数学 平行四边形的专项 培优练习题含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.(问题情景)利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.

例如:张老师给小聪提出这样一个问题:

如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?

小聪的计算思路是:

根据题意得:S△ABC=1

2

BC•AD=

1

2

AB•CE.

从而得2AD=CE,∴

1

2 AD CE

请运用上述材料中所积累的经验和方法解决下列问题:

(1)(类比探究)

如图2,在▱ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,

求证:BO平分角AOC.

(2)(探究延伸)

如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PA•PB=2AB.

(3)(迁移应用)

如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,

AB=34,BC=2,AC=26,又已知M、N分别为AE、BE的中点,连接DM、CN.求

△DEM与△CEN的周长之和.

【答案】(1)见解析;(2)见解析;(3)34

【解析】

分析:(1)、根据平行四边形的性质得出△ABF和△BCE的面积相等,过点B作OG⊥AF于

G,OH⊥CE于H,从而得出AF=CE,然后证明△BOG和△BOH全等,从而得出

∠BOG=∠BOH,即角平分线;(2)、过点P作PG⊥n于G,交m于F,根据平行线的性质得出△CPF和△DPG全等,延长BP交AC于E,证明△CPE和△DPB全等,根据等积法得出

AB=AP×PB,从而得出答案;(3)、,延长AD,BC交于点G,过点A作AF⊥BC于F,设CF=x,根据Rt△ABF和Rt△ACF的勾股定理得出x的值,根据等积法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,从而得出两个三角形的周长之和.

同理:EM+EN=AB

详解:证明:(1)如图2,∵四边形ABCD是平行四边形,

∴S△ABF=S▱ABCD,S△BCE=S▱ABCD,∴S△ABF=S△BCE,

过点B作OG⊥AF于G,OH⊥CE于H,∴S△ABF=AF×BG,S△BCE=CE×BH,

∴AF×BG=CE×BH,即:AF×BG=CE×BH,∵AF=CE,∴BG=BH,

在Rt△BOG和Rt△BOH中,,∴Rt△BOG≌Rt△BOH,∴∠BOG=∠BOH,

∴OB平分∠AOC,

(2)如图3,过点P作PG⊥n于G,交m于F,∵m∥n,∴PF⊥AC,

∴∠CFP=∠BGP=90°,∵点P是CD中点,

在△CPF和△DPG中,,∴△CPF≌△DPG,∴PF=PG=FG=2,

延长BP交AC于E,∵m∥n,∴∠ECP=∠BDP,∴CP=DP,

在△CPE和△DPB中,,∴△CPE≌△DPB,∴PE=PB,

∵∠APB=90°,∴AE=AB,∴S△APE=S△APB,

∵S△APE=AE×PF=AE=AB,S△APB=AP×PB,

∴AB=AP×PB,即:PA•PB=2AB;

(3)如图4,延长AD,BC交于点G,∵∠BAD=∠B,

∴AG=BG,过点A作AF⊥BC于F,

设CF=x(x>0),∴BF=BC+CF=x+2,在Rt△ABF中,AB=,

根据勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2,在Rt△ACF中,AC=,

根据勾股定理得,AF2=AC2﹣CF2=26﹣x2,

∴34﹣(x+2)2=26﹣x2,∴x=﹣1(舍)或x=1,∴AF==5,

连接EG,∵S△ABG=BG×AF=S△AEG+S△BEG=AG×DE+BG×CE=BG(DE+CE),

∴DE+CE=AF=5, 在Rt △ADE 中,点M 是AE 的中点, ∴AE=2DM=2EM ,

同理:BE=2CN=2EN , ∵AB=AE+BE , ∴2DM+2CN=AB , ∴DM+CN=AB ,

同理:EM+EN=AB ∴△DEM 与△CEN 的周长之和=DE+DM+EM+CE+CN+EN=(DE+CE )+[(DM+CN )+(EM+EN )]

=(DE+CN )+AB=5+.

点睛:本题主要考查的就是三角形全等的判定与性质以及三角形的等积法,综合性非常强,难度较大.在解决这个问题的关键就是作出辅助线,然后根据勾股定理和三角形全等得出各个线段之间的关系.

2.如图,四边形ABCD 中,∠BCD =∠D =90°,E 是边AB 的中点.已知AD =1,AB =2. (1)设BC =x ,CD =y ,求y 关于x 的函数关系式,并写出定义域;

(2)当∠B =70°时,求∠AEC 的度数;

(3)当△ACE 为直角三角形时,求边BC 的长.

【答案】(1)()22303y x x x =

-++<<;(2)∠AEC =105°;(3)边BC 的长为2或1172

. 【解析】

试题分析:(1)过A 作AH ⊥BC 于H ,得到四边形ADCH 为矩形.在△BAH 中,由勾股定理即可得出结论.

(2)取CD 中点T ,连接TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,

∠AET =∠B =70°.

又AD =AE =1,得到∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,即可得到结论.

相关文档
最新文档