以天然气为原料的年产10万吨合成氨合成工段
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Design of the main contents and characteristics:
The production of liquid ammonia, liquid ammonia production capacity of 100000 tons per year, and Compared with the traditional process this process have the characteristics of energy-saving and low consumption. To design a heat exchanger between the waste heat boilers and water coolers, recycling the residual heat in the waste heat boiler gas through the heat exchanger and at the same time as the feed gas preheating. The other also further reduces the synthesis gas for subsequent condensation temperature,favorable for the subsequent condensation and indirect savings in the consumption of heat and cold.
设计参数
年产10万吨合成氨的合成工段工艺设计(以天然气为原料)
产量:10万吨/年,液氨
合成塔入口惰性气体含量:15%
合成塔进口氨浓度:2.5%
合成塔出口氨浓度:13.2%
合成塔操作压力:30MPa
新鲜补充气:N224%;H275%;CH40.3%;Ar0.7%
精炼气温度:35℃
水冷器出口气体温度:35℃
Design standards:In accordance with the relevant national safety production standard and chemical equipment design
Design principles:The principle of design is based on the green chemical industry as a criterion, low energy consumption, low cost, no pollution principle.
The source of the task
This design is according to the chemical industry department issued the design task book prepared, and referring toShijiazhuangjoint chemical factory ammonia section on-site production and designed.
(7)三废治理及环境保护
①放空气弛放气送膜提氢回收系统,先用氨洗涤塔回收几乎全部氨,制成浓氨水,再回收大部分氨送入高压机压缩后制氨既可以避免氨气进入大气,与放空气作燃料相比又更合理经济。②其他废水废渣集中处理达到国家排放标准后排放。
(8)生产制度:
每年操作日300天,三班连续操作。
(9)结论
本设计主要是对于合成氨的工艺流程的设计;其中包括合成氨各主要工段设备的物料衡算和热量核算包括:合成塔的物料衡算和热量衡算、氨冷器的物料衡算及热量核算、冷交换器的物料衡算和热量核算等;合成氨各主要设备的工艺计算和选型;合成氨车间的安全因素及防范措施;工艺流程、车间中设备布置图以及氨合成塔、废热锅炉、水冷器三个主要设备的CAD图纸。
循环机进出口压差:1.47Mpa
年工作日:300d
产品质量规格:氨含量(wt%)>=99%
以天然气为原料
年产10万吨合成氨厂ቤተ መጻሕፍቲ ባይዱ成工段的工艺设计
设计说明书
任务来源:本次设计按照化工系下达的设计任务书进行编制的,并且参照石家庄双联化工厂合成氨工段的现场生产而设计而成。
设计标准:按照国家相关化工安全生产标准和化工仪器设备设计标准设计
关键词:合成氨;物料衡算;热量核算;工艺设计
Using natural gas as raw material with annual output of 100000 tons of synthetic ammonia plant of the section in process design
Design specification
水冷后直接进行分离液氨然后再进行冷交,水冷有利于降低后续氨冷的负荷,边冷却边分离液氨,即提高了液氨的分离效果,又避免了气液两相流的存在,通过设置氨冷器的冷凝充分解决了低压下,水冷后很少有氨冷凝下来的矛盾,达到了进一步冷却,保证合成塔入口氨含量的要求。
(5)新鲜气及放空点位置设置
新鲜气的补充设置在冷交换气的二次入口,以便减少系统阻力,并通过氨冷器进一步洗脱微量二氧化碳和一氧化碳及氨基甲酸等杂质,有利于保护触媒、防止管道和设备堵塞。放空点设置在冷交换器和氨分离器之间,氨分后有效气体浓度较低,惰性气体含量较高,有利于降低新鲜气单耗。
设计原则:本设计的原则是以绿色化工为准则,低耗能、低成本、无污染的原则。
设计的主要内容及特点:
本工段生产液氨,生产能力为10万吨液氨/年,与传统的流程相比较具有节能低耗的特点。在废热锅炉和水冷器之间设计一个热交换器,通过热交换器回收了废热锅炉出来的气体中剩余的热量并同时为原料气进行了预热,另外也进一步降低了合成气的温度,为对后续的冷凝工作有利,间接的节约了消耗的热量和冷量。
(3)采用“二进二出”合成流程
全部冷气经合成塔的外围环隙后进入热交换器,可使合成塔塔体各点温度分布均匀,出口气体保持较低温度,确保合成塔长期安全稳定运行,与循环机来的冷气直接进入热交换器相比,使热交换器出口温度增大。进入水冷的气体温度降低意味着合成余热回收率高和水冷器的负荷低。
(4)水冷器和氨冷器的设置
(6)冷交换器设备的使用
分离器为外向型旋流板,上部换热器为列管换热器和下部氨分离器,将热气体在进入氨冷器前用冷气体进行冷却换热,以回收冷气体的冷冻量,使入氨冷器的热气体预冷却,从而节省冷冻量,同时分离经氨冷后含氨混和气中的液氨,安徽淮南化工公司发表与《小氮肥》杂志上的有关资料表明,该设备节能降耗显著。
现将具体的设计内容介绍如下:
(1)循环机位置
本工段循环机设置在氨分离系统后,合成塔之前,从而充分利用循环机压缩功,提高进合成塔温度,减少冷量消耗,降低氨冷器负荷,同时提高进塔压力,提高合成率,而进循环机的氨冷量较低,避免了塔后循环机流程容易带液氨而导致循环机泄漏。
(2)反应热回收的方式及利用
热量的回收主要集中在合成塔处,这里涉及到废热锅炉的热量回收利用和合成塔塔外换热器如何科学设置的问题,废热锅炉的配置实际上是如何提高反应热的回收率和获得高品位热的问题,本次设计选择的是塔后换热器及后置锅炉的工艺路线,设置塔后换热器使废热锅炉出口气体与合成塔二进气体换热,充分提高合成塔二进温度,相应提高了合成塔二出温度,进废热锅炉的气体温度为365度,副产1.372兆帕的中压蒸汽,充分提高回收热量品位。
The production of liquid ammonia, liquid ammonia production capacity of 100000 tons per year, and Compared with the traditional process this process have the characteristics of energy-saving and low consumption. To design a heat exchanger between the waste heat boilers and water coolers, recycling the residual heat in the waste heat boiler gas through the heat exchanger and at the same time as the feed gas preheating. The other also further reduces the synthesis gas for subsequent condensation temperature,favorable for the subsequent condensation and indirect savings in the consumption of heat and cold.
设计参数
年产10万吨合成氨的合成工段工艺设计(以天然气为原料)
产量:10万吨/年,液氨
合成塔入口惰性气体含量:15%
合成塔进口氨浓度:2.5%
合成塔出口氨浓度:13.2%
合成塔操作压力:30MPa
新鲜补充气:N224%;H275%;CH40.3%;Ar0.7%
精炼气温度:35℃
水冷器出口气体温度:35℃
Design standards:In accordance with the relevant national safety production standard and chemical equipment design
Design principles:The principle of design is based on the green chemical industry as a criterion, low energy consumption, low cost, no pollution principle.
The source of the task
This design is according to the chemical industry department issued the design task book prepared, and referring toShijiazhuangjoint chemical factory ammonia section on-site production and designed.
(7)三废治理及环境保护
①放空气弛放气送膜提氢回收系统,先用氨洗涤塔回收几乎全部氨,制成浓氨水,再回收大部分氨送入高压机压缩后制氨既可以避免氨气进入大气,与放空气作燃料相比又更合理经济。②其他废水废渣集中处理达到国家排放标准后排放。
(8)生产制度:
每年操作日300天,三班连续操作。
(9)结论
本设计主要是对于合成氨的工艺流程的设计;其中包括合成氨各主要工段设备的物料衡算和热量核算包括:合成塔的物料衡算和热量衡算、氨冷器的物料衡算及热量核算、冷交换器的物料衡算和热量核算等;合成氨各主要设备的工艺计算和选型;合成氨车间的安全因素及防范措施;工艺流程、车间中设备布置图以及氨合成塔、废热锅炉、水冷器三个主要设备的CAD图纸。
循环机进出口压差:1.47Mpa
年工作日:300d
产品质量规格:氨含量(wt%)>=99%
以天然气为原料
年产10万吨合成氨厂ቤተ መጻሕፍቲ ባይዱ成工段的工艺设计
设计说明书
任务来源:本次设计按照化工系下达的设计任务书进行编制的,并且参照石家庄双联化工厂合成氨工段的现场生产而设计而成。
设计标准:按照国家相关化工安全生产标准和化工仪器设备设计标准设计
关键词:合成氨;物料衡算;热量核算;工艺设计
Using natural gas as raw material with annual output of 100000 tons of synthetic ammonia plant of the section in process design
Design specification
水冷后直接进行分离液氨然后再进行冷交,水冷有利于降低后续氨冷的负荷,边冷却边分离液氨,即提高了液氨的分离效果,又避免了气液两相流的存在,通过设置氨冷器的冷凝充分解决了低压下,水冷后很少有氨冷凝下来的矛盾,达到了进一步冷却,保证合成塔入口氨含量的要求。
(5)新鲜气及放空点位置设置
新鲜气的补充设置在冷交换气的二次入口,以便减少系统阻力,并通过氨冷器进一步洗脱微量二氧化碳和一氧化碳及氨基甲酸等杂质,有利于保护触媒、防止管道和设备堵塞。放空点设置在冷交换器和氨分离器之间,氨分后有效气体浓度较低,惰性气体含量较高,有利于降低新鲜气单耗。
设计原则:本设计的原则是以绿色化工为准则,低耗能、低成本、无污染的原则。
设计的主要内容及特点:
本工段生产液氨,生产能力为10万吨液氨/年,与传统的流程相比较具有节能低耗的特点。在废热锅炉和水冷器之间设计一个热交换器,通过热交换器回收了废热锅炉出来的气体中剩余的热量并同时为原料气进行了预热,另外也进一步降低了合成气的温度,为对后续的冷凝工作有利,间接的节约了消耗的热量和冷量。
(3)采用“二进二出”合成流程
全部冷气经合成塔的外围环隙后进入热交换器,可使合成塔塔体各点温度分布均匀,出口气体保持较低温度,确保合成塔长期安全稳定运行,与循环机来的冷气直接进入热交换器相比,使热交换器出口温度增大。进入水冷的气体温度降低意味着合成余热回收率高和水冷器的负荷低。
(4)水冷器和氨冷器的设置
(6)冷交换器设备的使用
分离器为外向型旋流板,上部换热器为列管换热器和下部氨分离器,将热气体在进入氨冷器前用冷气体进行冷却换热,以回收冷气体的冷冻量,使入氨冷器的热气体预冷却,从而节省冷冻量,同时分离经氨冷后含氨混和气中的液氨,安徽淮南化工公司发表与《小氮肥》杂志上的有关资料表明,该设备节能降耗显著。
现将具体的设计内容介绍如下:
(1)循环机位置
本工段循环机设置在氨分离系统后,合成塔之前,从而充分利用循环机压缩功,提高进合成塔温度,减少冷量消耗,降低氨冷器负荷,同时提高进塔压力,提高合成率,而进循环机的氨冷量较低,避免了塔后循环机流程容易带液氨而导致循环机泄漏。
(2)反应热回收的方式及利用
热量的回收主要集中在合成塔处,这里涉及到废热锅炉的热量回收利用和合成塔塔外换热器如何科学设置的问题,废热锅炉的配置实际上是如何提高反应热的回收率和获得高品位热的问题,本次设计选择的是塔后换热器及后置锅炉的工艺路线,设置塔后换热器使废热锅炉出口气体与合成塔二进气体换热,充分提高合成塔二进温度,相应提高了合成塔二出温度,进废热锅炉的气体温度为365度,副产1.372兆帕的中压蒸汽,充分提高回收热量品位。