工业催化心得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名:__吴勰
学号:1203023005
Hefei University
课程小论文
论文题目: 酸催化剂的发展历史及未来
学科专业:__ 工业催化___ _ _ 作者姓名:________ _吴勰_____ 导师姓名:_________ _董强___ _ _ 完成时间:____ ___2015年6月22日______
酸催化剂的发展历史及未来
摘要:酸催化剂是化学工业中一类重要催化剂,酸催化反应是包括烃类裂解、重整、异构化以及烯烃水合、芳烃烷基化、酰基化、醇酸酯化等石油化工在内的一系列重要工业的基础。本文简要介绍了酸催化剂的发展历程,重点讨论了当前研究热点固体超强酸催化剂的发展现状、存在的问题和未来发展方向。
关键词:酸催化固体超强酸发展历史未来
一、酸催化剂相关概念
酸是化学中一类重要化合物的统称,近现代化学中对于什么是酸从不同的角度出发有两种主要理论,分别是质子理论和电子理论。
1.质子理论(B酸)
1923年Bronsted J N和Lowry T M提出,凡是能放出质子的物质为酸,能与质子结合的物质为碱,酸放出质子后即形成该酸的共轭碱,同样,所有的碱也有着共轭酸。
根据质子论的定义,酸的强度就是它给出质子的倾向的大小,碱的强度就是它接受质子的倾向的大小,因此,一个酸越是强,它的共轭碱越是弱,不同强度的酸碱之间可以发生反应。酸碱反应是酸中的质子转移给碱,反应方向是质子从弱碱转移到强碱。
2.电子理论(L酸)
1924年,几乎在质子理论提出的同时,Lewis G N从化学键理论出发提出了从另一个角度出发考虑的酸碱理论,它以接受或放出电子对作为判别标准,定义酸是能接受电子对的物质,而碱是能放出电子对的物质。因此,酸和碱又可以分别称之为电子对受体和供体。酸碱反应实际上是形成配位键的过程,生成酸碱加合物。 A + B:→B—A
3.质子理论和电子理论的区别(B酸和L酸的区别)
质子理论和电子理论所定义有异同之处,共同之处是它们都能和碱作用,与指示剂的颜色反应效果也相同,在某些反应中有相似的催化作用。但是当反应中涉及到质子的传递转移时它们的作用是不同的,也不能互换。有时候二者合用时产生的催化效果更为明显。可是质子酸与碱作用后生成盐,Lewis酸与碱反应后生成的是络合物或加成产物;Lewis酸的立体体积要比质子大得多,在许多场合下会显示出立体效应,而质子却很少反映出立体效应。
4.酸催化及酸催化剂
由于酸具有可以给出质子或接受电子的性质,使其在很多反应中能够产生催化作用。例如,酸与反应物分子之间通过给出质子或接受电子对,使反应物形成活泼的正碳离子中间体,
继而在一定条件下分解为产物的催化过程即为酸催化过程。
酸催化剂即是指本身具有酸性(广义),并能起酸催化作用的物质。
二、酸催化剂的发展历史
从酸催化剂的应用发展历史来看,最早得到应用的是以24H SO 、HF 为代表的液体无机酸及以3ALCL 为代表的金属卤化物固体酸催化剂。1919年美国新泽西标准油公司(此后的埃克森公司)开发以硫酸为催化剂从丙烯水合制异丙醇的工业过程,1920年建厂,至1930年,美国联合碳化物公司又建成乙烯水合制乙醇的工厂。1938年,世界上第一套以浓硫酸为催化剂的烷基化反应装置在亨伯石油炼制公司的贝敦炼油厂建成投产;1942年,第一套以氢氟酸为催化剂的烷基化反应装置在菲利普斯石油公司的德克萨斯州博格炼油厂建成投产。1877年Friedel 和Crafts 首次发现傅克反应,即以固体酸三氯化铝及其它金属卤化物催化的芳烃和脂肪烃烷基化和酰基化反应。在工业应用上,1935年Dow Chemical 公司成功开发了以无水三氯化铝为催化剂制备乙苯的烷基化液相工艺。
24H SO 、HF 、3ALCL 这些传统酸催化剂都具有酸强度高、低温活性好、成本较低等优点,但是却存在腐蚀设备、污染环境、无法重复利用、与产物的分离困难等问题,自其应用初始,人们就在不断地寻找其替代品,为克服上述传统酸催化剂的缺点,绿色固体酸催化剂是研究开发的重点,其中已经有多种固体酸催化剂成功替代传统催化剂用于工业生产。如,二十世纪八十年代初,世界上第一套Mobil/Badger 气相烷基化制乙苯装置在美国试验成功,标志着乙苯生产技术的重大革新,它采用固体酸ZSM-5分子筛作为催化剂,第一次实现了多相催化制乙苯过程,解决了催化剂与反应物的分离问题,具有无腐蚀、无污染、流程简单、热能回收利用率高等优点,成为当时最先进的乙苯生产工艺。除此之外23Al O γ-、H Y -、H β-、活性粘土、酸性树脂等固体酸催化剂已经在部分酸催化生产工艺中成功取代了传统液体酸催化剂。但是尽管如此,仍有大量重要化工领域仍在使用传统的H2SO4、HF 、AlCl3这些传统酸催化剂,现有的固体酸催化剂因为酸性较弱,活性差,综合成本较高等问题不能完全实现对传统酸催化剂的替代。在当前环境污染问题日益突出,人类环保意识不断提高的形势下,开发具有更高活性,安全环保的新型固体超强酸催化剂意义重大。
三、固体超强酸催化剂
超强酸这一术语最早由Conant 和Hall 于1927年提出,用于表示比通常的无机酸更强的酸。现在所谓的超强酸普遍是指酸强度高于100%硫酸的酸,是由Gillespie 于1968年定
义的,其酸强度可用Hammett 酸度函数H0表示,已知100%硫酸的H0=-11.9,凡是H0值小于-11.9的酸均可称为超强酸,H0值越小该超强酸的酸强度越强。最早被发现的超强酸被称作魔酸,它是由诺贝尔化学奖获得者美国加利福尼亚大学的George A.Olah 教授和他的学生于1966年首次发现的,其组成为52HSbF OSO F ()五氟化锑合氟代磺酸,其酸强度是100%硫酸的一亿倍,而目前已知最强的超强酸是氟锑酸,一种氢氟酸(HF )与五氟化锑(5SbF )的混合物。其中,氢氟酸提供质子(H+)和共轭碱氟离子(F-),氟离子通过强配位键与亲氟的五氟化锑生成具有八面体稳定结构的六氟化锑阴离子(6SbF -),而该离子是一种非常弱的亲核试剂和非常弱的碱。于是质子就成为了“自由质子”,从而导致整合体系具有极强的酸性。氟锑酸的酸性通常是纯硫酸的19210⨯倍。目前发现的液体超强酸绝大部分都是由一种质子酸HX 和作为Lewis 酸的金属卤化物配位而成的,常见的有4H AlCl +-、6H SbF +-、6H TaF +-和53H SbFSO H +-等。
最初的固体超强酸即是将上述含卤素的液体超强酸(如5HFSbF 等)固载化而得到的,但这类固体超强酸仍旧存在污染环境、使用条件苛刻等缺陷,已经逐渐淡出了历史的舞台。直到1979年日本科学家Hino 等人首次成功地合成了不含卤素的硫酸根改性
42SO /MxOy -型固体超强酸,
它对烷烃异构化和烷基化反应具有很高的活性,并且该类固体超强酸克服了含卤素的固体超强酸的不足,有可能替代现行的24H SO 、HF 等液体强酸催化剂,实现环境友好催化新工艺,从而引起了人们广泛关注。但后来的研究发现,
42x y SO /M O --型超强酸失活速度较快,
限制了其工业应用。失活的原因除结炭外主要是:(1)SO42-因液相反应中的溶剂化效应和在使用及再生过程中转变成挥发性硫化物(如H2S )而流失;(2)在使用过程中S6+被还原成低价态(尤其在还原性气氛如H2、醇等中),从而酸强度明显降低。为此,Arata 等人于1988 年首先合成了负载型氧化物固体超强酸(32WO /ZrO ),虽然其酸强度低于42x y SO /M O --型固体超强酸(422SO /ZrO -的H0 < -16.0,32WO /ZrO 的H0 < -14.5),但它在溶液和还原性气氛中及对热的稳定性明显优于42x y SO /M O --超强酸,而且对特定的反应如高碳烷烃的异构化等具有比42x y SO /M O --催化剂更高的选择性,故该超强酸一经出现就引起人们极大的兴趣。除此