确的驱动信号,使其能够快速切换。
5. 输出电路:通过开关元件的高频开关,将输入电源的直流电能转换为高频脉冲信号。
经过输出滤波器来滤除高频脉冲,最终得到稳定的直流输出电压。
总之,开关电源通过不断切换开关元件来控制输入电源的通断,
将交流电源转换为直流电源的供电方式。
它具有高效率、小体积、轻负载等优点,广泛应用于电子设备、通信设备等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、开关电源的主要指标
④负载调整率指的是输出负载变化时,引起的输出电压的 变化。 SL=(△V0÷ V0 )%。
⑤输出纹波(峰-峰值)这个指标衡量了开关电源的电磁 兼容性,纹波越小越好。一般小于输出电压的百分之三毫 伏,例如对于53.5V电压来说,输出纹波就位150毫伏。
1、开关电源的均流
一套开关电源系统至少需要两个开关电源模块并联工作,大的 系统甚至多达数十个电源模块并联工作,这就要求并联工作的 电源模块能够共同平均分担负载电流,即均分负载电流。均分 负载电流的作用是使系统中的每个模块有效地输出功率,使系 统中各模块处于最佳工作状态,以保证电源系统的稳定、可靠、 高效地工作。负载均分性能一般以不平衡度指标来衡量,不平 衡度越小,其均分性能越好,即各模块实际输出电流值距系统 要求值的偏离点和离散性越小。国家有关标准和信息产业部入 网要求其均分负载不平衡度≤± 5%输出额定电流值。
2、开关电源和线性电源、相控电源的比较
①线性电源:线性电源的主要特点就是功率器件工作在放 大状态,具有稳定度高、可靠性好、成本低等优点,但是 效率低、笨重和体积大的缺点。只能做中、小功率的电源。
②相控电源:是通过控制可控硅的导通角来达到稳压作用, 功率因数比较低、效率低、笨重、体积大。
3、开关电源(swiching-mode power supply)
5、开关电源的一些名词概念
①有功功率(Acitive power):电能转换成其他能量所消耗的功率,单位 为瓦(W),用P表示。
②无功功率(Unactive power):没有消耗功率,只是能量在电感和电容之 间转换的功率部分,单位为VA,用Q表示。
③视在功率(Aparent power):指的是交流输入功耗,也叫表观功率,其 单位是VA,用S表示。 S2=P2+Q2
4、控制电路
控制电路是开关电源电路的核心之一。PWM控制芯片决定开关 电源的工作模式,该芯片产生两路相位相反的驱动信号来驱动 功率开关器件工作,通过脉冲宽度来控制开关管的导通时间, 从而调节能量传递的大小。开关电源的控制电路是一个闭环控 制系统,所以能及时保证输出电压稳定不变,闭环有两个环来 调节,内环是电流环调节,确保开关电源的动态响应时间,速 度比较快。外环是电压调节环,确保电压的稳定,速度相对较 慢。输出过压保护、均流电路、过热保护、限流保护、短路保 护以及交流输入过欠压保护是开关电源的辅助电路。
R3
-
(a)
I2
b
V1导通
Ib
V1关断
V1开启
a
c V1截止
0 Uce
(b)
2、单端正激电路
正激式开关电源的核心部分是正激式直流——直流变 换器,基本电路如下图所示。正激电路变压器的利用 率比较高,工作时的占空比小于50%,工作频率是振 荡频率的一半,所使用的控制芯片一般是UC3844和 UC3845。可以做中型功率的开关电源,使用双管正 激电路,其功率可以做得更高一点。虽然功率变压器 不像反激式电路要开气隙,但是一般要在变压器中加 去磁绕组,在关断时将付边的能量反射到交流输入上。
半桥型开关电源原理图
+ C1
Uin Ua
C2
-
V3
V1
Uce Uin
Uin/2
V4
V2
0
Ton
Toff
t
Ic
L
+
0
T
t
-
5、全桥电路
全桥电路是大功率电源常用的电路,有四个开关管组成两个桥 臂。两个桥臂分别导通激励高频功率变压器,进行能量变换, 但是存在开关管“直通”的危险。全桥电路原理图如下图所示。 由四个功率开关器件V1~V4组成,变压器T连接在四桥臂中间, 相对的两只功率开关器件V1、V4和V2、V3分别交替导通或截 止,使变压器T的次级有功率输出。当功率开关器件V1、V4 导通时,另一对V2、V3则截止,这时V2和V3两端承受的电压 为输入电压Uin在功率开关器件关断过程中产生的尖峰电压被 二极管V5~V8箝位于输入电压Uin。
高频开关电源工作原理
作者:湖南常德分公司传动中心郝书韬
1、开关电源的概念 2、开关电源的组成 3、开关电源的常用电路类型与原理 4、通信用开关电源的基本要求
Hale Waihona Puke 1、开关电源的概念开关电源是一个能量转换器,作为电源的功率器件工作 在开关状态(开关管、电感、高频变压器、电容、整流 二极管)-开或关状态,其特点是频率高、功耗低、工 作效率高、体积小、输入范围宽(SwitchingRegulator -- A switching circuit that operates in a closed loopsystem to regulate the power supply output) 通过闭环系统调节,使输出电压保持稳定。
2、均流在组合开关电源柜中的体现
对于组合电源来说,一般要配置2台以上的整流器,如果均 流效果好,那么每个整流器的输出电流基本“相近”。但 是并不是理想状态下的“非常均匀”,当负载比较小的情 况下(负载电流为2A左右,平均状态下每个整流器的输出 不超过1A),有可能某一个整流器输出电流2A,而其他整 流器的输出电流为零,这并不是电源系统不均流,而是在 小电流情况下是否均流对组合电源系统来说意义并不是很 大。均流的真正意义在于在整流器输出电流比较大的情况 下(30%以上负载),各个整流器的输出电流在小于± 5% 范围之内,保证整流器的可靠性。这个指标是以单个整流 器的额定输出电流为依据的,详细情况请看下面的例子。
3、组合开关电源柜均流说明举例
例如有一个通信基站用的是一套ZXDU300 V2.0电源设备, 配置了5个整流器,负载使用的电流是30A。假如5个整流 器的输出电流分别是:7.5A、6A、6A、7A、4.5A,那么 按照标准情况该组合电源的整流器均流是符合条件的,即电 流最大和最小之间的相差不超过30A× 10%=3A(最大是 7.5A,最小是4.5A),偏离中心值6A也符合要求。假如这 个基站设备的电流是3A,那么有可能出现某一个整流器的 输出电流3A,而其他整流器的输出电流很小,几乎为零。 这种现象是正常现象,按照标准计算符合要求。另外对这么 小的电流,均流已经失去意义。
主开关管电流峰值
Po 2T
U in
Ton
Po T
U in
Ton
Po U in
1
Toff Ton
2 Po U in
1
Toff Ton
Po U in
1
Toff Ton
输出电压 Uo
U in
N2 N1
Ton Toff
U in
N2 N1
④功率因数(Power factor):有功功率与是在功率的比值,它表示交流电 转化成其他能量的能力。功率因数=P/S。功率因数校正后为0.9999。
1、输入电路
D级防雷电路、交流输入的EMI电路、输入整流器滤波电路、输入缓启动 电路、APFC电路。D级防雷是吸收雷电残压,保护开关电源不受损坏, 一般是由压敏电阻和放电管组合使用;交流输入的EMI电路一般是用来抑 制共模噪声干扰的,是由共模电感、X、Y电容组成,将噪声吸收到大地 (机壳);输入缓启动电路如下图所示,由于电容电压不能突变,所以在 刚接通电源的瞬间,电容的充电电流比较大,需要采取措施进行限制, 否则电源设备无法供电。
反激式开关电源的核心部分是反激式直流——直流变换器,基 本电路如下图所示:单端反激电路一般用在小功率电源和开关 电源的辅助电源上。其占空比可达100%,控制芯片一般用的 是UC3842和UC3843。
反激式电路原理图
+
i1 W1
V3 iL
W2
+
C
+
RL U0
R1
-
W1`
T1
Uin
V1
R2
V4
C2
V2
全桥型电路原理图
Uce
+
Uin
V3
V7
V5
V1
Uin/2
T
V4
V8
V6
V2
0
Ton
Toff
t
Ic
-
L
+
0
T
t
-
6、几种类型电路比较
变换电路方式 单端反激式
主开关管耐压 2Uin
单端正激式
2Uin
变 形 双 管 串 联 正 Uin 激式
推挽式
2Uin
半桥式
Uin
串联型半桥式 全桥式
1 2 Uin
Uin
4、开关电源的主要指标
①无故障运行间隔时间 这是开关电源最重要的指标,衡量了开关电源的工作可靠性。一般说是开 关电源平均无故障运行间隔时间越长约好。
②工作效率 输出功率与输出功率的比值就是开关电源的工作效率,衡量开关电源在
变换过程中所产生的损耗,对于目前我们的开关电源工作效率在85%以上。
③电压调整率 指在负载保持不变的情况下,输出电压变化与单位输出电源和输入电压
APFC电路,是有源功率因数校正电路。它是一
个升压电路,电路结构采用的是BOOT电路,输出电压
一般规定在410VDC左右。由于开关电源所采用的器件 全部工作在非线性状态,电路上有电感和电容,所以会 造成交流输入电压和电流的相位存在相位差,导致交流 电不能全部做功,一部分在电感和电容中转换。另外交 流电压和电流波形出现畸变,造成谐波分量增加,干扰 增加。功率因数校正电路就是将电压和电流相位强制到 一致,同时对波形给予修正。
推挽电路原理图
V1
W1
- Uin +
V2
W2
Uce 2Uin