数据挖掘考试习题汇总

合集下载

数据挖掘考试题及答案

数据挖掘考试题及答案

数据挖掘考试题及答案一、单项选择题(每题2分,共20分)1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪项不是数据挖掘中常用的算法?A. 决策树B. 神经网络C. 线性回归D. 遗传算法答案:C3. 在数据挖掘中,关联规则挖掘的主要目标是发现数据项之间的什么关系?A. 因果关系B. 相关关系C. 函数关系D. 依赖关系答案:B4. 以下哪个算法是专门用于聚类分析的?A. K-meansB. 支持向量机C. 逻辑回归D. 随机森林答案:A5. 在数据挖掘中,哪个指标用于衡量分类模型的性能?A. 准确率B. 召回率C. F1分数D. 所有以上答案:D6. 以下哪个选项是数据挖掘中的特征选择方法?A. 过滤方法B. 包装方法C. 嵌入式方法D. 所有以上答案:D7. 以下哪个算法是用于异常检测的?A. Apriori算法B. K-means算法C. DBSCAN算法D. One-Class SVM答案:D8. 在数据挖掘中,哪个算法是用于序列模式挖掘的?A. Apriori算法B. FP-Growth算法C. K-means算法D. 随机森林答案:B9. 以下哪个选项是数据挖掘中的时间序列分析方法?A. ARIMA模型B. 决策树C. 神经网络D. 支持向量机答案:A10. 在数据挖掘中,哪个算法是用于推荐系统的?A. K-means算法B. 协同过滤C. 随机森林D. 支持向量机答案:B二、多项选择题(每题3分,共15分)11. 数据挖掘过程中可能需要进行的数据预处理步骤包括哪些?A. 数据清洗B. 数据集成C. 数据变换D. 数据规约答案:ABCD12. 以下哪些是数据挖掘中常用的评估指标?A. 精确度B. 召回率C. ROC曲线D. 交叉验证答案:ABC13. 在数据挖掘中,以下哪些是监督学习算法?A. K-meansB. 决策树C. 支持向量机D. 随机森林答案:BCD14. 以下哪些是数据挖掘中的特征提取方法?A. 主成分分析(PCA)B. 线性判别分析(LDA)C. 独立成分分析(ICA)D. 奇异值分解(SVD)答案:ABCD15. 在数据挖掘中,以下哪些是无监督学习算法?A. K-meansB. Apriori算法C. 神经网络D. DBSCAN答案:ABD三、填空题(每题3分,共15分)16. 数据挖掘中,________是用来评估分类模型好坏的一个重要指标,它综合了准确率和召回率。

数据挖掘考试题及答案

数据挖掘考试题及答案

数据挖掘考试题及答案### 数据挖掘考试题及答案#### 一、选择题(每题2分,共20分)1. 数据挖掘的目的是发现数据中的:- A. 错误- B. 模式- C. 异常- D. 趋势答案:B2. 以下哪项不是数据挖掘的常用算法:- A. 决策树- B. 聚类分析- C. 线性回归- D. 神经网络答案:C3. 关联规则挖掘中,Apriori算法用于发现:- A. 频繁项集- B. 异常值- C. 趋势- D. 聚类答案:A4. K-means算法是一种:- A. 分类算法- B. 聚类算法- C. 预测算法- D. 关联规则挖掘算法答案:B5. 以下哪个指标用于评估分类模型的性能:- A. 准确率- B. 召回率- C. F1分数- D. 所有以上答案:D#### 二、简答题(每题10分,共30分)1. 描述数据挖掘中的“过拟合”现象,并给出避免过拟合的策略。

答案:过拟合是指模型对训练数据拟合得过于完美,以至于失去了泛化能力。

避免过拟合的策略包括:使用交叉验证、正则化技术、减少模型复杂度、获取更多的训练数据等。

2. 解释什么是“数据清洗”以及它在数据挖掘中的重要性。

答案:数据清洗是指从原始数据中识别并纠正(或删除)错误、重复或不完整的数据的过程。

它在数据挖掘中至关重要,因为脏数据会导致分析结果不准确,影响最终的决策。

3. 描述“特征选择”在数据挖掘中的作用。

答案:特征选择是数据挖掘中用来降低数据维度、提高模型性能和减少计算成本的过程。

通过选择最有信息量的特征,可以去除冗余或无关的特征,从而提高模型的准确性和效率。

#### 三、应用题(每题25分,共50分)1. 假设你正在分析一个电子商务网站的用户购买行为,描述你将如何使用数据挖掘技术来识别潜在的营销机会。

答案:首先,我会使用聚类分析来识别不同的用户群体。

然后,通过关联规则挖掘来发现不同用户群体的购买模式。

接着,利用分类算法来预测用户可能感兴趣的产品。

数据挖掘考试题库及答案

数据挖掘考试题库及答案

数据挖掘考试题库及答案一、选择题1. 数据挖掘是从大量数据中提取有价值信息的过程,以下哪项不是数据挖掘的主要任务?A. 预测B. 分类C. 聚类D. 数据可视化答案:D2. 以下哪种技术不属于数据挖掘的常用方法?A. 决策树B. 支持向量机C. 关联规则D. 数据仓库答案:D3. 数据挖掘中,以下哪项技术常用于分类和预测?A. 神经网络B. K-均值聚类C. 主成分分析D. 决策树答案:D4. 在数据挖掘中,以下哪个概念表示数据集中的属性?A. 数据项B. 数据记录C. 数据属性D. 数据集答案:C5. 数据挖掘中,以下哪个算法用于求解关联规则?A. Apriori算法B. ID3算法C. K-Means算法D. C4.5算法答案:A二、填空题6. 数据挖掘的目的是从大量数据中提取______信息。

答案:有价值7. 在数据挖掘中,分类任务分为有监督学习和______学习。

答案:无监督8. 决策树是一种用于分类和预测的树形结构,其核心思想是______。

答案:递归划分9. 关联规则挖掘中,支持度表示某个项集在数据集中的出现频率,置信度表示______。

答案:包含项集的记录中同时包含结论的记录的比例10. 数据挖掘中,聚类分析是将数据集划分为若干个______的子集。

答案:相似三、判断题11. 数据挖掘只关注大量数据中的异常值。

()答案:错误12. 数据挖掘是数据仓库的一部分。

()答案:正确13. 决策树算法适用于处理连续属性的分类问题。

()答案:错误14. 数据挖掘中的聚类分析是无监督学习任务。

()答案:正确15. 关联规则挖掘中,支持度越高,关联规则越可靠。

()答案:错误四、简答题16. 简述数据挖掘的主要任务。

答案:数据挖掘的主要任务包括预测、分类、聚类、关联规则挖掘、异常检测等。

17. 简述决策树算法的基本原理。

答案:决策树算法是一种自顶向下的递归划分方法。

它通过选择具有最高信息增益的属性进行划分,将数据集划分为若干个子集,直到满足停止条件。

数据分析与数据挖掘技术考试

数据分析与数据挖掘技术考试

数据分析与数据挖掘技术考试(答案见尾页)一、选择题1. 数据分析的主要目的是什么?A. 提取数据中的有用信息B. 存储和管理数据C. 改进数据挖掘算法D. 预测未来趋势2. 在进行数据分析时,以下哪个步骤不是必须的?A. 数据收集B. 数据清洗C. 数据转换D. 数据可视化3. 数据挖掘中常用的聚类算法有(多选)?A. K-meansB. DBSCANC. 线性回归D. 决策树4. 以下哪种数据格式通常用于数据挖掘项目?A. 文本文件B. Excel表格C. JSOND. SQL数据库5. 在数据挖掘中,用于评估模型性能的指标有(多选)?A. 准确率B. 召回率C. F1分数D. 平均绝对误差6. 数据挖掘过程中,如何确定哪些特征对预测目标变量最重要?A. 人工检查B. 使用统计方法C. 自动化特征选择算法D. 专家经验7. 在数据挖掘中,处理缺失值的方法有(多选)?A. 删除含有缺失值的记录B. 填充缺失值C. 使用均值、中位数等统计量填充D. 对缺失值进行建模预测8. 以下哪种图形工具常用于数据挖掘结果的展示?A. 折线图B. 柱状图C. 散点图D. 饼图9. 在数据挖掘中,分类算法的类型有(多选)?A. 决策树B. 支持向量机C. 随机森林D. 神经网络10. 数据挖掘项目完成后,通常需要进行哪些步骤来确保成果的可复现性和可扩展性?A. 代码备份B. 文档编写C. 数据备份D. 版本控制11. 数据分析的目的是什么?A. 提供决策支持B. 改进数据存储C. 增强数据安全性D. 优化数据传输速度12. 数据挖掘技术中,以下哪种技术主要用于发现数据中的关联规则?A. 分类和预测B. 聚类分析C. 关联规则挖掘D. 回归分析13. 在聚类分析中,以下哪个指标是用来衡量聚类效果的?A. 误差平方和 (SSE)B. R方值 (R^2)C. K-means 距离D. DBSCAN 簇类中心14. 以下哪种方法通常用于数据预处理?A. 特征选择B. 数据降维C. 异常值检测D. 数据转换15. 在数据可视化中,以下哪种图表最适合展示分类数据的分布?A. 条形图B. 折线图C. 饼图D. 散点图16. 在数据挖掘中,以下哪个算法主要用于预测模型?A. KNN (K-最近邻)B. 决策树C. 聚类分析D. 关联规则挖掘17. 在进行回归分析时,以下哪个指标是用来衡量模型拟合优度的?A. R方值 (R^2)B. 模型复杂度C. 均方误差 (MSE)D. 平均绝对误差 (MAE)18. 在数据挖掘中,以下哪个技术可以用于发现数据中的异常或离群点?A. 分类和预测B. 聚类分析C. 关联规则挖掘D. 异常值检测19. 在数据可视化中,以下哪种图表可以帮助我们理解数据的趋势和模式?A. 条形图B. 折线图C. 饼图D. 散点图20. 数据挖掘主要依赖于哪种技术?A. 统计学B. 机器学习C. 数据库管理D. 计算机编程21. 在进行数据分析时,通常首先会进行哪种操作?A. 数据清洗B. 数据转换C. 数据可视化D. 数据挖掘22. 下列哪个工具不是常用的数据挖掘工具?A. ExcelB. PythonC. RD. SPSS23. 数据挖掘过程中,经常使用的算法类型有哪些?A. 分类和聚类B. 回归和关联规则学习C. 时间序列分析和异常检测D. 以上全部24. 在数据挖掘中,用于发现数据间潜在关系的方法有哪几种?A. 基于距离的方法B. 基于密度的方法C. 基于聚类的方法D. 基于关联规则的方法25. 数据挖掘中,评估模型性能的常用指标有哪些?A. 准确率B. 召回率C. F1分数D. 以上全部26. 在构建数据挖掘模型时,通常会使用哪种技术来减小过拟合的风险?A. 特征选择B. 正则化C. 数据降维D. 数据集成27. 数据挖掘中的特征工程包括哪些步骤?A. 特征提取B. 特征筛选C. 特征转换D. 特征规范化28. 在实际应用中,如何确定哪些特征对预测目标变量最重要?A. 使用统计测试B. 利用特征重要性评分C. 通过领域专家经验判断D. 以上全部29. 下列哪个过程属于数据分析?A. 数据清洗B. 数据转换C. 数据建模D. 数据存储30. 数据挖掘通常涉及哪些步骤?A. 数据收集B. 特征选择C. 模型训练D. 评估模型31. 在数据挖掘中,什么是关联规则?A. 两个或多个变量之间的关系B. 一组数据的统计特性C. 数据的分组D. 数据的聚合32. 以下哪种算法常用于聚类分析?A. 决策树B. 线性回归C. K-均值算法D. 支持向量机33. 数据可视化工具通常用于展示什么?A. 数据集的大小B. 数据的分布情况C. 数据的关系D. 数据的统计特性34. 在数据挖掘中,什么是分类算法?A. 用于预测离散值(如类别)的算法B. 用于预测连续值(如价格)的算法C. 用于发现数据中的模式和趋势的算法D. 用于数据清洗和预处理的算法35. 关联规则学习中的“支持度”是什么?A. 一组数据项在数据集中出现的频率B. 一组数据项之间的相关性C. 一组数据项之间的差异度D. 一组数据项的置信度36. 在聚类分析中,K-均值算法的目标是什么?A. 最小化所有数据点到其所属簇质心的距离之和B. 最大化所有数据点到其所属簇质心的距离之和C. 最小化所有数据点与其所属簇平均距离之和D. 最大化所有数据点与其所属簇平均距离之和37. 数据挖掘中常用的评估指标有哪些?A. 准确率B. 召回率C. F1分数D. 均方误差38. 在数据挖掘中,以下哪个过程是用来发现数据中的模式或关联的?A. 数据清理B. 数据集成C. 数据挖掘39. 数据挖掘任务通常不包括以下哪项?A.分类B.聚类C.回归D.数据合并40. 以下哪种图形工具常用于数据挖掘过程中的数据可视化?A. 折线图B. 柱状图C. 饼图D. 网络图41. 在数据挖掘中,聚类分析可以用于:A. 发现不同客户群体的特征B. 优化业务流程C. 预测股票价格D. 评估数据质量42. 数据分析中的“描述性统计”主要关注什么?A. 数据的分布情况B. 数据的极值C. 数据的复杂性D. 数据的生成过程43. 在数据挖掘中,决策树是一种常用的算法,它的基本思想是什么?A. 通过一系列规则对数据进行分类B. 通过逐步消除变量来简化数据集C. 通过计算数据的方差来评估数据质量D. 通过建立数据模型来预测未来44. 数据库系统工程师在数据分析与数据挖掘项目中主要负责哪些工作?B. 数据清洗C. 数据分析D. 数据可视化45. 数据挖掘中的“关联规则学习”主要用于发现数据项之间的什么关系?A. 对立关系B. 包容关系C. 依赖关系D. 无关关系二、问答题1. 什么是数据挖掘?请简要描述其过程。

数据挖掘考试习题

数据挖掘考试习题

数据挖掘考试习题(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数据挖掘考试题一.选择题1. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离()A.分类B.聚类C.关联分析D.主成分分析2. ( )将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。

(单链) (全链) C.组平均方法3.数据挖掘的经典案例“啤酒与尿布试验”最主要是应用了( )数据挖掘方法。

A 分类B 预测 C关联规则分析 D聚类4.关于K均值和DBSCAN的比较,以下说法不正确的是( )均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象。

均值使用簇的基于原型的概念,DBSCAN使用基于密度的概念。

均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇5.下列关于Ward’s Method说法错误的是:( )A.对噪声点和离群点敏感度比较小B.擅长处理球状的簇C.对于Ward方法,两个簇的邻近度定义为两个簇合并时导致的平方误差D.当两个点之间的邻近度取它们之间距离的平方时,Ward方法与组平均非常相似6.下列关于层次聚类存在的问题说法正确的是:( )A.具有全局优化目标函数B.Group Average擅长处理球状的簇C.可以处理不同大小簇的能力D.Max对噪声点和离群点很敏感7.下列关于凝聚层次聚类的说法中,说法错误的事:( )A.一旦两个簇合并,该操作就不能撤销B.算法的终止条件是仅剩下一个簇OC.空间复杂度为()2mD.具有全局优化目标函数8.规则{牛奶,尿布}→{啤酒}的支持度和置信度分别为:( )9.下列( )是属于分裂层次聚类的方法。

Average10.对下图数据进行凝聚聚类操作,簇间相似度使用MAX计算,第二步是哪两个簇合并:( )A.在{3}和{l,2}合并B.{3}和{4,5}合并C.{2,3}和{4,5}合并D. {2,3}和{4,5}形成簇和{3}合并二.填空题:1.属性包括的四种类型:、、、。

数据挖掘考试习题汇总

数据挖掘考试习题汇总

第一章1、数据仓库就是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。

2、元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库提供了一个信息目录,根据数据用途的不同可将数据仓库的元数据分为技术元数据和业务元数据两类。

3、数据处理通常分成两大类:联机事务处理和联机分析处理。

4、多维分析是指以“维”形式组织起来的数据(多维数据集)采取切片、切块、钻取和旋转等各种分析动作,以求剖析数据,使拥护能从不同角度、不同侧面观察数据仓库中的数据,从而深入理解多维数据集中的信息。

5、ROLAP是基于关系数据库的OLAP实现,而MOLAP是基于多维数据结构组织的OLAP实现。

6、数据仓库按照其开发过程,其关键环节包括数据抽取、数据存储与管理和数据表现等。

7、数据仓库系统的体系结构根据应用需求的不同,可以分为以下4种类型:两层架构、独立型数据集合、以来型数据结合和操作型数据存储和逻辑型数据集中和实时数据仓库。

8、操作型数据存储实际上是一个集成的、面向主题的、可更新的、当前值的(但是可“挥发”的)、企业级的、详细的数据库,也叫运营数据存储。

9、“实时数据仓库”以为着源数据系统、决策支持服务和仓库仓库之间以一个接近实时的速度交换数据和业务规则。

10、从应用的角度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以运营导向为主和以实时数据仓库和自动决策为主。

第二章1、调和数据是存储在企业级数据仓库和操作型数据存储中的数据。

2、抽取、转换、加载过程的目的是为决策支持应用提供一个单一的、权威数据源。

因此,我们要求ETL 过程产生的数据(即调和数据层)是详细的、历史的、规范的、可理解的、即时的和质量可控制的。

3、数据抽取的两个常见类型是静态抽取和增量抽取。

静态抽取用于最初填充数据仓库,增量抽取用于进行数据仓库的维护。

4、粒度是对数据仓库中数据的综合程度高低的一个衡量。

粒度越小,细节程度越高,综合程度越低,回答查询的种类越多。

数据挖掘知识竞赛题库及答案

数据挖掘知识竞赛题库及答案

数据挖掘知识竞赛题库及答案一、选择题1. 数据挖掘的目的是从大量的数据中发现有价值的信息和知识。

以下哪个不是数据挖掘的主要任务?A. 分类B. 聚类C. 预测D. 图像识别答案:D2. 在数据挖掘过程中,特征工程是指什么?A. 选择与目标变量相关的特征B. 对特征进行标准化处理C. 特征降维D. 以上都是答案:D3. K-近邻算法是一种基于什么的分类方法?A. 决策树B. 支持向量机C. 神经网络D. 实例匹配答案:D4. 在数据挖掘中,什么是衡量分类器性能的主要指标?A. 准确率B. 召回率C. F1值D. AUC值答案:D5. 在关联规则挖掘中,最小支持度是指什么?A. 出现在至少一半的事务中的项集B. 出现在至少一定比例的事务中的项集C. 出现在至少一个事务中的项集D. 出现在至少多数事务中的项集答案:B6. 以下哪种技术不属于聚类分析?A. K-均值B. 层次聚类C. 密度聚类D. 决策树聚类答案:D7. 在时间序列分析中,什么是时间序列的前向扩散?A. 过去的信息对当前信息的影响B. 当前的信息对过去信息的影响C. 未来的信息对当前信息的影响D. 当前的信息对未来信息的影响答案:C8. 在数据挖掘中,什么是基于模型的预测方法?A. 利用已有数据建立模型,对新数据进行预测B. 直接对原始数据进行预测C. 利用专家经验进行预测D. 利用机器学习算法进行预测答案:A9. 在数据挖掘中,什么是维度归一化?A. 将特征值缩放到一个固定范围B. 减少特征的数量C. 特征选择D. 特征提取答案:A10. 在数据挖掘中,什么是过拟合?A. 模型在训练集上的性能很好,但在测试集上的性能较差B. 模型在训练集上的性能较差,但在测试集上的性能很好C. 模型在训练集和测试集上的性能都很好D. 模型在训练集和测试集上的性能都较差答案:A二、填空题1. 数据挖掘的主要任务包括分类、聚类、预测和__________。

数据挖掘测试题及答案

数据挖掘测试题及答案

数据挖掘测试题及答案一、选择题1. 数据挖掘的目的是:A. 数据清洗B. 数据转换C. 模式发现D. 数据存储答案:C2. 以下哪项不是数据挖掘的常用算法?A. 决策树B. 聚类分析C. 线性回归D. 关联规则答案:C二、填空题1. 数据挖掘中的_________是指在大量数据中发现的有意义的模式。

答案:知识2. 一种常用的数据挖掘技术是_________,它用于发现数据中隐藏的分组。

答案:聚类三、简答题1. 简述数据挖掘与数据分析的区别。

答案:数据挖掘是一种自动或半自动的过程,旨在从大量数据中发现模式和知识。

数据分析通常涉及更具体的查询和问题,使用统计方法来理解数据。

2. 描述什么是关联规则挖掘,并给出一个例子。

答案:关联规则挖掘是一种用于发现变量之间有趣关系的技术,特别是变量之间的频繁模式、关联或相关性。

例如,在市场篮子分析中,关联规则挖掘可以用来发现顾客购买行为中的模式,如“购买面包的顾客中有80%也购买了牛奶”。

四、计算题1. 给定以下数据集,计算支持度和置信度:| 事务ID | 购买的商品 |||-|| 1 | A, B || 2 | A, C || 3 | B, C || 4 | A, B, C || 5 | B, D |(1) 计算项集{A}的支持度。

(2) 计算规则A => B的置信度。

答案:(1) 项集{A}的支持度为4/5,因为A出现在4个事务中。

(2) 规则A => B的置信度为3/4,因为A和B同时出现在3个事务中,而A出现在4个事务中。

五、论述题1. 论述数据挖掘在电子商务中的应用,并给出至少两个具体的例子。

答案:数据挖掘在电子商务中的应用非常广泛,包括:- 客户细分:通过数据挖掘技术,商家可以识别不同的客户群体,为每个群体提供定制化的服务或产品。

- 推荐系统:利用关联规则挖掘,电商平台可以推荐用户可能感兴趣的商品,提高用户满意度和购买率。

- 欺诈检测:通过分析交易模式,数据挖掘可以帮助识别异常行为,预防信用卡欺诈等风险。

数据挖掘测试题及答案

数据挖掘测试题及答案

数据挖掘测试题及答案一、单项选择题(每题2分,共10题,共20分)1. 数据挖掘中,用于发现数据集中的关联规则的算法是:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:B2. 以下哪个选项不是数据挖掘的步骤之一:A. 数据预处理B. 数据探索C. 数据收集D. 数据分析答案:C3. 在分类问题中,以下哪个算法属于监督学习:A. 聚类B. 决策树C. 关联规则D. 异常检测答案:B4. 数据挖掘中,用于发现数据集中的频繁项集的算法是:A. K-meansB. AprioriC. Naive BayesD. Decision Tree5. 在数据挖掘中,以下哪个选项不是数据预处理的步骤:A. 数据清洗B. 数据集成C. 数据变换D. 数据分类答案:D6. 以下哪个算法主要用于聚类问题:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:A7. 在数据挖掘中,以下哪个选项不是数据挖掘的应用领域:A. 市场分析B. 医疗诊断C. 社交网络分析D. 视频游戏开发答案:D8. 以下哪个算法主要用于异常检测:A. K-meansB. AprioriC. Naive BayesD. One-Class SVM答案:D9. 在数据挖掘中,以下哪个选项不是数据挖掘的输出结果:B. 规则C. 趋势D. 软件答案:D10. 以下哪个算法主要用于分类问题:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:D二、多项选择题(每题3分,共5题,共15分)1. 数据挖掘中,以下哪些算法可以用于分类问题:A. K-meansB. Decision TreeC. Naive BayesD. Logistic Regression答案:BCD2. 在数据挖掘中,以下哪些步骤属于数据预处理:A. 数据清洗B. 数据集成C. 数据变换D. 数据分类答案:ABC3. 以下哪些算法可以用于聚类问题:A. K-meansB. AprioriC. Hierarchical ClusteringD. DBSCAN答案:ACD4. 在数据挖掘中,以下哪些步骤属于数据探索:A. 数据可视化B. 数据摘要C. 数据分类D. 数据变换答案:AB5. 以下哪些算法可以用于异常检测:A. K-meansB. One-Class SVMC. Isolation ForestD. Apriori答案:BC三、简答题(每题5分,共3题,共15分)1. 简述数据挖掘中关联规则挖掘的主要步骤。

数据挖掘考试和答案

数据挖掘考试和答案

数据挖掘考试和答案一、单项选择题(每题2分,共20分)1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪个算法不是用于分类的?A. 决策树B. 支持向量机C. K-均值D. 神经网络答案:C3. 在数据挖掘中,以下哪个概念与“异常检测”相对应?A. 频繁模式挖掘B. 聚类C. 关联规则学习D. 异常检测答案:D4. 以下哪个算法是用于聚类的?A. Apriori算法B. K-最近邻算法C. 逻辑回归D. 随机森林答案:B5. 在关联规则学习中,以下哪个指标用于衡量规则的置信度?A. 支持度B. 置信度C. 增益D. 覆盖度答案:B6. 数据挖掘中的“过拟合”是指模型:A. 过于复杂,无法泛化到新数据B. 过于简单,无法捕捉数据的复杂性C. 训练时间过长D. 计算成本过高答案:A7. 在时间序列分析中,ARIMA模型的全称是什么?A. 自回归积分滑动平均模型B. 自回归移动平均模型C. 自回归积分滑动平均模型D. 自回归条件异方差模型答案:A8. 以下哪个是监督学习算法?A. K-均值聚类B. 决策树C. 主成分分析D. Apriori算法答案:B9. 在数据挖掘中,以下哪个概念与“特征选择”相对应?A. 特征提取B. 特征工程C. 降维D. 数据清洗答案:C10. 以下哪个算法是用于降维的?A. 线性回归B. 主成分分析C. 逻辑回归D. 支持向量机答案:B二、多项选择题(每题3分,共15分)11. 数据挖掘中的“关联规则学习”可以应用于以下哪些场景?A. 市场篮分析B. 异常检测C. 推荐系统D. 聚类分析答案:A, C12. 以下哪些是数据挖掘中常用的距离度量?A. 欧氏距离B. 曼哈顿距离C. 余弦相似度D. 杰卡德相似系数答案:A, B, C, D13. 在数据挖掘中,以下哪些是常用的聚类算法?A. K-均值B. DBSCANC. 层次聚类D. 支持向量机答案:A, B, C14. 以下哪些是数据挖掘中的特征选择方法?A. 过滤方法B. 包装方法C. 嵌入方法D. 随机森林答案:A, B, C15. 在数据挖掘中,以下哪些是模型评估指标?A. 准确率B. 召回率C. F1分数D. 均方误差答案:A, B, C, D三、填空题(每题2分,共20分)16. 数据挖掘中的________是指通过分析数据来发现数据中未知的、有价值的信息和知识的过程。

数据挖掘试题(150道)

数据挖掘试题(150道)

A,无序规则B,穷举规则C,互斥规则D,有序规则58.如果规则集中的规则按照优先级降序排列,则称规则集是(D)A,无序规则B,穷举规则C,互斥规则D,有序规则59.如果允许一条记录触发多条分类规则,把每条被触发规则的后件看作是对相应类的一次投票,然后计票确定测试记录的类标号,称为(A)A,无序规则B,穷举规则C,互斥规则D,有序规则60.考虑两队之间的足球比赛:队0和队1。

假设65%的比赛队0胜出,剩余的比赛队1获胜。

队0获胜的比赛中只有30%是在队1的主场,而队1取胜的比赛中75%是主场获胜。

如果下一场比赛在队1的主场进行队1获胜的概率为(C)A,B,C,D,61.以下关于人工神经网络(ANN)的描述错误的有(A)A,神经网络对训练数据中的噪声非常鲁棒B,可以处理冗余特征C,训练ANN是一个很耗时的过程D,至少含有一个隐藏层的多层神经网络62.通过聚集多个分类器的预测来提高分类准确率的技术称为(A)A,组合(ensemble)B,聚集(aggregate)C,合并(combination)D,投票(voting)63.简单地将数据对象集划分成不重叠的子集,使得每个数据对象恰在一个子集中,这种聚类类型称作(B)A、层次聚类B、划分聚类C、非互斥聚类D、模糊聚类64.在基本K均值算法里,当邻近度函数采用(A)的时候,合适的质心是簇中各点的中位数。

A、曼哈顿距离B、平方欧几里德距离C、余弦距离D、Bregman散度65.(C)是一个观测值,它与其他观测值的差别如此之大,以至于怀疑它是由不同的机制产生的。

A、边界点B、质心C、离群点D、核心点66.BIRCH是一种(B)。

A、分类器B、聚类算法C、关联分析算法D、特征选择算法67.检测一元正态分布中的离群点,属于异常检测中的基于(A)的离群点检测。

A、统计方法B、邻近度C、密度D、聚类技术68.(C)将两个簇的邻近度定义为不同簇的所有点对的平均逐对邻近度,它是一种凝聚层次聚类技术。

数据挖掘及应用考试试题及答案

数据挖掘及应用考试试题及答案

数据挖掘及应用考试试题及答案一、选择题(每题2分,共20分)1. 以下哪项不属于数据挖掘的主要任务?A. 分类B. 聚类C. 关联规则挖掘D. 数据清洗答案:D2. 数据挖掘中,以下哪项技术不属于关联规则挖掘的方法?A. Apriori算法B. FP-growth算法C. ID3算法D. 决策树算法答案:C3. 以下哪个算法不属于聚类算法?A. K-means算法B. DBSCAN算法C. Apriori算法D. 层次聚类算法答案:C4. 数据挖掘中,以下哪个属性类型不适合进行关联规则挖掘?A. 连续型属性B. 离散型属性C. 二进制属性D. 有序属性答案:A5. 数据挖掘中,以下哪个评估指标用于衡量分类模型的性能?A. 准确率B. 精确度C. 召回率D. 所有以上选项答案:D二、填空题(每题3分,共30分)6. 数据挖掘的目的是从大量数据中挖掘出有价值的________和________。

答案:知识;模式7. 数据挖掘的主要任务包括分类、聚类、关联规则挖掘和________。

答案:预测分析8. Apriori算法中,最小支持度(min_support)和最小置信度(min_confidence)是两个重要的参数,它们分别用于控制________和________。

答案:频繁项集;强规则9. 在K-means聚类算法中,聚类结果的好坏取决于________和________。

答案:初始聚类中心;迭代次数10. 数据挖掘中,决策树算法的构建过程主要包括________、________和________三个步骤。

答案:选择最佳分割属性;生成子节点;剪枝三、判断题(每题2分,共20分)11. 数据挖掘是数据库技术的一个延伸,它的目的是从大量数据中提取有价值的信息。

()答案:√12. 数据挖掘过程中,数据清洗是必不可少的步骤,用于提高数据质量。

()答案:√13. 数据挖掘中,分类和聚类是两个不同的任务,分类需要训练集,而聚类不需要。

数据挖掘考试题及答案

数据挖掘考试题及答案

数据挖掘考试题及答案一、单项选择题(每题2分,共20分)1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪个算法是用于分类的?A. K-meansB. AprioriC. ID3D. PageRank答案:C3. 在数据挖掘中,哪个指标用于衡量分类模型的性能?A. 准确率B. 召回率C. F1分数D. 所有以上答案:D4. 决策树算法中,哪个算法是基于信息增益来构建树的?A. ID3B. C4.5C. CARTD. CHAID答案:A5. 以下哪个算法是用于关联规则挖掘的?A. K-meansB. AprioriC. ID3D. KNN答案:B6. 在数据挖掘中,哪个算法是用于异常检测的?A. K-meansB. DBSCANC. Isolation ForestD. Naive Bayes答案:C7. 以下哪个算法是用于特征选择的?A. PCAB. AprioriC. ID3D. K-means答案:A8. 在数据挖掘中,哪个算法是用于神经网络的?A. K-meansB. AprioriC. BackpropagationD. ID3答案:C9. 以下哪个算法是用于聚类的?A. K-meansB. AprioriC. ID3D. KNN答案:A10. 在数据挖掘中,哪个算法是用于时间序列预测的?A. ARIMAB. AprioriC. ID3D. K-means答案:A二、多项选择题(每题3分,共15分)11. 数据挖掘中的预处理步骤可能包括哪些?A. 数据清洗B. 数据集成C. 数据转换D. 数据降维E. 特征提取答案:ABCDE12. 以下哪些是数据挖掘中常用的聚类算法?A. K-meansB. DBSCANC. Hierarchical ClusteringD. AprioriE. Mean Shift答案:ABCE13. 在数据挖掘中,哪些是常用的分类算法?A. Naive BayesB. Decision TreesC. Support Vector MachinesD. Neural NetworksE. Apriori答案:ABCD14. 以下哪些是数据挖掘中常用的评估指标?A. 准确率B. 召回率C. F1分数D. ROC曲线E. AUC值答案:ABCDE15. 在数据挖掘中,哪些是异常检测算法?A. Isolation ForestB. One-Class SVMC. Local Outlier FactorD. K-meansE. DBSCAN答案:ABC三、填空题(每题2分,共20分)16. 数据挖掘中的________是指从大量数据中提取或推导出有价值信息的过程。

数据挖掘期末考试题库

数据挖掘期末考试题库

数据挖掘期末考试题库第一部分:单项选择题(每题2分,共20分)1. 数据挖掘的主要任务是:A. 数据清洗B. 数据可视化C. 数据预处理D. 信息提取2. 下列哪种算法不属于分类算法?A. 决策树B. K均值聚类C. 朴素贝叶斯D. 支持向量机3. 以下哪种评估指标适合用于回归模型的评价?A. 准确率B. 精确率C. 均方误差D. 召回率4. 什么是过拟合?A. 欠拟合B. 模型泛化能力差C. 训练数据效果好,测试数据效果差D. 模型对训练数据过于复杂5. 数据挖掘中最常用的算法之一是:A. 关联规则挖掘B. 地理聚类算法C. PCA主成分分析D. 神经网络6. 在K均值聚类算法中,K的取值是:A. 随机指定B. 需要提前确定C. 可以根据数据自动调整D. 由数据量来决定7. 数据不平衡问题常见的解决方法是:A. 降采样B. 升采样C. 阈值移动D. 过采样8. 常用的数据变换方法包括:A. 标准化B. 特征选择C. 特征抽取D. 以上都是9. 以下哪个不是决策树算法?A. CARTB. SVMC. ID3D. C4.510. 数据挖掘的任务包括:A. 分类B. 预测C. 聚类D. 以上都是第二部分:简答题(每题5分,共25分)1. 请简要介绍数据挖掘的相关概念及主要任务。

2. 什么是数据清洗?数据预处理的主要步骤有哪些?3. 请简要描述K均值聚类算法的原理及应用场景。

4. 什么是特征选择?为什么特征选择在数据挖掘中很重要?5. 请解释模型评估中的ROC曲线及AUC指标的含义。

第三部分:分析题(每题10分,共30分)1. 请根据提供的数据集,使用决策树算法进行分类预测,并对算法进行评估。

2. 请使用K均值聚类算法对特定数据进行聚类,并解释聚类结果的含义。

3. 请选择一个自己感兴趣的数据集,设计一个数据挖掘项目,并说明项目的背景、目的、方法及预期结果。

第四部分:应用题(每题15分,共30分)1. 请根据给定的销售数据,利用关联规则挖掘算法找出频繁项集和关联规则,并分析其规则含义及实际应用。

数据挖掘考试题库及答案

数据挖掘考试题库及答案

数据挖掘考试题库及答案一、单项选择题1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪个算法不是用于分类的?A. 决策树B. 支持向量机C. K-均值D. 神经网络答案:C3. 在数据挖掘中,哪个指标用于衡量分类模型的性能?A. 准确率B. 召回率C. F1分数D. 所有以上答案:D4. 以下哪个不是数据挖掘中的聚类算法?A. K-均值B. DBSCANC. AprioriD. 层次聚类答案:C5. 在关联规则挖掘中,哪个算法是最著名的?A. AprioriB. FP-GrowthC. EMD. K-均值答案:A二、多项选择题6. 数据挖掘过程中可能需要进行的预处理步骤包括哪些?A. 缺失值处理B. 异常值检测C. 数据标准化D. 特征选择答案:ABCD7. 以下哪些是监督学习算法?A. 线性回归B. 逻辑回归C. 决策树D. K-均值答案:ABC8. 在数据挖掘中,以下哪些是评估模型性能的指标?A. 精确度B. 召回率C. 混淆矩阵D. ROC曲线答案:ABCD9. 以下哪些是无监督学习算法?A. K-均值B. 主成分分析C. 自动编码器D. 支持向量机答案:ABC10. 在数据挖掘中,以下哪些是特征工程的步骤?A. 特征提取B. 特征选择C. 特征转换D. 特征降维答案:ABCD三、填空题11. 数据挖掘中的________是指从大量数据中提取模式或知识的过程。

答案:知识发现12. 在分类问题中,________是指模型预测正确的样本数量占总样本数量的比例。

答案:准确率13. 在聚类分析中,________是一种基于密度的聚类算法,它将具有足够高密度的区域划分为一个簇。

答案:DBSCAN14. 在关联规则挖掘中,________算法通过减少候选项集来提高挖掘效率。

答案:FP-Growth15. 在数据挖掘中,________是指通过算法自动从数据中学习并构建模型的过程。

数据挖掘考试题及答案

数据挖掘考试题及答案

数据挖掘考试题及答案一、单项选择题(每题2分,共20分)1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪个算法不是用于分类的?A. 决策树B. 支持向量机C. K-meansD. 神经网络答案:C3. 在数据挖掘中,关联规则挖掘主要用于发现以下哪种类型的模式?A. 频繁项集B. 异常检测C. 聚类D. 预测答案:A4. 以下哪个指标用于评估分类模型的性能?A. 准确率B. 召回率C. F1分数D. 以上都是答案:D5. 在数据挖掘中,过拟合是指模型:A. 过于复杂,无法泛化到新数据B. 过于简单,无法捕捉数据的复杂性C. 无法处理缺失值D. 无法处理异常值答案:A6. 以下哪个算法是用于异常检测的?A. AprioriB. K-meansC. DBSCAND. ID3答案:C7. 在数据挖掘中,哪个步骤是用于减少数据集中的噪声和不相关特征?A. 数据预处理B. 数据探索C. 数据转换D. 数据整合答案:A8. 以下哪个是时间序列分析中常用的模型?A. 线性回归B. ARIMAC. 决策树D. 神经网络答案:B9. 在数据挖掘中,哪个算法是用于处理高维数据的?A. 主成分分析(PCA)B. 线性回归C. 逻辑回归D. 随机森林答案:A10. 以下哪个是文本挖掘中常用的技术?A. 词袋模型B. 决策树C. 聚类分析D. 以上都是答案:D二、多项选择题(每题3分,共15分)11. 数据挖掘过程中可能涉及的步骤包括哪些?A. 数据清洗B. 数据转换C. 数据探索D. 模型训练答案:ABCD12. 以下哪些是数据挖掘中常用的数据预处理技术?A. 缺失值处理B. 特征选择C. 特征缩放D. 数据离散化答案:ABCD13. 在数据挖掘中,哪些因素可能导致模型过拟合?A. 训练数据量过少B. 模型过于复杂C. 训练数据噪声过多D. 训练数据不具代表性答案:ABCD14. 以下哪些是评估聚类算法性能的指标?A. 轮廓系数B. 戴维斯-邦丁指数C. 兰德指数D. 互信息答案:ABCD15. 在数据挖掘中,哪些是常用的特征工程方法?A. 特征选择B. 特征提取C. 特征构造D. 特征降维答案:ABCD三、简答题(每题10分,共30分)16. 简述数据挖掘中的“挖掘”过程通常包括哪些步骤。

数据挖掘试题及答案

数据挖掘试题及答案

数据挖掘试题及答案### 数据挖掘试题及答案#### 一、选择题1. 数据挖掘的最终目标是什么?- A. 数据清洗- B. 数据集成- C. 数据分析- D. 发现知识答案:D2. 以下哪个算法不属于聚类算法?- A. K-means- B. DBSCAN- C. Apriori- D. Hierarchical Clustering答案:C3. 在数据挖掘中,关联规则挖掘主要用于发现什么? - A. 异常值- B. 频繁项集- C. 趋势- D. 聚类答案:B4. 决策树算法中的剪枝操作是为了解决什么问题?- A. 过拟合- B. 欠拟合- C. 数据不平衡- D. 特征选择答案:A5. 以下哪个是时间序列分析的常用方法?- A. 逻辑回归- B. 线性回归- C. ARIMA模型- D. 支持向量机答案:C#### 二、简答题1. 简述数据挖掘中的分类和聚类的区别。

答案:分类是监督学习过程,它使用标记的训练数据来预测数据的类别。

聚类是无监督学习过程,它将数据分组,使得同一组内的数据点相似度较高,不同组之间的数据点相似度较低。

2. 解释什么是异常检测,并给出一个实际应用的例子。

答案:异常检测是一种识别数据集中异常或不寻常模式的方法。

它通常用于识别欺诈行为、网络安全问题或机械故障。

例如,在信用卡交易中,异常检测可以用来识别潜在的欺诈行为。

3. 描述决策树的工作原理。

答案:决策树通过一系列的问题(通常是二元问题)来对数据进行分类。

从根节点开始,数据被分割成不同的子集,然后每个子集继续被分割,直到达到叶节点,叶节点代表最终的分类结果。

#### 三、应用题1. 给定一组客户数据,包括年龄、收入和购买历史。

使用数据挖掘技术来识别哪些客户更有可能购买新产品。

答案:可以使用决策树或逻辑回归等分类算法来分析客户数据,识别影响购买行为的关键特征。

通过训练模型,可以预测哪些客户更有可能购买新产品。

2. 描述如何使用关联规则挖掘来发现超市中商品的购买模式。

数据挖掘练习题.doc

数据挖掘练习题.doc

一、填空题1、 数据预处理对于数据挖掘是一个重要问题,主要包括 _______________ 、数 据集成、 ____________ 和数据归约。

2、 多维数据模型的星形模式中,主要依靠事实表中 __________ 的与维表联系在一起。

3、 __________ 允许从多个维对数据建模和观察,它由维和事实定义。

}的中位数为 _______ , 4、 数据集{5, 10, 11, 13, 15, 15, 35, 50, 55, 72, 92, 204, 215众数为 _________ o5、 在多个抽象层上挖掘数据产生的关联规则称为 _____________ o6、 将物理或抽象对象的集合分成相似的对象类(或簇)的过程称为 ___________O7、 分类和预测是两种数据分析形式,可以用来建立模型,预测数据未来的趋势,其中 _____________ 用来预测类别标号, ___________ 用来建立连续函数 模型。

),两个对象8、 给定两个对象,分别表示为(22, 1, 42, 10), (20, 0, 36, 8之间的曼哈顿距离为 _______________o9、 通常数据仓库与0LAP工具是基于 ___________ 模型进行设计的。

10、 涉及两个或多个维的关联规则称为 ______________o二、单项选择题1、 S PSS作为通用的统计软件包不仅被广泛地用于经济、管理、工业等领域的数据统计处理,而且在()中得到了应用。

A、数据挖掘领域B、数据仓库领域C、信息管理领域D、系统管理领域2、 下列度量中,哪一个度量不属于集中趋势度量:()。

A、中位数B、中列数C、众数D、极差3、 OLAP技术的核心是:( )。

A、在线性B、对用户的快速响应C、互操作性D、多维分析4、 关于OLAP和OLTP的说法,下列不正确的是:()A、 OLTP事务量大,但事务内容比较简单且重复率高B、 OLAP的数据来源与OLTP不完全一样C、 OLTP面对的是决策人员和高层管理人员D、 OLTP以应用为核心,是应用驱动的5、 下列哪种操作可以使用户更加直观地从不同角度观察数据立方体中不同维之间的关系:()0A、上卷B、下钻C、切片D、旋转6、数据挖掘的经典案例“啤酒与尿布试验”最主要是应用了哪种数据挖掘方法: ()0A、分类B、预测C、关联分析D、聚类7、 利用信息增益方法作为属性选择度量建立决策树时,已知某训练样本集的四个属性的信息增益分别为:Gain(收入戶0.940位,Gain(职业)=0.151位,Gain(年龄)=0.780位,Gain(信誉)=0.048位,则应该选择哪个属性作为决策树的测试属 性:()。

数据挖掘试题(110道)

数据挖掘试题(110道)

单选题1.某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A)A.xx规则发现B.聚类C.分类D.自然语言处理2.以下两种描述分别对应哪两种对分类算法的评价标准?(A)(a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。

(b)描述有多少比例的小偷给警察抓了的标准。

A. Precision,RecallB. Recall,PrecisionA. Precision,ROC D. Recall,ROC3.将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C)A.频繁模式挖掘B.分类和预测C.数据预处理D.数据流挖掘4.当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B)A.分类B.聚类C.关联分析D.隐马尔可夫链5.什么是KDD?(A)A.数据挖掘与知识发现B.领域知识发现C.文档知识发现D.动态知识发现6.使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?(A)A.探索性数据分析B.建模描述C.预测建模D.寻找模式和规则7.为数据的总体分布建模;把多维空间划分成组等问题属于数据挖掘的哪一类任务?(B)A.探索性数据分析B.建模描述C.预测建模D.寻找模式和规则8.建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?(C)A.根据内容检索B.建模描述C.预测建模D.寻找模式和规则9.用户有一种感兴趣的模式并且希望在数据集中找到相似的模式,属于数据挖掘哪一类任务?(A)A.根据内容检索B.建模描述C.预测建模D.寻找模式和规则11.下面哪种不属于数据预处理的方法?(D)A变量代换B离散化C 聚集D 估计遗漏值12.假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215使用如下每种方法将它们划分成四个箱。

数据挖掘期末考试题及答案

数据挖掘期末考试题及答案

数据挖掘期末考试题及答案一、选择题(每题2分,共20分)1. 数据挖掘中的关联规则挖掘主要用来发现数据项之间的什么关系?A. 因果关系B. 相关性C. 线性关系D. 依赖关系答案:B2. 决策树算法中,哪个指标用于选择分裂节点?A. 信息增益B. 支持度C. 置信度D. 精确度答案:A3. 聚类分析中,K-means算法的K值表示什么?A. 聚类中心的数量B. 聚类半径C. 聚类成员的最小数量D. 聚类成员的最大数量答案:A4. 在数据挖掘中,哪个算法常用于分类问题?A. Apriori算法B. K-means算法C. KNN算法D. ID3算法答案:C5. 数据挖掘中的异常检测通常用于哪些领域?A. 市场分析B. 客户细分C. 欺诈检测D. 趋势预测答案:C6. 朴素贝叶斯分类器属于哪种类型的学习算法?A. 监督学习B. 非监督学习C. 半监督学习D. 强化学习答案:A7. 在关联规则挖掘中,支持度是指什么?A. 规则出现的频率B. 规则的置信度C. 规则的覆盖度D. 规则的强度答案:A8. 神经网络在数据挖掘中通常用于解决什么问题?A. 聚类B. 分类C. 回归D. 所有上述问题答案:D9. 哪个算法是数据挖掘中用于特征选择的算法?A. 主成分分析(PCA)B. 线性判别分析(LDA)C. 独立成分分析(ICA)D. 随机森林答案:D10. 数据挖掘中的时间序列分析通常用于哪些领域?A. 股票市场预测B. 销售预测C. 天气预报D. 所有上述领域答案:D二、简答题(每题10分,共30分)1. 简述数据挖掘中的主要任务有哪些?答案:数据挖掘的主要任务包括分类、聚类、关联规则挖掘、异常检测、趋势预测等。

2. 描述决策树算法的基本原理。

答案:决策树算法是一种监督学习算法,它通过从数据特征中选择最优特征来构建决策树,从而实现对数据的分类或回归。

算法通过递归地选择最优分裂节点,构建树状结构,直到满足停止条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1、数据仓库就是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。

2、元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库提供了一个信息目录,根据数据用途的不同可将数据仓库的元数据分为技术元数据和业务元数据两类。

3、数据处理通常分成两大类:联机事务处理和联机分析处理。

4、多维分析是指以“维”形式组织起来的数据(多维数据集)采取切片、切块、钻取和旋转等各种分析动作,以求剖析数据,使拥护能从不同角度、不同侧面观察数据仓库中的数据,从而深入理解多维数据集中的信息。

5、ROLAP是基于关系数据库的OLAP实现,而MOLAP是基于多维数据结构组织的OLAP实现。

6、数据仓库按照其开发过程,其关键环节包括数据抽取、数据存储与管理和数据表现等。

7、数据仓库系统的体系结构根据应用需求的不同,可以分为以下4种类型:两层架构、独立型数据集合、以来型数据结合和操作型数据存储和逻辑型数据集中和实时数据仓库。

8、操作型数据存储实际上是一个集成的、面向主题的、可更新的、当前值的(但是可“挥发”的)、企业级的、详细的数据库,也叫运营数据存储。

9、“实时数据仓库”以为着源数据系统、决策支持服务和仓库仓库之间以一个接近实时的速度交换数据和业务规则。

10、从应用的角度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以运营导向为主和以实时数据仓库和自动决策为主。

第二章1、调和数据是存储在企业级数据仓库和操作型数据存储中的数据。

2、抽取、转换、加载过程的目的是为决策支持应用提供一个单一的、权威数据源。

因此,我们要求ETL 过程产生的数据(即调和数据层)是详细的、历史的、规范的、可理解的、即时的和质量可控制的。

3、数据抽取的两个常见类型是静态抽取和增量抽取。

静态抽取用于最初填充数据仓库,增量抽取用于进行数据仓库的维护。

4、粒度是对数据仓库中数据的综合程度高低的一个衡量。

粒度越小,细节程度越高,综合程度越低,回答查询的种类越多。

5、使用星型模式可以从一定程度上提高查询效率。

因为星型模式中数据的组织已经经过预处理,主要数据都在庞大的事实表中。

6、维度表一般又主键、分类层次和描述属性组成。

对于主键可以选择两种方式:一种是采用自然键,另一种是采用代理键。

7、雪花型模式是对星型模式维表的进一步层次化和规范化来消除冗余的数据。

8、数据仓库中存在不同综合级别的数据。

一般把数据分成4个级别:早期细节级、当前细节级、轻度综合级和高度综合级。

第三章1、SQL Server SSAS提供了所有业务数据的同意整合试图,可以作为传统报表、在线分析处理、关键性能指示器记分卡和数据挖掘的基础。

2、数据仓库的概念模型通常采用信息包图法来进行设计,要求将其5个组成部分(包括名称、维度、类别、层次和度量)全面地描述出来。

3、数据仓库的逻辑模型通常采用星型图法来进行设计,要求将星型的各类逻辑实体完整地描述出来。

4、按照事实表中度量的可加性情况,可以把事实表对应的事实分为4种类型:事务事实、快照事实、线性项目事实和事件事实。

5、确定了数据仓库的粒度模型以后,为提高数据仓库的使用性能,还需要根据拥护需求设计聚合模型。

6、在项目实施时,根据事实表的特点和拥护的查询需求,可以选用时间、业务类型、区域和下属组织等多种数据分割类型。

7、当维表中的主键在事实表中没有与外键关联时,这样的维称为退化维。

它于事实表并无关系,但有时在查询限制条件(如订单号码、出货单编号等)中需要用到。

8、维度可以根据其变化快慢分为元变化维度、缓慢变化维度和剧烈变化维度三类。

9、数据仓库的数据量通常较大,且数据一般很少更新,可以通过设计和优化索引结构来提高数据存取性能。

10、数据仓库数据库常见的存储优化方法包括表的归并与簇文件、反向规范化引入冗余、表的物理分割(分区)。

第四章1、关联规则的经典算法包括Apriori算法和FP-growth算法,其中FP-grownth算法的效率更高。

2、如果L2={{a,b},{a,c},{a,d},{b,c},{b,d}},则连接产生的C3={{a,b,c},{a,b,d},{a,c,d},{b,c,d}}再经过修剪,C3={{a,b,c},{a,b,d}}3、设定supmin=50%,交易集如则L1={A},{B},{C} L2={A,C}T1 A B CT2 A CT3 A DT4 B E F第五章1、分类的过程包括获取数据、预处理、分类器设计和分类决策。

2、分类器设计阶段包含三个过程:划分数据集、分类器构造和分类器测试。

3、分类问题中常用的评价准则有精确度、查全率和查准率和集合均值。

4、支持向量机中常用的核函数有多项式核函数、径向基核函数和S型核函数。

第六章1、聚类分析包括连续型、二值离散型、多值离散型和混合类型4种类型描述属性的相似度计算方法。

2、连续型属性的数据样本之间的距离有欧氏距离、曼哈顿距离和明考斯基距离。

3、划分聚类方法对数据集进行聚类时包含三个要点:选种某种距离作为数据样本减的相似性度量、选择评价聚类性能的准则函数和选择某个初始分类,之后用迭代的方法得到聚类结果,使得评价聚类的准则函数取得最优值。

4、层次聚类方法包括凝聚型和分解型两中层次聚类方法。

填空题20分,简答题25分,计算题2个(25分),综合题30分1、数据仓库的组成?P2数据仓库数据库,数据抽取工具,元数据,访问工具,数据集市,数据仓库管理,信息发布系统2、数据挖掘技术对聚类分析的要求有哪几个方面?P131可伸缩性;处理不同类型属性的能力;发现任意形状聚类的能力;减小对先验知识和用户自定义参数的依赖性;处理噪声数据的能力;可解释性和实用性3、数据仓库在存储和管理方面的特点与关键技术?P7数据仓库面对的是大量数据的存储与管理并行处理针对决策支持查询的优化支持多维分析的查询模式4、常见的聚类算法可以分为几类?P132基于划分的聚类算法,基于层次的聚类算法,基于密度的聚类算法,基于网格的聚类算法,基于模型的聚类算法 等。

5、一个典型的数据仓库系统的组成?P12数据源、数据存储与管理、OLAP 服务器、前端工具与应用6、 数据仓库常见的存储优化方法?P71 表的归并与簇文件;反向规范化,引入冗余;表的物理分割。

7、 数据仓库发展演变的5个阶段?P20以报表为主以分析为主以预测模型为主以运行向导为主以实时数据仓库、自动决策应用为主8、 ID3算法主要存在的缺点?P116(1)ID3算法在选择根结点和各内部结点中的分枝属性时,使用信息增益作为评价标准。

信息增益的缺点是倾向于选择取值较多的属性,在有些情况下这类属性可能不会提供太多有价值的信息。

(2)ID3算法只能对描述属性为离散型属性的数据集构造决策树。

9、 简述数据仓库ETL 软件的主要功能和对产生数据的目标要求。

P30ETL 软件的主要功能:数据的抽取,数据的转换,数据的加载对产生数据的目标要求:详细的、历史的、规范化的、可理解的、即时的、质量可控制的10、 简述分类器设计阶段包含的3个过程。

★划分数据集,分类器构造,分类器测试11、 什么是数据清洗?P33★数据清洗是一种使用模式识别和其他技术,在将原始数据转换和移到数据仓库之前来升级原始数据质量的技术。

12、 支持度和置信度的计算公式及数据计算(P90)找出所有的规则X ◊ Y , 使支持度和置信度分别大于门限支持度: 事务中X 和Y 同时发生的比例,P(X Ո Y)置信度:项集X 发生时,Y 同时发生的条件概率P(Y|X)Example:13、利用信息包图设计数据仓库概念模型需要确定的三方面内容。

P57 确定指标,确定维度,确定类别14、K-近邻分类方法的操作步骤(包括算法的输入和输出)。

P128 ()()()Support X Y c X Y Support X →=0.67)Beer(0.4,}Diaper ,Milk {⇒15、什么是技术元数据,主要包含的内容?P29技术元数据是描述关于数据仓库技术细节的数据,应用于开发、管理和维护DW,包含:●DW结构的描述,如DW的模式、视图、维、层次结构和导出数据的定义,数据集市的位置和内容等●业务系统、DW和数据集市的体系结构和模式●汇总算法。

包括度量和维定义算法,数据粒度、主题领域、聚合、汇总和预定义的查询和报告。

●由操作型业务环境到数据仓库业务环境的映射。

包括源数据和他们的内容、数据分割、数据提取、清洗、转换规则和数据刷新规则及安全(用户授权和存取控制)16、业务元数据主要包含的内容?P29业务元数据:从业务角度描述了DW中的数据,提供了介于使用者和实际系统之间的语义层,主要包括:●使用者的业务属于所表达的数据模型、对象名和属性名●访问数据的原则和数据的来源●系统提供的分析方法及公式和报表的信息。

17、K-means算法的基本操作步骤(包括算法的输入和输出)。

P138★18、数据从集结区加载到数据仓库中的主要方法?P36● SQL 命令(如Insert 或Update )● 由DW 供应商或第三方提供专门的加载工具● 由DW 管理员编写自定义程序19、多维数据模型中的基本概念:维,维类别,维属性,粒度P37● 维:人们观察数据的特定角度,是考虑问题的一类属性,如时间维或产品维● 维类别:也称维分层。

即同一维度还可以存在细节程度不同的各个类别属性(如时间维包括年、季度、月等)● 维属性:是维的一个取值,是数据线在某维中位置的描述。

● 粒度:DW 中数据综合程度高低的一个衡量。

粒度低,细节程度高,回答查询的种类多20、Apriori 算法的基本操作步骤P93★Apriori 使用一种称作逐层搜索的迭代方法,K 项集用于探索K+1项集。

该方法是基于候选的策略,降低候选数Apriori 剪枝原则:若任何项集是非频繁的,则其超集必然是非频繁的(不用产生和测试超集)该原则基于以下支持度的特性: ☜ 项集的支持度不会超过其子集☜ 支持度的反单调特性(anti-monotone ):如果一个集合不能通过测试,则它的所有超集也都不能通过相同的测试。

令 k=1产生长度为1的频繁项集 循环,直到无新的频繁项集产生☜ 从长度为k 的频繁项集产生长度为k+1的候选频繁项集☟连接步:项集的各项排序,前k-1个项相同 ☜ 若候选频繁子集包含长度为k 的非频繁子集,则剪枝☟ 剪枝步:利用支持度属性原则 ☜ 扫描数据库,计算每个候选频繁集的支持度☜ 删除非频繁项, 保留频繁项)()()(:,Y s X s Y X Y X ≥⇒⊆∀。

相关文档
最新文档