数学专业英语2-11,2-12
数学专业英语常用词汇
2.有关集合数学专业英语词汇代数部分union并集?propersubset真子集?1.有关数*算solutionset解集??add,plus加?3.有关代数式、方程和不等式subtract减?difference差??algebraicterm代数项?multiply,times乘?liketerms,similarterms同类项?product积?numericalcoefficient数字系数?divide除?literalcoefficient字母系数??divisible可被整除的?inequality不等式?dividedevenly被整除?triangleinequality三角不等式??dividend被除数,红利?range值域??divisor因子,除数?originalequation原方程?quotient商?equivalentequation同解方程,等价方程?remainder余数??linearequation线性方程(e.g.5?x?+6=22)?factorial阶乘?power乘方?4.有关分数和小数radicalsign,rootsign根号?roundto四舍五入?properfraction真分数?tothenearest四舍五入improperfraction假分数?mixednumber带分数?cuberoot立方根??vulgarfraction,commonfraction普通分数?commonlogarithm常用对数? simplefraction简分数?digit数字?complexfraction繁分数??constant常数?numerator分子?variable变量??denominator分母?inversefunction反函数?(least)commondenominator(最小)公分complementaryfunction余函数?母?linear一次的,线性的?quarter四分之一?factorization因式分解?decimalfraction纯小数?absolutevalue绝对值,e.g.|-32|=32? infinitedecimal无穷小数roundoff四舍五入?recurringdecimal循环小数?tenthsunit十分位??6.有关数论5.基本数学概念naturalnumber自然数?positivenumber正数? arithmeticmean算术平均值?negativenumber负数?weightedaverage加权平均值?oddinteger,oddnumber奇数?geometricmean几何平均数?eveninteger,evennumber偶数?exponent指数,幂?integer,wholenumber整数?base乘幂的底数,底边?positivewholenumber正整数?cube立方数,立方体?negativewholenumber负整数??squareroot平方根?consecutivenumber连续整数?realnumber,rationalnumber实数,有理数?irrational(number)无理数??arithmeticprogression(sequence)等差数inverse倒数?列?compositenumber合数e.g.geometricprogression(sequence)等比数4,6,8,9,10,12,14,15⋯⋯?列??primenumber质数e.g.2,3,5,7,11,13,15⋯⋯注意:所有的质数(2除外)都是奇数,但奇数不一定是质数approximate近似??reciprocal倒数??(anti)clockwise(逆)顺时针方向commondivisor公约数?cardinal基数?multiple倍数?ordinal序数?(least)commonmultiple(最小)公倍数??directproportion正比? (prime)factor(质)因子?distinct不同的?commonfactor公因子??estimation估计,近似?ordinaryscale,decimalscale十进制?parentheses括号?nonnegative非负的??proportion比例?tens十位?permutation排列?units个位??combination组合?mode众数?table表格?median中数??trigonometricfunction三角函数?commonratio公比??unit单位,位?6.数列几何部分isoscelestriangle等腰三角形?7.所有的角righttriangle直角三角形?oblique斜三角形? alternateangle内错角?inscribedtriangle内接三角形??correspondingangle同位角?verticalangle对顶角?3.有关收敛的平面图形,除三角形外centralangle圆心角?interiorangle内角?semicircle半圆?exteriorangle外角?concentriccircles同心圆?supplementaryangles补角?quadrilateral四边形?complementaryangle余角?pentagon五边形?adjacentangle邻角?hexagon六边形?acuteangle锐角?heptagon七边形?obtuseangle钝角?octagon八边形?rightangle直角?nonagon九边形?roundangle周角?decagon十边形?straightangle平角?polygon多边形?includedangle夹角??parallelogram平行四边形?equilateral等边形?8.所有的三角形plane平面?square正方形,平方? equilateraltriangle等边三角形?rectangle长方形?scalenetriangle不等边三角形?regularpolygon正多边形?rhombus菱形?altitude高?trapezoid梯形??depth深度?side边长?9.其它平面图形circumference,perimeter周长?radian弧度?arc弧?surfacearea表面积?line,straightline直线?volume体积?linesegment线段?arm直角三角形的股?parallellines平行线?crosssection横截面?segmentofacircle弧形??centerofacircle圆心?chord弦?10.有关立体图形radius半径?anglebisector角平分线?cube立方体,立方数?diagonal对角线?rectangularsolid长方体?diameter直径?regularsolid/regularpolyhedron正多面体?edge棱?circularcylinder圆柱体?faceofasolid立体的面?cone圆锥?hypotenuse斜边?sphere球体?includedside夹边?solid立体的??leg三角形的直角边?medianofatriangle三角形的中线?11.有关图形上的附属物base底边,底数(e.g.2的5次方,2就是底数)?opposite直角三角形中的对边?trigonometry三角学?midpoint中点?bisect平分?endpoint端点?circumscribe外切?vertex(复数形式vertices)顶点?inscribe内切?tangent切线的?intersect相交?transversal截线?perpendicular垂直?intercept截距??pythagoreantheorem勾股定理?congruent全等的?12.有关坐标multilateral多边的?coordinatesystem坐标系?rectangularcoordinate直角坐标系?origin原点?1.单位类abscissa横坐标?ordinate纵坐标?cent美分?numberline数轴?penny一美分硬币?quadrant象限?nickel5美分硬币?slope斜率?dime一角硬币?complexplane复平面??dozen打(12个)?score廿(20个)?13.其它Centigrade摄氏?Fahrenheit华氏? planegeometry平面几何?quart夸脱?gallon加仑(1gallon=4quart)?dividend红利?yard码?decreaseto减少到?meter米?decreaseby减少了?micron微米?increaseto增加到?inch英寸?increaseby增加了?foot英尺?denote表示?minute分(角度的度量单位,60分=1度)?listprice标价?squaremeasure平方单位制?markup涨价?cubicmeter立方米?percapita每人?pint品脱(干量或液量的单位)??ratio比率?retailprice零售价?14.有关文字叙述题,主要是有关商业tie打Chapterone intercalaryyear(leapyear)闰年(366天)?functionnotation方程符号函数符号commonyear平年(365天)?quadraticfunctions二次函数depreciation折旧?quadraticequations二次方程式二次等式downpayment直接付款?discount打折?chaptertwomargin利润?Equivalentalgebraicexpressions等价代数profit利润?表达式interest利息?rationalexpression有理式有理表达式simpleinterest单利?horizontalandverticaltranslationof compoundedinterest复利?functions函数的水平和垂直的平移WORD格式reflectionsoffunctions函数的倒映映射chapterthreeExponentialfunctions指数函数exponentialdecay指数式衰减exponent指数数学mathematics,maths(BrE),math(AmE)propertiesofexponentialfunctions指数函公理axiom数的特性定理theoremchapterfour计算calculationTrigonometry三角学运算operation Reciprocaltrigonometricratios倒数三角函证明prove数比假设hypothesis,hypotheses(pl.)Trigonometricfunctions三角函数命题proposition算术arithmeticDiscretefunctions离散函数加plus(prep.),add(v.),addition(n.)被加数augend,summand加数addend和sum减minus(prep.),subtract(v.),subtraction(n.)被减数minuend减数subtrahend差remainder乘times(prep.),multiply(v.),分母denominatormultiplication(n.)比ratio被乘数multiplicand,faciend正positive乘数multiplicator负negative积product零null,zero,nought,nil除dividedby(prep.),divide(v.),division(n.)十进制decimalsystem 被除数dividend二进制binarysystem除数divisor十六进制hexadecimalsystem商quotient权weight,significance等于equals,isequalto,isequivalentto进位carry大于isgreaterthan截尾truncation小于islesserthan四舍五入round大于等于isequalorgreaterthan下舍入rounddown小于等于isequalorlesserthan上舍入roundup运算符operator有效数字significantdigit数字digit无效数字insignificantdigit数number代数algebra自然数naturalnumber公式formula,formulae(pl.)整数integer单项式monomial小数decimal多项式polynomial,multinomial小数点decimalpoint系数coefficient分数fraction未知数unknown,x-factor,y-factor,z-factor分子numerator等式,方程式equationWORD格式一次方程simpleequation并集union二次方程quadraticequation补集complement三次方程cubicequation映射mapping四次方程quarticequation函数function不等式inequation定义域domain,fieldofdefinition阶乘factorial值域range对数logarithm常量constant指数,幂exponent变量variable乘方power单调性monotonicity二次方,平方square奇偶性parity三次方,立方cube周期性periodicity四次方thepoweroffour,thefourthpower图象imagen次方thepowerofn,thenthpower数列,级数series开方evolution,extraction微积分calculus二次方根,平方根squareroot微分differential三次方根,立方根cuberoot导数derivative四次方根therootoffour,thefourthroot极限limitn次方根therootofn,thenthroot无穷大infinite(a.)infinity(n.) 集合aggregate无穷小infinitesimal元素element积分integral空集void定积分definiteintegral子集subset不定积分indefiniteintegral交集intersection有理数rationalnumberWORD格式无理数irrationalnumber底base实数realnumber边side虚数imaginarynumber高height复数complexnumber三角形triangle矩阵matrix锐角三角形acutetriangle行列式determinant直角三角形righttriangle几何geometry直角边leg点point斜边hypotenuse线line勾股定理Pythagoreantheorem面plane钝角三角形obtusetriangle体solid不等边三角形scalenetriangle线段segment等腰三角形isoscelestriangle射线radial等边三角形equilateraltriangle平行parallel四边形quadrilateral相交intersect平行四边形parallelogram角angle矩形rectangle角度degree长length弧度radian宽width锐角acuteangle菱形rhomb,rhombus,rhombi(pl.),直角rightanglediamond钝角obtuseangle正方形square平角straightangle梯形trapezoid周角perigon直角梯形righttrapezoidWORD格式等腰梯形isoscelestrapezoid面积area五边形pentagon轨迹locus,loca(pl.)六边形hexagon相似similar七边形heptagon全等congruent八边形octagon四面体tetrahedron九边形enneagon五面体pentahedron十边形decagon六面体hexahedron十一边形hendecagon平行六面体parallelepiped十二边形dodecagon立方体cube多边形polygon七面体heptahedron正多边形equilateralpolygon八面体octahedron圆circle九面体enneahedron圆心centre(BrE),center(AmE)十面体decahedron半径radius十一面体hendecahedron直径diameter十二面体dodecahedron圆周率pi二十面体icosahedron弧arc多面体polyhedron半圆semicircle棱锥pyramid扇形sector棱柱prism环ring棱台frustumofaprism椭圆ellipse旋转rotation圆周circumference轴axis周长perimeter圆锥coneWORD格式圆柱cylinder反余弦arccosine圆台frustumofacone反正切arctangent球sphere反余切arccotangent半球hemisphere反正割arcsecant底面undersurface反余割arccosecant表面积surfacearea相位phase体积volume周期period空间space振幅amplitude坐标系coordinates内心incentre(BrE),incenter(AmE)坐标轴x-axis,y-axis,z-axis外心excentre(BrE),excenter(AmE) 横坐标x-coordinate旁心escentre(BrE),escenter(AmE)纵坐标y-coordinate垂心orthocentre(BrE),orthocenter(AmE) 原点origin重心barycentre(BrE),barycenter(AmE)双曲线hyperbola内切圆inscribedcircle抛物线parabola外切圆circumcircle三角trigonometry统计statistics正弦sine平均数average余弦cosine加权平均数weightedaverage正切tangent方差variance余切cotangent标准差root-mean-squaredeviation,正割secantstandarddeviation余割cosecant比例propotion反正弦arcsine百分比percentWORD格式百分点percentage百分位数percentile排列permutation组合combination概率,或然率probability分布distribution正态分布normaldistribution非正态分布abnormaldistribution图表graph条形统计图bargraph柱形统计图histogram折线统计图brokenlinegraph曲线统计图curvediagram扇形统计图piediagram。
数学专业英语词汇速记
arithmetic progression(sequence) 等差数列 geometric progression(sequence) 等比数列 approximate 近似 (anti)clockwise (逆) 顺时针方向 cardinal 基数 ordinal 序数 direct proportion 正比 distinct 不同的 estimation 估计,近似 parentheses 括号 proportion 比例 permutation 排列 combination 组合 table 表格 trigonometric function 三角函数 unit 单位,位 几何部分 1. 所有的角 alternate angle 内错角 corresponding angle 同位角 共 2 页: 上一页 12 下一页 tips:感谢 大家的阅读,本文由我司收集整编。仅供参阅!
Hale Waihona Puke odd integer, odd number 奇数 even integer, even number 偶数 integer, whole number 整数 positive whole number 正整数 negative whole number 负整数 consecutive number 连续整数 real number, rational number 实数,有理数 irrational(number) 无理数 inverse 倒数 composite number 合数 e.g. 4,6,8,9,10,12,14,15 prime number 质数 e.g. 2,3,5,7,11,13,15 注意:所有的质数(2 除 外)都是奇数,但奇数不一定是质数 reciprocal 倒数 common divisor 公约数 multiple 倍数 (least)common multiple (最小)公倍数 (prime) factor (质)因子 common factor 公因子 ordinary scale, decimal scale 十进制 nonnegative 非负的 tens 十位 units 个位 mode 众数 median 中数 common ratio 公比 7.数列
数学专业英语常用词汇-14页精选文档
数学专业英语词汇代数部分1. 有关数*算add,plus 加?subtract 减?difference 差??multiply, times 乘?product 积?divide 除?divisible 可被整除的?divided evenly被整除? dividend 被除数,红利?divisor 因子,除数?quotient 商?remainder余数??factorial 阶乘?power 乘方?radical sign, root sign 根号? round to四舍五入?to the nearest 四舍五入2. 有关集合union 并集?proper subset 真子集?solution set 解集??3.有关代数式、方程和不等式algebraic term 代数项?like terms, similar terms同类项? numerical coefficient 数字系数? literal coefficient 字母系数?? inequality 不等式?triangle inequality 三角不等式?? range 值域??original equation 原方程? equivalent equation 同解方程,等价方程?linear equation 线性方程(e.g. 5?x?+6=22)?4.有关分数和小数proper fraction真分数?improper fraction 假分数?mixed number 带分数?vulgar fraction,common fraction 普通分数?simple fraction简分数?complex fraction繁分数?? numerator 分子?denominator 分母?(least) common denominator(最小)公分母?quarter 四分之一?decimal fraction 纯小数?infinite decimal 无穷小数recurring decimal循环小数?tenths unit 十分位??5. 基本数学概念arithmetic mean 算术平均值? weighted average 加权平均值? geometric mean 几何平均数? exponent 指数,幂?base 乘幂的底数,底边?cube 立方数,立方体?square root平方根?cube root 立方根??common logarithm 常用对数?digit 数字?constant 常数?variable 变量??inverse function反函数? complementary function 余函数? linear 一次的,线性的? factorization 因式分解?absolute value绝对值,e.g.|-32|=32?round off四舍五入 ?6.有关数论natural number 自然数?positive number 正数?negative number 负数?odd integer, odd number 奇数?even integer, even number 偶数? integer, whole number 整数?positive whole number 正整数? negative whole number 负整数?? consecutive number 连续整数?real number, rational number 实数,有理数?irrational(number)无理数??inverse 倒数?composite number 合数 e.g. 4,6,8,9,10,12,14,15……?prime number 质数 e.g. 2,3,5,7,11,13,15……注意:所有的质数(2除外)都是奇数,但奇数不一定是质数 reciprocal 倒数??common divisor 公约数?multiple 倍数?(least)common multiple (最小)公倍数?? (prime) factor (质)因子?common factor 公因子??ordinary scale, decimal scale 十进制? nonnegative 非负的??tens 十位? units 个位??mode众数?median 中数??common ratio 公比??7.数列arithmetic progression(sequence) 等差数列?geometric progression(sequence) 等比数列??approximate 近似?(anti)clockwise (逆) 顺时针方向? cardinal 基数?ordinal 序数?direct proportion 正比?distinct 不同的?estimation 估计,近似? parentheses 括号?proportion 比例?permutation 排列?combination 组合?table 表格?trigonometric function 三角函数? unit 单位,位?几何部分1. 所有的角alternate angle 内错角? corresponding angle 同位角? vertical angle对顶角?central angle圆心角?interior angle 内角?exterior angle 外角? supplementary angles补角? complementary angle余角? adjacent angle 邻角?acute angle 锐角?obtuse angle 钝角?right angle 直角?round angle周角?straight angle 平角? included angle夹角??2.所有的三角形equilateral triangle 等边三角形? scalene triangle不等边三角形? isosceles triangle等腰三角形? right triangle 直角三角形? oblique 斜三角形?inscribed triangle 内接三角形??3.有关收敛的平面图形,除三角形外semicircle 半圆?concentric circles 同心圆? quadrilateral四边形?pentagon 五边形?hexagon 六边形?heptagon 七边形?octagon 八边形?nonagon 九边形?decagon 十边形?polygon多边形?parallelogram 平行四边形? equilateral 等边形?plane 平面?square 正方形,平方?rectangle 长方形?regular polygon 正多边形? rhombus 菱形?trapezoid梯形??4.其它平面图形arc 弧?line, straight line 直线?line segment 线段?parallel lines 平行线?segment of a circle 弧形??5.有关立体图形cube 立方体,立方数?rectangular solid 长方体?regular solid/regular polyhedron 正多面体? circular cylinder 圆柱体? cone圆锥?sphere 球体?solid 立体的??6.有关图形上的附属物altitude 高?depth 深度?side 边长?circumference, perimeter 周长? radian弧度?surface area 表面积?volume 体积?arm 直角三角形的股?cross section 横截面?center of a circle 圆心?chord 弦?radius 半径?angle bisector 角平分线? diagonal 对角线?diameter 直径?edge 棱?face of a solid 立体的面? hypotenuse 斜边?included side夹边?leg三角形的直角边?median of a triangle 三角形的中线? base 底边,底数(e.g. 2的5次方,2就是底数)?opposite直角三角形中的对边? midpoint 中点?endpoint 端点?vertex (复数形式vertices)顶点? tangent 切线的?transversal截线?intercept 截距??7.有关坐标coordinate system 坐标系? rectangular coordinate 直角坐标系? origin 原点?abscissa横坐标?ordinate纵坐标?number line 数轴? quadrant 象限?slope斜率?complex plane 复平面??8.其它plane geometry 平面几何? trigonometry 三角学?bisect 平分?circumscribe 外切?inscribe 内切?intersect相交?perpendicular 垂直? pythagorean theorem勾股定理? congruent 全等的?multilateral 多边的?1.单位类cent 美分?penny 一美分硬币 ?nickel 5美分硬币?dime 一角硬币?dozen 打(12个)?score 廿(20个)?Centigrade 摄氏?Fahrenheit 华氏?quart 夸脱?gallon 加仑(1 gallon = 4 quart)? yard 码?meter 米?micron 微米?inch 英寸?foot 英尺?minute 分(角度的度量单位,60分=1度)? square measure 平方单位制?cubic meter 立方米?pint 品脱(干量或液量的单位)??2.有关文字叙述题,主要是有关商业intercalary year(leap year) 闰年(366天)?common year 平年(365天)? depreciation 折旧?down payment 直接付款?discount 打折?margin 利润?profit 利润?interest 利息?simple interest 单利? compounded interest 复利? dividend 红利?decrease to 减少到?decrease by 减少了?increase to 增加到?increase by 增加了?denote 表示?list price 标价?markup 涨价?per capita 每人?ratio 比率?retail price 零售价?tie 打Chapter onefunction notation方程符号函数符号quadratic functions 二次函数quadratic equations 二次方程式二次等式chapter twoEquivalent algebraic expressions 等价代数表达式rational expression 有理式有理表达式horizontal and vertical translation of functions 函数的水平和垂直的平移reflections of functions 函数的倒映映射chapter threeExponential functions 指数函数exponential decay 指数式衰减exponent 指数properties of exponential functions 指数函数的特性chapter fourTrigonometry 三角学Reciprocal trigonometric ratios 倒数三角函数比Trigonometric functions 三角函数Discrete functions 离散函数数学mathematics, maths(BrE), math(AmE)公理 axiom定理 theorem计算 calculation运算 operation证明 prove假设 hypothesis, hypotheses(pl.)命题 proposition算术 arithmetic加 plus(prep.), add(v.), addition(n.) 被加数 augend, summand加数 addend和 sum减minus(prep.), subtract(v.), subtraction(n.)被减数 minuend减数 subtrahend差 remainder乘times(prep.), multiply(v.), multiplication(n.)被乘数 multiplicand, faciend乘数 multiplicator积 product除divided by(prep.), divide(v.), division(n.)被除数 dividend除数 divisor商 quotient等于equals, is equal to, is equivalent to大于 is greater than小于 is lesser than大于等于 is equal or greater than 小于等于 is equal or lesser than运算符 operator数字 digit数 number自然数 natural number整数 integer小数 decimal小数点 decimal point分数 fraction分子 numerator分母 denominator比 ratio 正 positive负 negative零 null, zero, nought, nil十进制 decimal system二进制 binary system十六进制 hexadecimal system权 weight, significance进位 carry截尾 truncation四舍五入 round下舍入 round down上舍入 round up有效数字 significant digit无效数字 insignificant digit代数 algebra公式 formula, formulae(pl.)单项式 monomial多项式 polynomial, multinomial系数 coefficient未知数 unknown, x-factor, y-factor, z-factor等式,方程式 equation一次方程 simple equation二次方程 quadratic equation三次方程 cubic equation四次方程 quartic equation不等式 inequation阶乘 factorial对数 logarithm指数,幂 exponent乘方 power二次方,平方 square三次方,立方 cube四次方 the power of four, the fourth powern次方 the power of n, the nth power 开方 evolution, extraction二次方根,平方根 square root三次方根,立方根 cube root四次方根 the root of four, the fourth rootn次方根 the root of n, the nth root 集合 aggregate元素 element空集 void子集 subset 交集 intersection并集 union补集 complement映射 mapping函数 function定义域 domain, field of definition 值域 range常量 constant变量 variable单调性 monotonicity奇偶性 parity周期性 periodicity图象 image数列,级数 series微积分 calculus微分 differential导数 derivative极限 limit无穷大 infinite(a.) infinity(n.) 无穷小 infinitesimal积分 integral定积分 definite integral不定积分 indefinite integral有理数 rational number 无理数 irrational number 实数 real number虚数 imaginary number复数 complex number矩阵 matrix行列式 determinant几何 geometry点 point线 line面 plane体 solid线段 segment射线 radial平行 parallel相交 intersect角 angle角度 degree弧度 radian锐角 acute angle直角 right angle钝角 obtuse angle平角 straight angle 周角 perigon底 base边 side高 height三角形 triangle锐角三角形 acute triangle直角三角形 right triangle直角边 leg斜边 hypotenuse勾股定理 Pythagorean theorem钝角三角形 obtuse triangle不等边三角形 scalene triangle等腰三角形 isosceles triangle等边三角形 equilateral triangle四边形 quadrilateral平行四边形 parallelogram矩形 rectangle长 length宽 width菱形rhomb, rhombus, rhombi(pl.), diamond正方形 square梯形 trapezoid直角梯形 right trapezoid等腰梯形 isosceles trapezoid 五边形 pentagon六边形 hexagon七边形 heptagon八边形 octagon九边形 enneagon十边形 decagon十一边形 hendecagon十二边形 dodecagon多边形 polygon正多边形 equilateral polygon 圆 circle圆心 centre(BrE), center(AmE) 半径 radius直径 diameter圆周率 pi弧 arc半圆 semicircle扇形 sector环 ring椭圆 ellipse圆周 circumference 周长 perimeter面积 area轨迹 locus, loca(pl.)相似 similar全等 congruent四面体 tetrahedron五面体 pentahedron六面体 hexahedron平行六面体 parallelepiped 立方体 cube七面体 heptahedron八面体 octahedron九面体 enneahedron十面体 decahedron十一面体 hendecahedron十二面体 dodecahedron二十面体 icosahedron多面体 polyhedron棱锥 pyramid棱柱 prism棱台 frustum of a prism 旋转 rotation轴 axis圆锥 cone圆柱 cylinder圆台 frustum of a cone球 sphere半球 hemisphere底面 undersurface表面积 surface area体积 volume空间 space坐标系 coordinates坐标轴 x-axis, y-axis, z-axis 横坐标 x-coordinate纵坐标 y-coordinate原点 origin双曲线 hyperbola抛物线 parabola三角 trigonometry正弦 sine余弦 cosine正切 tangent余切 cotangent正割 secant余割 cosecant 反正弦 arc sine反余弦 arc cosine反正切 arc tangent反余切 arc cotangent反正割 arc secant反余割 arc cosecant相位 phase周期 period振幅 amplitude内心 incentre(BrE), incenter(AmE) 外心 excentre(BrE), excenter(AmE) 旁心 escentre(BrE), escenter(AmE) 垂心orthocentre(BrE), orthocenter(AmE)重心barycentre(BrE), barycenter(AmE)内切圆 inscribed circle外切圆 circumcircle统计 statistics平均数 average加权平均数 weighted average方差 variance标准差root-mean-square deviation,standard deviation比例 propotion百分比 percent百分点 percentage百分位数 percentile排列 permutation组合 combination概率,或然率 probability分布 distribution正态分布 normal distribution非正态分布 abnormal distribution 图表 graph条形统计图 bar graph柱形统计图 histogram折线统计图 broken line graph曲线统计图 curve diagram扇形统计图 pie diagram希望以上资料对你有所帮助,附励志名言3条::1、世事忙忙如水流,休将名利挂心头。
数学专业英语短语
2.1数学、方程与比例1.alike 一样2. bring out 产生,带来3.carry out 得出,完成4. come from sth 由···得到5.deal with sth 处理某事6.express change the term about 把这些项变形7.be equal to sth 等于某事8.bu full of sth ./sb 充满某物9.in turn 反之10.make sth equal to sth 取某式等于某事11.no matter 无论12.occupy 获得,占用13.occur 出现14.on the performance of sth 执行某事15.promote 促进16.resulting method 产生方法2.21.appreciation of(for) sth./sb. 对某物或某人的欣赏2.awareness of sth./sb. 某物或某人的意识3.blind acceptance of sth. 盲目接受某物4.change the terms about 变形5.be composed of sth./sb. 某物或某人组成6.be derived from sth. 起源于某事7.divide sth.into sth. 把某物分成···8.be equidistant from sth. 从···到···距离相等9.expect to do sth. 期望去做某事10.be familiar with sth./sb. 对某物或某人熟悉11.gain 获得,得到12.be led away from sth. 远离某物13.prerequisite to sth. 某事物的先决条件14.refer to sth./sb. as sth./sb. 把···称为15.treatment of sth. 处理某事,对···的处理16.work with sth. 与···一起工作,与···一起运用2.31.analogous to sth./sb. 类同于2.be concerned with sth./sb. 与··有关;关于3.consist of sth./sb. 由···组成4.be contained in sth. 包含于5.distinguish between sth./sb.and sth./sb. 把···和···区分开6.be divisible by sth. 可被···除尽7.be referred to as sth./sb. 被称为8.rely on sth./sb. 依赖9.be said to sth./sb. 被称为10.take the place of sth./sb. 代替11.think of sth./sb. as sth./sb. 把···看成12.vary from sth./sb. to sth./sb. 由···到···的变化2.41.be accepted as sth./sb. 被接受为2.clarify 阐明3.convenient method 简易方法4.depend on sth./sb. 取决于5.be familiar with sth./sb. 熟知6.as illustrated in Fig.1 如图1所示7.mean sth./sb.by sth./sb. 意思是8.by means of sth. 依靠9.more precise 更确切地10.motivate 激发11.be presented in sth. 存在于···中12.be shared by sth. 共享给13.a very worthwhile aid 非常有价值的14.without any reference to geometry 不借助几何2.51.arrive at 获得2.as mentioned earlier 如前述3.by no other 没有别的4.confine our attention to sth./sb. 把注意力限定在···5.a geometric figure 一个几何圆6.hypotenuse of a right triangle 直角三角形斜边7.be intimately intertwined 亲密缠绕8.locate the point 设定点的位置9.a little familiarity with 稍微熟知10.a much better way 好得当的方法11.mutually perpendicular planes 相当垂直的平面12.reduce sth. to sth. 使···简化为···13.the rudiments of calculus 微积分的入门14.three units to the right of the y-axis y轴右边的三个单位15.two units above the x-axis x轴上方的两个单位16.with appropriate regard for signs 相关合适的符号2.61.associate with sth./sb. 与···关联,对应于2.certain kinds of sth./sb. 固定类型的3.do with sth. 处理4.be expressed in the form 以···形式表示5.be familiar to sb. 熟知6.be fed into the machine 向机器投放7.independent of sth./sb. 不依靠8.be much too limited in 太过受限制于···中9.pair sth./sb. with sth./sb. 与···配对10.place no restriction on 不受限于···11.in a quantitative fashion 在一个定量模式中12.refer to sth./sb. 提出13.be referred to as sth./sb. 称为14.without counting 无须计算2.71.carry on 继续2.carries over to 转移到3.converge separately 分别收敛4.decompose into 分解为5.extend sth. to sth. 延伸至6.formulate the theorems 证明该定理7.be known as sth./sb. 被称为8.be labeled with 加上,贴上9.leave sth. For sb. to do 留···给···去做10.make the convention 约定,协定11.restrict x to take only integer values 限定x值只取整数值12.a set of instructions 指定集13.similar to sth./sb. 与···相似14.somewhat 某种,有点15.analogy between sth./sb. And sth./sb. 与···之间类似16.unless otherwise specified 除非另加申明2.81.approach sth. through sth. 通过···;超过···2.begin with 开始于pare with 与···相比4.happen to sth./sb. 恰好5.be interpreted geometrically 几何意义6.joint sth to sth 连接···与···7.make the convention 约定8.move along toward 继续向前9.the total decrease in velocity 速度总减少10.with respect to 关于···2.91.arise from(in) 由···产生2.be classified under 被分类为3.by is meant 指的是4.deduce from 从···得出结论5.do enable to do 让某人能做某事6.enter into 参与进来7.infinitely many 无穷多8.be inspired by 被···激发9.in term of 依据10.a knowledge of ···的知识11.a large variety of 多样的12.must be of the form of 一定是···的形式13.a prescribed value 一个规定值14.radioactive substance 发射性物质15.be required to do 需要去做16.at some particular instant 某个具体瞬间2.101.agree with 适合于;与···一致2.base on 在···基础上3.be identical to 同一的,和···相同4.by induction on n n归纳法5.it suffices to do 满足做某事6.reduce to 化简为7.relative to 与···相关8.be restricted to 被局限于···9.the same argument with 与···相同的讨论10.span the space 张成空间11.by subtraction form 从···中减去12.take in a given order 给定阶13.uniquely determine 惟一确定2.111.assert 主张2.be assigned to 赋予3.be encountered in some place 在某个地方相遇4.execute 执行5.be phrased in term of 以···语句表达6.produce from 从···获得7.specify 特定,指定8.universe of discourse 论域2.121.be acquired through 通过··取得2.closely similar 近似···3.coin tossing掷硬币plete body of ···完全体5.conceive 构思6.draw from 从···画出7.field trials 现场实验8.learn about 了解9.make inference 做推断10.originate from 源于11.particular to 特有的12.perform an experiment 做实验13.be subjected to 经受···14.sustain 维持15.the very definition 仅是概念。
数学专业英语2.9,2.12翻译
数学专业英语2.9,2.12翻译9-a大量的科学问题需要人们根据事物的变化率来确定该事物。
例如,我们可以由已知速度或者加速度来计算移动质点的位置.又如,某种放射性物质可能正在以已知的速度进行衰变,需要我们确定在给定的时间后遗留物质的总量。
在类似的例子中,我们力求由方程的形式表述的信息来确定未知函数,而这种方程至少包含了未知函数的一个导数。
这些方程称作微分方程,对其研究构成了数学中最具备挑战性的一个分支微分方程根据未知量就是单变量函数还是多变量函数分为两个主题:常微分方程和偏微分方程。
常微分方程的一个简单例子是f'(x)=f(x),特别地,指数函数f(x)=ex满足这个等式。
我们马上就可以辨认出(9.1)的每一个求解都一定就是f(x)=cex这种形式,这里c可以就是任何常数。
另一方面,如下方程是偏微分方程的一个例子。
这个特定的方程叫作拉普拉斯方程,发生于电磁学理论、流体力学理论以及其他理论中。
微分方程的研究是数学的一部分,也许比其他分支更多的直接受到力学,天文学和数学物理的推动微分方程源于17世纪,当时牛顿,莱布尼茨,伯努利家族化解了一些源自几何和力学的直观的微分方程开始于1690年的早期发现,逐渐导致了解某些特殊类型的微分方程的大量特殊技巧的发展。
尽管这些特定的技巧只是适用于于相对较太少的几种情况,但他们能化解许多发生于力学和几何中的微分方程,因此,他们的研究具备关键的实际应用领域。
这些特定的技巧和利用这些技巧可以化解的一些问题将在本章最后探讨。
经验说明除了几个典型方程外,很难获得微分方程求解的一般性数学理论。
线性微分方程的最简单类型及其应用领域也可以在介绍性的本章中探讨。
线性方程的深入研究将在第二卷中展开。
12-a在探讨概率论时,可以常常从日常用语中看见这样的语句:两个事件就是同等可能将的,一个事件就是不可能将的,一个事件确实出现。
这种表达方式非常直观,在数学讨论中,乐于使用这样有色彩的语言,而且使用起来很有帮助。
数学专业英语2-11C(精选5篇)
数学专业英语2-11C(精选5篇)第一篇:数学专业英语2-11C数学专业英语论文数学专业英语论文英文原文:2-12CSome basic principles of combinatorial analysisMany problems in probability theory and in other branches of mathematics can be reduced to problems on counting the number of elements in a finite set. Systematic methods for studying such problems form part of a mathematical discipline known ascombinatorial analysis. In this section we digress briefly to discuss some basic ideas in combinatorial analysis that are useful in analyzing some of the more complicated problems of probability theory.If all the elements of a finite set are displayed before us, there is usually no difficulty in counting their total number. More often than not, however, a set is described in a way that makes it impossible or undesirable to display all its elements. For example,we might ask for the total number of distinct bridge hands that can be dealt. Each player is dealt 13 cards from a 52-card deck. The number of possible distinct hands is the same as the number of different subsets of 13 elements that can be formed from a set of 52 elements.Since this number exceeds 635 billion, a direct enumeration of all the possibilities is clearly not the best way to attack this problem; however, it can readily be solved by combinatorial analysis.This problem is a special case of the more general problem of counting the number of distinct subsets of k elements that may be formed from a set of n elements (When we say that a set has n elements,we mean that it has n distinct elements.Such a set is sometimes called an n-element set.),where n k. Let us denote this number by f(n,k).It has long been known thatn(12.1)f(n,k)k,n where, as usual k denotes the binomial coefficient,n n!k k!(n k)!52In the problem of bridge hands we havef(52,13)13635,013,559,600different hands that a player can be dealt.There are many methods known for proving (12.1). A straightforward approach is to form each subset of k elements by choosing the elements one at a time. There are n possibilities for the first choice, n 1 possibilities for the second choice, and n(k1) possibilities for the kth choice. If we make all possible choices in this1manner we obtain a total ofn(n1)(n k1)n! (n k)!subsets of k elements. Of course, these subsets are not all distinct. For example, ifk3the six subsetsa,b,c,b,c,a,c,a,b,a,c,b,c,b,a, b,a,carc all equal. In general, this method of enumeration counts each k-element subset exactly k! times. Therefore we must divide the number n!/(n k)! by k! to n obtain f(n,k). This gives us f(n,k)k, as asserted.译文:组合分析的一些基本原则许多概率论和其他一些数学分支上的问题,都可以简化成基于计算有限集合中元素数量的问题。
数学专业英语2.11数理逻辑入门分析
2021/6/4
5
We can denote the statement “x is greater than 3” by P(x), where P denotes the predicate “is greater than 3” and x is the variable.
把语句“x大于3”记为P(x), 其中P表示谓词“大于3”, 而x是变量。
2.11 数理逻辑入门 Elementary Mathematical Logic
New Words & Expressions:
assert 断言,主张
predicate 谓词
conjunction 合取
quantifier 量词
connective 连词
quantification 量词化
disjunction 析取
许多数学语句认为,性质对论域这个特殊领域内的变 量的所有值都成立。
Such a statement is expressed using a universal quantification. 这样的语句可用全称量词化表示。
2021/6/4
9
The universal quantification of a propositional function is the proposition that assert that P(x) is true for all values of x in the universe of discourse. The universe of discourse specifies the possible values of the variable x.
命题函数的全称量词化是一个命题,认为P(x)对论域 中x的所有值P(x)都是真的。论域指定变量x的可能取 值.
数学专业英语(Doc版).12
数学专业英语(Doc版).12数学专业英语-Linear ProgrammingLinear Programming is a relatively new branch of mathematics.The cornerstone of this exciting field was laid independently bu Leonid V. Kantorovich,a Russ ian mathematician,and by Tjalling C,Koopmans, a Yale economist,and George D. Dantzig,a Stanford mathematician. Kantorovich’s pioneering work was moti vated by a production-scheduling problem suggested by the Central Laboratory of the Len ingrad Plywood Trust in the late 1930’s. The development in the U nited States was influenced by the scientific need in World War II to solve lo gistic military problems, such as deploying aircraft and submarines at strategic positions and airlifting supplies and personnel.The following is a typical linear programming problem:A manufacturing company makes two types of television sets: one is black and white and the other is color. The company has resources to make at most 300 sets a week. It takes $180 to make a black and white set and $270 to make a color set. The company does not want to spend more than $64,800 a wee k to make television sets. If they make a profit of $170 per black and white set and $225 per color set, how many sets of each type should the company make to have a maximum profit?This problem is discussed in detail in Supplementary Reading Material Lesson 14.Since mathematical models in linear programming problems consist of linear in equalities, the next section is devoted to suchinequalities.Recall that the linear equation lx+my+n=0represents a straight line in a plane. Every solution (x,y) of the equation lx+my+n=0is a point on this line, and vice versa.An inequality that is obtained from the linear equation lx+my+n=0by replacin g the equality sign “=”by an inequality sign < (less than), ≤(less than or equal to), > (greater than), or ≥(greater than or equal to) is called a linear i nequality in two variables x and y. Thus lx+my+n≤0, lx+my+n≥0are all lin ear liequalities. A solution of a linear inequality is an ordered pair (x,y) of nu mbers x and y for which the inequality is true.EXAMPLE 1 Graph the solution set of the pair of inequalities SOLUTION Let A be the solution set of the inequality x+y-7≤0 and B be th at of the inequalit y x-3y +6 ≥0 .Then A∩B is the solution set of the given pair of inequalities. Set A is represented by the region shaded with horizontal lines and set B by the region shaded with vertical lines in Fig.1. Therefore thecrossed-hatched region represents the solution set of the given pair of inequali ties. Observe that the point of intersection (3.4) of the two lines is in the solu tion set.Generally speaking, linear programming problems consist of finding the maxim um value or minimum value of a linear function, called the objective function, subject to some linear conditions, called constraints. For example, we may wa nt to maximize the production or profit of a company or to maximize the num ber of airplanes that can land at or take off from an airport during peak hours; or we may want to minimize the cost of production or of transportation or to minimize grocery expenses while still meeting the recommended nutritional re quirements, all subject to certain restrictions. Linearprogramming is a very use ful tool that can effectively be applied to solve problems of this kind, as illust rated by the following example.EXAMPLE 2 Maximize the function f(x,y)=5x+7y subject to the constraintsx≥0 y≥0x+y-7≤02x-3y+6≥0SOLUTION First we find the set of all possible pairs(x,y) of numbers that s atisfy all four inequalities. Such a solution is called a feasible sulution of the problem. For example, (0,0) is a feasible solution since (0,0) satisf ies the giv en conditions; so are (1,2) and (4,3).Secondly, we want to pick the feasible solution for which the giv en function f (x,y) is a maximum or minimum (maximum in this case). S uch a feasible solution is called an optimal solution.Since the constraints x ≥0 and y ≥0 restrict us to the first quadrant, it follows from example 1 that the given constraints define the polygonal regi on bounded by the lines x=0, y=0,x+y-7=0, and 2x-3y+6=0, as shown in Fig.2.Fig.2.Observe that if there are no conditions on the values of x and y, then the f unction f can take on any desired value. But recall that our goal is to determi ne the largest value of f (x,y)=5x+7y where the values of x and y are restrict ed by the given constraints: that is, we must locate that point (x,y) in the pol ygonal region OABC at which the expression 5x+7y has the maximum possibl e value.With this in mind, let us consider the equation 5x+7y=C, where C is any n umber. This equation represents a family ofparallel lines. Several members of this family, corresponding to different values of C, are exhibited in Fig.3. Noti ce that as the line 5x+7y=C moves up through the polygonal region OABC, th e value of C increases steadily. It follows from the figure that the line 5x+7y =43 has a singular position in the family of lines 5x+7y=C. It is the line farth est from the origin that still passes through the set of feasible solutions. It yiel ds the largest value of C: 43.(Remember, we are not interested in what happen s outside the region OABC) Thus the largest value of the function f(x,y)=5x+7 y subject to the condition that the point (x,y) must belong to the region OAB C is 43; clearly this maximum value occurs at the point B(3,4).Fig.3.Consider the polygonal region OABC in Fig.3. This shaded region has the p roperty that the line segment PQ joining any two points P and Q in the regio n lies entirely within the region. Such a set of points in a plane is called a c onvex set. An interesting observation about example 2 is that the maximum va lue of the objective function f occurs at a corner point of the polygonal conve x set OABC, the point B(3,4).The following celebrated theorem indicates that it was not accidental.THEOREM (Fundamental theorem of linear programming) A linear objective function f defined over a polygonal convex set attains a maximum (or minim um) value at a corner point of the set.We now summarize the procedure for solving a linear programming problem:1.Graph the polygonal region determined by the constraints.2.Find the coordinates of the corner points of the polygon.3.Evaluate the objective function at the corner points.4.Identify the corner point at which the function has an optimal value.Vocabularylinear programming 线形规划 quadrant 象限objective function 目标函数 convex 凸的constraints 限制条件,约束条件 convex set 凸集feaseble solution 容许解,可行解corner point 偶角点optimal solution 最优解simplex method 单纯形法Notes1. A Yale economist, a Stanford mathematician 这里Yale Stanford 是指美国两间著名的私立大学:耶鲁大学和斯坦福大学,这两间大学分别位于康涅狄格州(Connecticut)和加里福尼亚州(California)2. subject to some lincar conditions 解作“在某些线形条件的限制下”。
数学专业英语(Doc版).11
数学专业英语-Linear AlgebraFor the definition that follows we assume that we are given a particular field K. The scalars to be used are to be elements of K.DEFINITION. A vector space is a set V of elements called vectors satisfyi ng the following axioms.(A) To every pair, x and y ,of vectors in V corresponds a vector x+y,call ed the sum of x and y, in such a way that.(1) addition is commutative, x + y = y + x.(2) addition is associative, x + ( y + z ) = ( x + y ) + z.(3) there exists in V a unique vector 0 (called the origin ) such that x + 0 = x for every vector x , and(4) to every vector x in V there corresponds a unique vector - x such that x + ( - x ) = 0.(B) To every pair,αand x , where αis a scalar and x is a vector in V ,the re corresponds a vector αx in V , called the product of αand x , in such a way that(1) multiplication by scalars is associative,α(βx ) = (αβ) x(2) 1 x = x for every vector x.(C) (1) multiplication by scalars is distributive with respect to vector addition,α( x + y ) = αx+βy , and(2)multiplication by vectors is distributive with respect to scalar addition,(α+β) x = αx + βx .The relation between a vector space V and the underlying field K is usually d escribed by saying that V is a vector space over K . The associated field of s calars is usually either the real numbers R or the complex numbers C . If V i s linear space and M真包含于V , and if αu -v belong to M for every u an d v in M and every α∈ K , then M is linear subspace of V . If U = { u 1,u 2,…} is a collection of points in a linear space V , then the (linear) span of the set U is the set of all points o the form ∑c i u i, where c i∈ K ,and all but a finite number of the scalars c i are 0.The span of U is al ways a linear subspace of V.A key concept in linear algebra is independence. A finite set { u 1,u 2,…, u} is said to be linearly independent in V if the only way to write 0 = ∑kc i u i is by choosing all the c i= 0 . An infinite set is linearly independent if every finite set is independent . If a set is not independent, it is linearlyd ependent, and in this case, some point in the set can be written as a linear co mbination of other points in the set. A basis for a linear space M is an indep endent set that spans M . A space M is finite-dimensional if it can be spanne d by a finite set; it can then be shown that every spanning set contains a basi s, and every basis for M has the same number of points in it. This common number is called the dimension of M .Another key concept is that of linear transformation. If V and W are linear sp aces with the same scalar field K , a mapping L from V into W is called lin ear if L (u + v ) = L( u ) + L ( v ) and L ( αu ) = αL ( u ) for ever y u and v in V and αin K . With any I , are associated two special linear spaces:ker ( L ) = null space of L = L-1 (0)= { all x ∈V such that L ( X ) = 0 }Im ( L ) = image of L = L( V ) = { all L( x ) for x∈V }.Then r = dimension of Im ( L ) is called the rank of L. If W also has dime nsion n, then the following useful criterion results: L is 1-to-1 if and only if L is onto.In particular, if L is a linear map of V into itself, and the only solu tion of L( x ) = 0 is 0, then L IS onto and is therefore an isomorphism of V onto V , and has an inverse L -1. Such a transformation V is also said to b e nonsingular.Suppose now that L is a linear transformation from V into W where dim ( V ) = n and dim ( W ) = m . Choose a basis {υ 1 ,υ 2 ,…,υn} for V and a basis {w 1 ,w2 ,…,w m} for W . Then these define isomorphisms of V onto K n and W onto K m, respectively, and these in turn induce a linear transfor mation A between these. Any linear transformation ( such as A ) between K n and K m is described by means of a matrix ( a), according to the formula Aij( x ) = y , where x = { x1, x 2,…, x n} y = { y1, y 2,…, y m} and Y j =Σn j=i a ij x i I=1,2,…,m.The matrix A is said to represent the transformation L and to be the represent ation induced by the particular basis chosen for V and W .If S and T are linear transformations of V into itself, so is the compositic tra nsformation ST . If we choose a basis in V , and use this to obtain matrix re presentations for these, with A representing S and B representing T , then ST must have a matrix representation C . This is defined to be the product AB o f the matrixes A and B , and leads to the standard formula for matrix multipli cation.The least satisfactory aspect of linear algebra is still the theory of determinants even though this is the most ancient portion of the theory, dating back to Lei bniz if not to early China. One standard approach to determinants is to regard an n -by- n matrix as an ordered array of vectors( u 1 , u 2,…, u n) and t hen its determinant det ( A ) as a function F( u 1 , u 2 ,…, u n) of these n vectors which obeys certain rules.The determinant of such an array A turns out to be a convenient criterion for characterizing the nonsingularity of the associated linear transformation, since d et ( A ) = F ( u 1, u 2,…, u n) = 0 if and only if the set of vectors u i ar e linearly dependent. There are many other useful and elegant properties of det erminants, most of which will be found in any classic book on linear algebra. Thus, det ( AB ) = det ( A ) det ( B ), and det ( A ) = det ( A') ,where A' is the transpose of A , obtained by the formula A' =( a ji ), thereby rotating the array about the main diagonal. If a square matrix is triangular, meaning th at all its entries above the main diagonal are 0,then det ( A ) turns out to be exactly the product of the diagonal entries.Another useful concept is that of eigenvalue. A scalar is said to be an eigenva lue for a transformation T if there is a nonzero vector υwith T (υ) λυ. It is then clear that the eigenvalues will be those numbers λ∈ K such that T -λI is a singular transformation. Any vector in the null space of T -λI is called an eigenvector of T associated with eigenvalue λ, and their span the eigenspace, E λ. It is invariant under the action of T , meaning that T carrie s Eλinto itself. The eigenvalues of T are then exactly the set of roots of the polynomial p(λ) =det ( T -λI ).If A is a matrix representing T ,then one h as p (λ) det ( A -λI ), which permits one to find the eigenvalues of T easil y if the dimension of V is not too large, or if the matrix A is simple enough. The eigenvalues and eigenspaces of T provide a means by which the nature and structure of the linear transformation T can be examined in detail.Vocabularylinear algebra 线性代数non-singular 非奇异field 域isomorphism 同构vector 向量isomorphic 同构scalar 纯量,无向量 matrix 矩阵(单数)vector space 向量空间matrices 矩阵(多数)span 生成,长成determinant 行列式independence 无关(性),独立(性) array 阵列dependence 有关(性) diagonal 对角线linear combination 线性组合 triangular 三角形的basis 基(单数) entry 表值,元素basis 基(多数) eigenvalue 特征值,本征值dimension 维eigenvector 特征向量linear transformation 线性变换 invariant 不变,不变量null space 零空间 row 行rank 秩 column 列singular 奇异 system of equations 方程组homogeneous 齐次Notes1. If U = { u 1, u 2,…}is a collection of points in a linearspace V , then the (linear) span of the set U is the set of all points of the form ∑c i u i , w where c i ∈K ,and all but a finite number of scalars c I are 0.意思是:如果U = { u 1, u 2,…}是线性空间V 的点集,那么集 U 的(线性)生成是所有形如∑c i u i的点集,这里c i ∈ K ,且除了有限个c i外均为0.2. A finite set { u 1, u 2,…, u k}is said to be linearly independent if the only way to write 0 = ∑c i u I is by choosing all the c i= 0.这一句可以用更典型的句子表达如下: A finite set { u 1, u 2,…, u k} is said to be linearly independen t in V if ∑c i u i is by choosing all the c i= 0.这里independent 是形容词,故用linearly修饰它. 试比较F(x) is a continuous periodic function.这里periodi c 是形容词但它前面的词却用continuous 而不用continuously,这是因为continuous 这个词不是修饰periodi c而是修饰作为整体的名词periodic function.3. Then these define isomorphisms of V onto K n and W onto K M respectively, and these in turn inducea linear transformation A between these.这里第一个these代表前句的两个基(basis);第二个these代表isomorphisms;第三个these代表什么留给读者自己分析.4. The least satisfactory aspect of linear algebra is still the theory of determinants-意思是:线性代数最令人不满意的方面仍是有关行列式的理论.least satisfactory 意思是:最令人不满意.5. If a square matrix is triangular, meaning that all its entries above the main diagonal are 0,then det ( A ) turns out to be exactly the product of the diagonal entries.意思是:如果方阵是三角形的,即所有在主对角线上方的元素均为零,那末det( A ) 刚好就是对角线元素的乘积.这里meaning that 可用that is to say 代替,turns out to be解为”结果是”.ExerciseI. Answer the following questions:1. How can we define the linear independence of an infinite set?2. Let T be a linear transformation (T: V →W ) whose associated matrix is A.Give a criterion for the non-singularity of the transformation T.3. Where is the entry a45of a m -by- n matrix( m>4; n>5) located ?4. Let A , B be two rectangular matrices.Under what condition is the product matrix well-defined ?II.Translate the following two examples and their proofs into Chinese:1.Example1. Let u k= t k ,k=0,1,2,... and t real. Show that the set {u 0,u1,u2,…}is independent.Proof: By the definition of independence of an infinite set, it suffices to show that for each n ,the n+ 1 polynomials u0,u1,...,u n are independent.A relation of the form ∑n k=0c k u k=0 means ∑n k=0c k t k=0 for all t.When t=0,this gives c0=0.Differentiating both sides of ∑n k=0c k t k=0 and setting t=0,we fi nd that c1=0.Repeating the process,we find that each cocfficient is zero2. Example 2. Let V be afinite dimensional linear space, Then every finite basis for V has the same nu mber of elements.Proof: Let S and T be two finite bases for V. Suppose S consists of k elemnts and T consists of m e lements.Since S is independent and spans V ,every set of k+1 elements in V is dependent.Therefore eve ry set of more than k elements in V is dependent. Since T is an independent set , we must have m<k. The same argument with S and T interchanged shows that k<m. Hence k=m.III.Translate the following sentences into English:1.设 A 是一矩阵。
数学专业英语课后答案
2.1数学、方程与比例词组翻译1.数学分支branches of mathematics,算数arithmetics,几何学geometry,代数学algebra,三角学trigonometry,高等数学higher mathematics,初等数学elementary mathematics,高等代数higher algebra,数学分析mathematical analysis,函数论function theory,微分方程differential equation2.命题proposition,公理axiom,公设postulate,定义definition,定理theorem,引理lemma,推论deduction3.形form,数number,数字numeral,数值numerical value,图形figure,公式formula,符号notation(symbol),记法/记号sign,图表chart4.概念conception,相等equality,成立/真true,不成立/不真untrue,等式equation,恒等式identity,条件等式equation of condition,项/术语term,集set,函数function,常数constant,方程equation,线性方程linear equation,二次方程quadratic equation5.运算operation,加法addition,减法subtraction,乘法multiplication,除法division,证明proof,推理deduction,逻辑推理logical deduction6.测量土地to measure land,推导定理to deduce theorems,指定的运算indicated operation,获得结论to obtain the conclusions,占据中心地位to occupy the centric place汉译英(1)数学来源于人类的社会实践,包括工农业的劳动,商业、军事和科学技术研究等活动。
数学专业英语课文翻译(吴炯圻)第二章2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12
数学专业英语3—A符号指示集一组的概念如此广泛利用整个现代数学的认识是所需的所有大学生。
集是通过集合中一种抽象方式的东西的数学家谈的一种手段。
集,通常用大写字母:A、B、C、进程运行·、X、Y、Z ;由小写字母指定元素:a、b 的c、进程运行·,若x、y z.我们用特殊符号x∈S 意味着x 是S 的一个元素或属于美国的x如果x 不属于S,我们写xS.≠当方便时,我们应指定集的元素显示在括号内;例如,由符号表示的积极甚至整数小于10 集{2,468} {2,4.6,进程运行·} 作为显示的所有积极甚至整数集,而三个点等的发生。
点的和等等的意思是清楚时,才使用。
上市的大括号内的一组成员方法有时称为名册符号。
涉及到另一组的第一次基本概念是平等的集。
DEFINITIONOFSETEQUALITY。
两组A 和B,据说是平等的(或相同的)如果它们包含完全相同的元素,在这种情况下,我们写A = B。
如果其中一套包含在另一个元素,我们说这些集是不平等,我们写A = B。
EXAMPLE1。
根据对这一定义,由于他们都是由构成的这四个整数2,4.6 和8 两套{2,468} 和{2,864} 一律平等。
因此,当我们用来描述一组的名册符号,元素的显示的顺序无关。
动作。
集{2,468} 和{2,2,4,4,6,8} 是平等的即使在第二组,每个元素2 和4 两次列出。
这两组包含的四个要素2,468 和无他人;因此,定义要求我们称之为这些集平等。
此示例显示了我们也不坚持名册符号中列出的对象是不同。
类似的例子是一组在密西西比州,其值等于{M、我、s、p} 一组单词中的字母,组成四个不同字母M、我、s 和体育3 —B 子集S.从给定的集S,我们可能会形成新集,称为.的子集例如,组成的那些正整数小于10 整除4 (集合{8 毫米})的一组一般是的所有甚至小于10.整数集的一个子集,我们有以下的定义。
子集的定义。
数学专业英语词汇
1. 基本数学概念arithmetic mean 算术平均值weighted average 加权平均值geometric mean 几何平均数exponent 指数,幂base 乘幂的底数,底边cube 立方数,立方体square root 平方根cube root 立方根common logarithm 常用对数digit 数字constant 常数variable 变量inverse function 反函数 complementary function 余函数linear 一次的,线性的factorization 因式分解absolute value 绝对值,e.g.|-32|=32 round off 四舍五入2 有关数论natural number 自然数positive number 正数negative number 负数odd integer, odd number 奇数even integer, even number 偶数integer, whole number 整数positive whole number 正整数negative whole number 负整数 consecutive number 连续整数real number, rational number 实数,有理数 irrational(number)无理数inverse 倒数composite number 合数 e.g. 4,6,8,9,10,12,14,15……prime number 质数 e.g. 2,3,5,7,11,13,15……注意:所有的质数(2除外)都是奇数,但奇数不一定是质数reciprocal 倒数common divisor 公约数multiple 倍数(least)common multiple (最小)公倍数 (prime) factor (质)因子common factor 公因子ordinary scale, decimal scale 十进制 nonnegative 非负的tens 十位units 个位mode 众数median 中数common ratio 公比7. 数列arithmetic progression(sequence) 等差数列geometric progression(sequence) 等比数列8. 其它approximate 近似(anti)clockwise (逆) 顺时针方向 cardinal 基数ordinal 序数direct proportion 正比distinct 不同的estimation 估计,近似parentheses 括号proportion 比例permutation 排列combination 组合table 表格trigonometric function 三角函数unit 单位,位几何部分1. 所有的角alternate angle 内错角corresponding angle 同位角vertical angle 对顶角central angle 圆心角interior angle 内角exterior angle 外角supplementary angles 补角 complementary angle 余角adjacent angle 邻角acute angle 锐角obtuse angle 钝角right angle 直角round angle 周角straight angle 平角included angle 夹角2. 所有的三角形equilateral triangle 等边三角形 scalene triangle 不等边三角形 isosceles triangle 等腰三角形right triangle 直角三角形oblique 斜三角形inscribed triangle 内接三角形3. 有关收敛的平面图形,除三角形外semicircle 半圆concentric circles 同心圆 quadrilateral 四边形pentagon 五边形hexagon 六边形heptagon 七边形octagon 八边形nonagon 九边形decagon 十边形polygon 多边形parallelogram 平行四边形equilateral 等边形plane 平面square 正方形,平方rectangle 长方形regular polygon 正多边形rhombus 菱形trapezoid 梯形4. 其它平面图形arc 弧 line, straight line 直线line segment 线段parallel lines 平行线segment of a circle 弧形5. 有关立体图形cube 立方体,立方数rectangular solid 长方体regular solid/regular polyhedron 正多面体 circular cylinder 圆柱体cone 圆锥sphere 球体solid 立体的6. 有关图形上的附属物altitude 高depth 深度side 边长circumference, perimeter 周长radian 弧度surface area 表面积volume 体积arm 直角三角形的股cross section 横截面center of a circle 圆心chord 弦radius 半径angle bisector 角平分线diagonal 对角线diameter 直径edge 棱face of a solid 立体的面hypotenuse 斜边included side 夹边leg 三角形的直角边median of a triangle 三角形的中线base 底边,底数(e.g. 2的5次方,2就是底数)opposite 直角三角形中的对边midpoint 中点endpoint 端点vertex (复数形式vertices)顶点tangent 切线的transversal 截线intercept 截距7. 有关坐标coordinate system 坐标系 rectangular coordinate 直角坐标系 origin 原点abscissa 横坐标ordinate 纵坐标number line 数轴quadrant 象限slope 斜率complex plane 复平面8. 其它plane geometry 平面几何 trigonometry 三角学bisect 平分circumscribe 外切inscribe 内切intersect 相交perpendicular 垂直 pythagorean theorem 勾股定理 congruent 全等的multilateral 多边的其它1. 单位类cent 美分penny 一美分硬币nickel 5美分硬币dime 一角硬币dozen 打(12个)score 廿(20个)Centigrade 摄氏Fahrenheit 华氏quart 夸脱gallon 加仑(1 gallon = 4 quart) yard 码 meter 米micron 微米inch 英寸foot 英尺minute 分(角度的度量单位,60分=1度) square measure 平方单位制cubic meter 立方米pint 品脱(干量或液量的单位)2. 有关文字叙述题,主要是有关商业intercalary year(leap year) 闰年(366天) common year 平年(365天) depreciation 折旧down payment 直接付款discount 打折margin 利润profit 利润interest 利息simple interest 单利compounded interest 复利dividend 红利decrease to 减少到decrease by 减少了increase to 增加到increase by 增加了denote 表示list price 标价markup 涨价per capita 每人ratio 比率retail price 零售价tie 打。
(完整版)数学英文词汇大全
(完整版)数学英文词汇大全微积分第一章函数与极限Chapter1 Function and Limit集合set元素element子集subset空集empty set并集union交集intersection差集difference of set基本集basic set补集complement set直积direct product笛卡儿积Cartesian product开区间open interval闭区间closed interval半开区间half open interval有限区间finite interval区间的长度length of an interval无限区间infinite interval领域neighborhood领域的中心centre of a neighborhood领域的半径radius of a neighborhood左领域left neighborhood右领域right neighborhood映射mappingX到Y的映射mapping of X ontoY满射surjection单射injection一一映射one-to-one mapping双射bijection算子operator变化transformation函数function逆映射inverse mapping复合映射composite mapping自变量independent variable因变量dependent variable定义域domain函数值value of function函数关系function relation值域range自然定义域natural domain单值函数single valued function多值函数multiple valued function单值分支one-valued branch函数图形graph of a function绝对值函数absolute value符号函数sigh function整数部分integral part阶梯曲线step curve当且仅当if and only if(iff)分段函数piecewise function上界upper bound下界lower bound有界boundedness无界unbounded函数的单调性monotonicity of a function 单调增加的increasing单调减少的decreasing单调函数monotone function函数的奇偶性parity(odevity) of a function 对称symmetry偶函数even function奇函数odd function函数的周期性periodicity of a function周期period反函数inverse function直接函数direct function复合函数composite function中间变量intermediate variable函数的运算operation of function基本初等函数basic elementary function 初等函数elementary function幂函数power function指数函数exponential function对数函数logarithmic function三角函数trigonometric function反三角函数inverse trigonometric function 常数函数constant function双曲函数hyperbolic function双曲正弦hyperbolic sine双曲余弦hyperbolic cosine双曲正切hyperbolic tangent反双曲正弦inverse hyperbolic sine反双曲余弦inverse hyperbolic cosine反双曲正切inverse hyperbolic tangent极限limit数列sequence of number收敛convergence收敛于a converge to a发散divergent极限的唯一性uniqueness of limits收敛数列的有界性boundedness of a convergent sequence子列subsequence函数的极限limits of functions函数当x趋于x0时的极限limit of functions as x approaches x0 左极限left limit右极限right limit单侧极限one-sided limits水平渐近线horizontal asymptote无穷小infinitesimal无穷大infinity铅直渐近线vertical asymptote夹逼准则squeeze rule单调数列monotonic sequence高阶无穷小infinitesimal of higher order低阶无穷小infinitesimal of lower order同阶无穷小infinitesimal of the same order--------------------------------------------------------------------------------2 高等数学-翻译等阶无穷小equivalent infinitesimal函数的连续性continuity of a function增量increment函数在x0连续the function is continuous at x0左连续left continuous右连续right continuous区间上的连续函数continuous function函数在该区间上连续function is continuous on an interval不连续点discontinuity point第一类间断点discontinuity point of the first kind第二类间断点discontinuity point of the second kind初等函数的连续性continuity of the elementary functions定义区间defined interval最大值global maximum value (absolute maximum)最小值global minimum value (absolute minimum)零点定理the zero point theorem介值定理intermediate value theorem第二章导数与微分Chapter2 Derivative and Differential速度velocity匀速运动uniform motion平均速度average velocity瞬时速度instantaneous velocity圆的切线tangent line of a circle切线tangent line切线的斜率slope of the tangent line位置函数position function导数derivative可导derivable函数的变化率问题problem of the change rate of a function 导函数derived function左导数left-hand derivative右导数right-hand derivative单侧导数one-sided derivatives在闭区间【a,b】上可导is derivable on the closed interval [a,b] 切线方程tangent equation角速度angular velocity成本函数cost function边际成本marginal cost链式法则chain rule隐函数implicit function显函数explicit function二阶函数second derivative三阶导数third derivative高阶导数nth derivative莱布尼茨公式Leibniz formula对数求导法log- derivative参数方程parametric equation相关变化率correlative change rata微分differential可微的differentiable函数的微分differential of function自变量的微分differential of independent variable微商differential quotient间接测量误差indirect measurement error绝对误差absolute error相对误差relative error第三章微分中值定理与导数的应用Chapter3 MeanValue Theorem of Differentials and the Application of Derivatives 罗马定理Rolle’s theorem费马引理Fermat’s lemma拉格朗日中值定理Lagrange’s mean value theorem驻点stationary point稳定点stable point临界点critical point辅助函数auxiliary function拉格朗日中值公式Lagrange’s mean value formula柯西中值定理Cauchy’s mean value theorem洛必达法则L’Hospital’s Rule0/0型不定式indeterminate form of type 0/0不定式indeterminate form泰勒中值定理Taylor’s mean value th eorem泰勒公式Taylor formula余项remainder term拉格朗日余项Lagrange remainder term麦克劳林公式Maclaurin’s formula佩亚诺公式Peano remainder term凹凸性concavity凹向上的concave upward, cancave up凹向下的,向上凸的concave downward’concave down 拐点inflection point函数的极值extremum of function极大值local(relative) maximum最大值global(absolute) mximum极小值local(relative) minimum最小值global(absolute) minimum目标函数objective function曲率curvature弧微分arc differential平均曲率average curvature曲率园circle of curvature曲率中心center of curvature曲率半径radius of curvature渐屈线evolute渐伸线involute根的隔离isolation of root隔离区间isolation interval切线法tangent line method第四章不定积分Chapter4 Indefinite Integrals原函数primitive function(antiderivative)积分号sign of integration被积函数integrand积分变量integral variable积分曲线integral curve积分表table of integrals换元积分法integration by substitution分部积分法integration by parts分部积分公式formula of integration by parts有理函数rational function真分式proper fraction假分式improper fraction第五章定积分Chapter5 Definite Integrals曲边梯形trapezoid with曲边curve edge窄矩形narrow rectangle曲边梯形的面积area of trapezoid with curved edge积分下限lower limit of integral积分上限upper limit of integral积分区间integral interval分割partition积分和integral sum可积integrable矩形法rectangle method积分中值定理mean value theorem of integrals函数在区间上的平均值average value of a function on anintegvals 牛顿-莱布尼茨公式Newton-Leibniz formula 微积分基本公式fundamental formula of calculus换元公式formula for integration by substitution递推公式recurrence formula反常积分improper integral反常积分发散the improper integral is divergent反常积分收敛the improper integral is convergent无穷限的反常积分improper integral on an infinite interval无界函数的反常积分improper integral of unbounded functions绝对收敛absolutely convergent第六章定积分的应用Chapter6 Applications of the Definite Integrals元素法the element method面积元素element of area平面图形的面积area of a luane figure直角坐标又称“笛卡儿坐标(Cartesian coordinates)”极坐标polar coordinates抛物线parabola椭圆ellipse旋转体的面积volume of a solid of rotation旋转椭球体ellipsoid of revolution, ellipsoid of rotation曲线的弧长arc length of acurve可求长的rectifiable光滑smooth功work水压力water pressure引力gravitation变力variable force第七章空间解析几何与向量代数Chapter7 Space Analytic Geometry and Vector Algebra向量vector自由向量free vector单位向量unit vector零向量zero vector相等equal平行parallel向量的线性运算linear poeration of vector三角法则triangle rule平行四边形法则parallelogram rule交换律commutative law结合律associative law负向量negative vector差difference分配律distributive law空间直角坐标系space rectangular coordinates坐标面coordinate plane卦限octant向量的模modulus of vector向量a与b的夹角angle between vector a and b方向余弦direction cosine方向角direction angle向量在轴上的投影projection of a vector onto an axis数量积,外积,叉积scalar product,dot product,inner product 曲面方程equation for a surface球面sphere旋转曲面surface of revolution母线generating line轴axis圆锥面cone顶点vertex旋转单叶双曲面revolution hyperboloids of one sheet旋转双叶双曲面revolution hyperboloids of two sheets柱面cylindrical surface ,cylinder圆柱面cylindrical surface准线directrix抛物柱面parabolic cylinder二次曲面quadric surface椭圆锥面dlliptic cone椭球面ellipsoid单叶双曲面hyperboloid of one sheet双叶双曲面hyperboloid of two sheets旋转椭球面ellipsoid of revolution椭圆抛物面elliptic paraboloid旋转抛物面paraboloid of revolution双曲抛物面hyperbolic paraboloid马鞍面saddle surface椭圆柱面elliptic cylinder双曲柱面hyperbolic cylinder抛物柱面parabolic cylinder空间曲线space curve空间曲线的一般方程general form equations of a space curve 空间曲线的参数方程parametric equations of a space curve 螺转线spiral螺矩pitch投影柱面projecting cylinder投影projection平面的点法式方程pointnorm form eqyation of a plane法向量normal vector平面的一般方程general form equation of a plane两平面的夹角angle between two planes点到平面的距离distance from a point to a plane空间直线的一般方程general equation of a line in space方向向量direction vector直线的点向式方程pointdirection form equations of a line方向数direction number直线的参数方程parametric equations of a line两直线的夹角angle between two lines垂直perpendicular直线与平面的夹角angle between a line and a planes平面束pencil of planes平面束的方程equation of a pencil of planes行列式determinant系数行列式coefficient determinant第八章多元函数微分法及其应用Chapter8 Differentiation of Functions of Several Variables and Its Application 一元函数function of one variable多元函数function of several variables内点interior point外点exterior point边界点frontier point,boundary point聚点point of accumulation开集openset闭集closed set连通集connected set开区域open region闭区域closed region有界集bounded set无界集unbounded setn维空间n-dimentional space二重极限double limit多元函数的连续性continuity of function of seveal连续函数continuous function不连续点discontinuity point一致连续uniformly continuous偏导数partial derivative对自变量x的偏导数partial derivative with respect to independent variable x高阶偏导数partial derivative of higher order二阶偏导数second order partial derivative混合偏导数hybrid partial derivative全微分total differential偏增量oartial increment偏微分partial differential全增量total increment可微分differentiable必要条件necessary condition充分条件sufficient condition叠加原理superpostition principle全导数total derivative中间变量intermediate variable隐函数存在定理theorem of the existence of implicit function 曲线的切向量tangent vector of a curve法平面normal plane向量方程vector equation向量值函数vector-valued function切平面tangent plane法线normal line方向导数directional derivative梯度gradient数量场scalar field梯度场gradient field向量场vector field势场potential field引力场gravitational field引力势gravitational potential曲面在一点的切平面tangent plane to a surface at a point曲线在一点的法线normal line to a surface at a point无条件极值unconditional extreme values条件极值conditional extreme values拉格朗日乘数法Lagrange multiplier method拉格朗日乘子Lagrange multiplier经验公式empirical formula最小二乘法method of least squares均方误差mean square error第九章重积分Chapter9 Multiple Integrals二重积分double integral可加性additivity累次积分iterated integral体积元素volume element三重积分triple integral直角坐标系中的体积元素volume element in rectangular coordinate system 柱面坐标cylindrical coordinates柱面坐标系中的体积元素volume element in cylindrical coordinate system 球面坐标spherical coordinates球面坐标系中的体积元素volume element in spherical coordinate system 反常二重积分improper double integral 曲面的面积area of a surface质心centre of mass静矩static moment密度density形心centroid转动惯量moment of inertia参变量parametric variable第十章曲线积分与曲面积分Chapter10 Line(Curve)Integrals and Surface Integrals对弧长的曲线积分line integrals with respect to arc hength第一类曲线积分line integrals of the first type对坐标的曲线积分line integrals with respect to x,y,and z第二类曲线积分line integrals of the second type有向曲线弧directed arc单连通区域simple connected region复连通区域complex connected region格林公式Green formula第一类曲面积分surface integrals of the first type对面的曲面积分surface integrals with respect to area有向曲面directed surface对坐标的曲面积分surface integrals with respect to coordinate elements第二类曲面积分surface integrals of the second type有向曲面元element of directed surface高斯公式gauss formula拉普拉斯算子Laplace operator格林第一公式Green’s first formula通量flux散度divergence斯托克斯公式Stokes formula环流量circulation旋度rotation,curl第十一章无穷级数Chapter11 Infinite Series一般项general term部分和partial sum余项remainder term等比级数geometric series几何级数geometric series公比common ratio调和级数harmonic series柯西收敛准则Cauchy convergence criteria, Cauchy criteria for convergence 正项级数series of positive terms达朗贝尔判别法D’Alembert test柯西判别法Cauchy test交错级数alternating series绝对收敛absolutely convergent条件收敛conditionally convergent柯西乘积Cauchy product函数项级数series of functions发散点point of divergence收敛点point of convergence收敛域convergence domain和函数sum function幂级数power series幂级数的系数coeffcients of power series阿贝尔定理Abel Theorem收敛半径radius of convergence收敛区间interval of convergence泰勒级数Taylor series麦克劳林级数Maclaurin series二项展开式binomial expansion近似计算approximate calculation舍入误差round-off error,rounding error欧拉公式Euler’s formula魏尔斯特拉丝判别法Weierstrass test三角级数trigonometric series振幅amplitude角频率angular frequency初相initial phase矩形波square wave谐波分析harmonic analysis直流分量direct component基波fundamental wave二次谐波second harmonic三角函数系trigonometric function system傅立叶系数Fourier coefficient傅立叶级数Forrier series周期延拓periodic prolongation正弦级数sine series余弦级数cosine series奇延拓odd prolongation偶延拓even prolongation傅立叶级数的复数形式complex form of Fourier series第十二章微分方程Chapter12 Differential Equation解微分方程solve a dirrerential equation常微分方程ordinary differential equation偏微分方程partial differential equation,PDE微分方程的阶order of a differential equation微分方程的解solution of a differential equation微分方程的通解general solution of a differential equation初始条件initial condition微分方程的特解particular solution of a differential equation 初值问题initial value problem微分方程的积分曲线integral curve of a differential equation 可分离变量的微分方程variable separable differential equation 隐式解implicit solution隐式通解inplicit general solution衰变系数decay coefficient衰变decay齐次方程homogeneous equation一阶线性方程linear differential equation of first order非齐次non-homogeneous齐次线性方程homogeneous linear equation非齐次线性方程non-homogeneous linear equation常数变易法method of variation of constant暂态电流transient stata current稳态电流steady state current伯努利方程Bernoulli equation全微分方程total differential equation积分因子integrating factor高阶微分方程differential equation of higher order悬链线catenary高阶线性微分方程linera differential equation of higher order 自由振动的微分方程differential equation of free vibration强迫振动的微分方程differential equation of forced oscillation 串联电路的振荡方程oscillation equation of series circuit二阶线性微分方程second order linera differential equation线性相关linearly dependence线性无关linearly independce二阶常系数齐次线性微分方程second order homogeneourlinear differential equation with constant coefficient二阶变系数齐次线性微分方程second order homogeneous linear differential equation with variable coefficient特征方程characteristic equation无阻尼自由振动的微分方程differential equation of free vibration with zero damping固有频率natural frequency简谐振动simple harmonic oscillation,simple harmonic vibration微分算子differential operator待定系数法method of undetermined coefficient共振现象resonance phenomenon欧拉方程Euler equation幂级数解法power series solution数值解法numerial solution勒让德方程Legendre equation微分方程组system of differential equations常系数线性微分方程组system of linera differential equations with constant coefficient线性代数Aadjont(adjugate) of matrix A A 的伴随矩阵augmented matrix A 的增广矩阵Bblock diagonal matrix 块对角矩阵block matrix 块矩阵basic solution set 基础解系CCauchy-Schwarz inequality 柯西-许瓦兹不等式characteristic equation 特征方程characteristic polynomial 特征多项式coffcient matrix 系数矩阵cofactor 代数余子式cofactor expansion 代数余子式展开column vector 列向量commuting matrices 交换矩阵consistent linear system 相容线性方程组Cramer’s rule 克莱姆法则Cross- product term 交叉项DDeterminant 行列式Diagonal entries 对角元素Diagonal matrix 对角矩阵Dimension of a vector space V 向量空间V的维数Eechelon matrix 梯形矩阵eigenspace 特征空间eigenvalue 特征值eigenvector 特征向量eigenvector basis 特征向量的基elementary matrix 初等矩阵elementary row operations 行初等变换Ffull rank 满秩fundermental set of solution 基础解系G[center]grneral solution 通解Gram-Schmidt process 施密特正交化过程Hhomogeneous linear equations 齐次线性方程组Iidentity matrix 单位矩阵inconsistent linear system 不相容线性方程组indefinite matrix 不定矩阵indefinit quatratic form 不定二次型infinite-dimensional space 无限维空间inner product 内积inverse of matrix A 逆矩阵Llinear combination 线性组合linearly dependent 线性相关linearly independent 线性无关linear transformation 线性变换lower triangular matrix 下三角形矩阵Mmain diagonal of matrix A 矩阵的主对角matrix 矩阵[center]negative definite quaratic form 负定二次型negative semidefinite quadratic form 半负定二次型nonhomogeneous equations 非齐次线性方程组nonsigular matrix 非奇异矩阵nontrivial solution 非平凡解norm of vector V 向量V的范数normalizing vector V 规范化向量Oorthogonal basis 正交基orthogonal complement 正交补orthogonal decomposition 正交分解orthogonally diagonalizable matrix 矩阵的正交对角化orthogonal matrix 正交矩阵orthogonal set 正交向量组orthonormal basis 规范正交基orthonomal set 规范正交向量组[b]Ppartitioned matrix 分块矩阵positive definite matrix 正定矩阵positive definite quatratic form 正定二次型positive semidefinite matrix 半正定矩阵positive semidefinite quadratic form 半正定二次型Qquatratic form 二次型[center]R[/center]rank of matrix A 矩阵A的秩r(A) reduced echelon matrix 最简梯形阵row vector 行向量Sset spanned by { } 由向量{ }所生成similar matrices 相似矩阵similarity transformation 相似变换singular matrix 奇异矩阵solution set 解集合standard basis 标准基standard matrix 标准矩阵Isubmatrix 子矩阵subspace 子空间symmetric matrix 对称矩阵Ttrace of matrix A 矩阵A 的迹tr(A)transpose of A 矩阵A的转秩triangle inequlity 三角不等式trivial solution 平凡解Uunit vector 单位向量upper triangular matrix 上三角形矩阵Vvandermonde matrix 范得蒙矩阵vector 向量vector space 向量空间Zzero subspace 零子空间zero vector 零空间(本文已被浏览133 次)概率统计概率论与数理统计词汇英汉对照表Aabsolute value 绝对值accept 接受acceptable region 接受域additivity 可加性adjusted 调整的alternative hypothesis 对立假设analysis 分析analysis of covariance 协方差分析analysis of variance 方差分析arithmetic mean 算术平均值association 相关性assumption 假设assumption checking 假设检验availability 有效度average 均值Bbalanced 平衡的band 带宽bar chart 条形图beta-distribution 贝塔分布between groups 组间的bias 偏倚binomial distribution 二项分布binomial test 二项检验Ccalculate 计算case 个案category 类别center of gravity 重心central tendency 中心趋势chi-square distribution 卡方分布chi-square test 卡方检验classify 分类cluster analysis 聚类分析coefficient 系数coefficient of correlation 相关系数collinearity 共线性column 列compare 比较comparison 对照components 构成,分量compound 复合的confidence interval 置信区间consistency 一致性constant 常数continuous variable 连续变量control charts 控制图correlation 相关covariance 协方差covariance matrix 协方差矩阵critical point 临界点critical value 临界值crosstab 列联表cubic 三次的,立方的cubic term 三次项cumulative distribution function 累加分布函数curve estimation 曲线估计Ddata 数据default 默认的definition 定义deleted residual 剔除残差density function 密度函数dependent variable 因变量description 描述design of experiment 试验设计deviations 差异df.(degree of freedom) 自由度diagnostic 诊断dimension 维discrete variable 离散变量discriminant function 判别函数discriminatory analysis 判别分析distance 距离distribution 分布D-optimal design D-优化设计Eeaqual 相等effects of interaction 交互效应efficiency 有效性eigenvalue 特征值equal size 等含量equation 方程error 误差。
数学专业英语
第二章精读课文----入门必修2.1数学方程与比例(Mathematics,Equation and Ratio)一、词汇及短语:1. change the terms about 变形2. full of :有许多的充满的例 The streets are full of people as on a holiday(像假日一样,街上行人川流不息)3. in groups of ten…4. match something against sb. “匹配”例 Long ago ,when people had to count many things ,they matched them against their fingers. 古时候,当人们必须数东西时,在那些东西和自己的手指之间配对。
5. grow out of 源于由…引起例 Many close friendships grew out of mon acquaintance6. arrive at 得出(到达抵达达到达成)例 we both arrived at the same conclusion(我们俩个得出了相同的结论)7. stand for “表示,代表”8. in turn “反过来,依次”9. bring about 发生导致造成10. arise out of 引起起源于11. express by“用…表示”12. occur 发生,产生13. e from 来源于,起源于14. resulting method 推论法15. be equal to 等于的相等的例 Twice two is equal to four(2乘以2等于4)16. no matter 无论不管17. mathematical analysis 数学分析18. differential equation 微分方程19. higher mathematics 高等数学higher algebra 高等代数20. equation of condition 条件等式二句型及典型翻译1.For a long period of the history of mathematics, the centric place ofmathematical methods was occupied by the logical deductions“在数学史的很长的时期内,是逻辑推理一直占据数学方法的中心地位”2.An equation is a statement of the equality between two equal numbersor number symbols.equation :“方程”“等式”等式是关于两个数或数的符号相等的一种陈述3.In such an equation either the two members are alike, or bee alike onperformance of the indicated operation. 这种等式的两端要么一样,要么经过执行指定的运算后变成一样。
数学专业英语(只是部分,不是很完整)
Mathematicians study conceptions and propositions, Axioms, postulates, definitions and theorems are all propositions. Notations are a special and powerful tool of mathematics and are used to express conceptions and propositions very often. Formulas ,figures and charts are full of different symbols. Some of the best known symbols of mathematics are the Arabic numerals 1,2,3,4,5,6,7,8,9,0 and the signs of addition “+”, subtraction “-” , multiplication “×”, division “÷” and equality “=”. 数学家研究的是概念和命题,公理,公设,定义和定理都 是命题。符号是数学中一个特殊而有用的工具,常用于表 达概念和命题。 公式,图形和图表都是不同的符号……..
1-B Equation
An equation is a statement of the equality between two equal numbers or number symbols. Equations are of two kinds---- identities and equations of condition. An arithmetic or an algebraic identity is an equation. In such an equation either the two members are alike, or become alike on the performance of the indicated operation. 等式是关于两个数或者数的符号相等的一种描述。 等式有两种-恒等式和条件等式。算术或者代数恒等式都是 等式。这种等式的两端要么一样,要么经过执行指定的运算 后变成一样。
数学专业英语(2)
Mathematical English Dr. Xiaomin Zhang Email: zhangxiaomin@§2.2 Geometry and TrigonometryTEXT A Why study geometry?Why do we study geometry? The student beginning the study of this text may well ask, “What is geometry? What can I expect to gain fro m this study?”Many leading institutions of higher learning have recognized that positive benefits can be gained by all who study this branch of mathematics. This is evident from the fact that they require study of geometry as a prerequisite to matriculation in those schools. Geometry had its origin long ago in the measurements by the Babylonians and Egyptians of their lands inundated by the floods of the Nile River. The Greek word geometry is derived from geo, meaning “earth”, and metron, meaning “measure”. As early as2000 B.C. we find the land surveyors of these people re-establishing vanishing landmarks and boundaries by utilizing the truths of geometry.Geometry is a science that deals with forms made by lines. A study of geometry is an essential part of the training of the successful engineer, scientist, architect, and draftsman. The carpenter, machinist, stonecutter, artist, and designer all apply the facts of geometry in their trades. In this course the student will learn a great deal about geometric figures such as lines, angles, triangles, circles, and designs and patterns of many kinds. One of the most important objectives derived from a study of geometry is making the student be more critical in his listening, reading, and thinking. In studying geometry he is led away from the practice of blind acceptance of statements and ideas and is taught to think clearly and critically before forming conclusions.There are many other less direct benefits the student of geometry may gain. Among these one must include training in the exact use of the English language and in the ability to analyze a new situation or problem into its basic parts, and utilizing perseverance, originality, and logical reasoning in solving the problem. An appreciation for the orderliness and beauty of geometric forms that abound in man’s works and of the creations of nature will be a byproduct of the study of geometry. The student should also develop an awareness of the contributions of mathematics and mathematicians to our culture and civilization.TEXT B Some geometrical terms1. Solids and planes.A solid is a three-dimensional figure. Common examples of solid are cube, sphere, cylinder, cone and pyramid.A cube has six faces which are smooth and flat. These faces are called plane surfaces or simply planes. A plane surface has two dimensions, length and width .The surface of a blackboard or a tabletop is an example of a plane surface.2. Lines and line segments.We are all familiar with lines, but it is difficult to define the term. A line may be represented by the mark made by moving a pencil or pen across a piece of paper. A line may be considered as having only one dimension, length. Although when we draw a line we give it breadth and thickness, we think only of the length of the trace when considering the line. A point has no length, no width, and no thickness, but marks a position. We arefamiliar with such expressions as pencil point and needle point. We represent a point by a small dot and name it by a capital letter printed beside it, as “point A” in Fig. 2-2-1.The line is named by labeling two points on it with capital letters or one small letter near it. The straight line in Fig. 2-2-2 is read “line AB” or “line l”. A straight line extends infinitely far in two directions and has no ends. The part of the line between two points on the line is termed a line segment. A line segment is named by the two end points. Thus, in Fig. 2-2-2, we refer to AB as line segment of line l. When no confusion may result, the expression “line segment AB” is often replace d by segment AB or, simply, line A B.There are three kinds of lines: the straight line, the broken line, and the curved line. A curved line or, simply, curve is line no part of which is straight. A broken line is composed of joined, straightline segments, as ABCDE of Fig. 2-2-3.3. Parts of a circle.A circle is a closed curve lying in one plane, all points of which are equidistant from a fixed point called the center (Fig. 2-2-4). The symbol for a circle is ⊙. In Fig. 2-2-4, O is the center of ⊙ABC, or simply of ⊙O. A line segment drawn from the center of the circle to a point on the circle is a radius (plural, radii) of the circle. OA, OB, and OC are radii of ⊙O, A diameter of a circle is a line segment through the center of the circle with endpoints on the circle. A diameter is equal to two radii.A chord is any line segment joining two points on the circle. ED is a chord of the circle in Fig. 2-2-4.From this definition is should be apparent that a diameter is a chord. Any part of a circle is an arc, such as arc AE. Points A and E divide the circle into minor arc AE and major arc ABE. A diameter divides a circle into two arcs termed semicircles, such as AB. Thecircumference is the length of a circle.SUPPLEMENT A Ruler-and-compass constructionsA number of ancient problems in geometry involve the construction of lengths or angles using only an idealised ruler and compass. The ruler is indeed a straightedge, and may not be marked; the compass may only be set to already constructed distances, and used to describe circular arcs.Some famous ruler-and-compass problems have been proved impossible, in several cases by the results of Galois theory. In spite of these impossibility proofs, some mathematical amateurs persist in trying to solve these problems. Many of them fail to understand that many of these problems are trivially soluble provided that other geometric transformations are allowed: for example, squaring the circle is possible using geometric constructions, but not possible using ruler and compasses alone. Mathematician Underwood Dudley has made a sideline of collecting false ruler-and-compass proofs, as well as other work by mathematical cranks, and has collected them into several books.Squaring the circle The most famous of these problems, “squaring the circle”, involves constructing a square with the same area as a given circle using only ruler and compasses. Squaring the circle has been proved impossible, as it involves generating a transcendental ratio, namely 1:√π.Only algebraic ratios can be constructed with ruler and compasses alone. The phrase “squaring the circle” is often used to mean “doing the impossible”for this reason.Without the constraint of requiring solution by ruler and compasses alone, the problem is easily soluble by a wide variety of geometric and algebraic means, and has been solved many times in antiquity.Doubling the cube Using only ruler and compasses, construct the side of a cube that has twice the volume of a cube with a given side. This is impossible because the cube root of 2, though algebraic, cannot be computed from integers by addition, subtraction, multiplication, division, and taking square roots.Angle trisection Using only ruler and compasses, construct an angle that is one-third of a given arbitrary angle. This requires taking the cube root of an arbitrary complex number with absolute value 1 and is likewise impossible.Constructing with only ruler or only compassIt is possible, as shown by Georg Mohr, to construct anything with just a compass that can be constructed with ruler and compass. It is impossible to take a square root with just a ruler, so some things cannot be constructed with a ruler that can be constructed with a compass; but given a circle and its center, they can be constructed.Problem How can you determine the midpoint of any given line segment with only compass?SUPPLEMENT B Archimedes and On the Sphere and the CylinderArchimedes(287 BC-212 BC) was an Ancient mathematician, astronomer, philosopher, physicist and engineer born in the Greek seaport colony of Syracuse. He is considered by some math historians to be one of history's greatest mathematicians, along with possibly Newton, Gauss and Euler.He was an aristocrat, the son of an astronomer, but little is known of his early life except that he studied under followers of Euclid in Alexandria, Egypt before returning to his native Syracuse, then an independent Greek city-state. Several of his books were preserved by the Greeks and Arabs into the Middle Ages, and, fortunately, the Roman historian Plutarch described a few episodes from his life. In many areas of mathematics as well as in hydrostatics and statics, his work and results were not surpassed for over 1500 years!He approximated the area of circles (and the value of ¼) by summing the areas of inscribed and circumscribed rectang les, and generalized this "method of exhaustion," by taking smaller and smaller rectangular areas and summing them, to find the areas and even volumes of several other shapes. This anticipated the results of the calculus of Newton and Leibniz by almost 2000 years!He found the area and tangents to the curve traced by a point moving with uniform speed along a straight line which is revolving with uniform angular speed about a fixed point. This curve, described by r = a in polar coordinates, is now called the "spiral of Archimedes." With calculus it is an easy problem; without calculus it is very difficult.The king of Syracuse once asked Archimedes to find a way of determining if one of his crowns was pure gold without destroying the crown in the process. The crown weighed the correct amount but that was not a guarantee that it was pure gold. Thestory is told that as Archimedes lowered himself into a bath he noticed that some of the water was displaced by his body and flowed over the edge of the tub. This was just the insight he needed to realize that the crown should not only weigh the right amount but should displace the same volume as an equal weight of pure gold. He was so excited by this idea that he reportedly ran naked through the streets shouting "Eureka" ("I have found it")."Give me a place to stand and I will move the earth" was his boast when he discovered the laws of levers and pulleys. Since it was impossible to challenge that statement directly, he was asked to move a ship which had required a large group of laborers to put into position. Archimedes did so easily by using a compound pulley system.During the war between Rome and Carthage, the Roman fleet decided to attack Syracuse, but Archimedes had been at work devising a few surprises. There were catapults with adjustable ranges which could throw objects which weighted over 500 pounds. The ships which survived the catapults were met with poles which reached over the city walls and dropped heavy stones onto the ships. Large grappling hooks attached to levers lifted the ships out of the water and then dropped them. During another failed assault, it is said that Archimedes had the soldiers of Syracuse use specially shaped and shined shields to focus the sunlight onto the sails to set them afire. This was more than the terrified sailors could stand, and the fleet withdrew. Unfortunately, the city began celebrating a bit early, and Marcellus captured Syracuse by attackingfrom the landward side during the celebration. "Archimedes, who was then, as fate would have it, intent upon working out some problem by a diagram, and having fixed his mind alike and his eyes upon the subject of his speculation, he never noticed the incursion of the Romans, nor that the city was taken. In this transport of study and contemplation, a soldier, unexpectedly coming upon him, commanded him to follow to Marcellus, which he declined to do before he had worked out his problem to a demonstration; the soldier, enraged, drew his sword and ran him through." (Plutarch)Archimedes requested that his tombstone be decorated with a sphere contained in the smallest possible cylinder and inscribed with the ratio of the cylinder's volume to that of the sphere. Archimedes considered the discovery of this ratio the greatest of all his accomplishments.Archimedes Discovers the Volume of a SphereArchimedes balanced a cylinder, a sphere, and a cone. All of the following dimensions shown in blue are equal.Archimedes imagined taking a circular slice out of all three solids.He then imagined hanging the cylinder and the sphere from point A and suspending the solids at point F (the fulcrum).By the law of the lever Archimedes showed that2r ⨯ (cone volume + sphere volume) = 4r ⨯ (cylinder volumes)Since cylinder volume = base ⨯ height = πr2⨯2r = 2πr3and cone volume = 1/3base ⨯ height = 1/3[π⨯ (2r)2] ⨯ (2r) = 8/3πr3so sphere volume = 2 cylinder volumes - cone volume = 4/3πr3Problem 1 Can you obtain the volume of a cone by the same argument above?Problem 2 (about π) Among the earliest Chinese circle-squarers mention must be made of Chang Hung in the first place. Chang’s calculation of the circle, however, has been lost, although his value of π is given in commentary on Arithmetic in Nine Sections in the form that the ratio of the square of the circular circumference to that of the perimeter of the circumscribed squareis 5 to 8. This is equivalent to taking π at ____.。
数学专业英语
数学专业英语(1)、Given ε>0,there exists a number N >0 such that ε<-a a n for all N n ≥ 译文:对给定的ε>0,存在一个数N >0使得不等式ε<-a a n 对所有的N n ≥都成立。
(2)、The function )(x f approaches infinity as x tends to zero.译文:当x 趋于0时,函数)(x f 趋于∞。
(3)、Suppose D is an open set with its closure in G .译文:假定D 是一个开区间,且其闭包在G 中。
(4)、Suppose )(x f is a function on domain D such that M x f <)( for all x ∈D ,where M is a constant .译文:假定)(x f 是区域D 上的一个函数,使得对所有x ∈D ,不等式M x f <)(成立,其中M 是一个常数。
(可用“satisfying ”代替上述“such that ”。
)(5)、表示推理的根据常用“by 短语”,有时也用“according to ”。
By Lemma 2 we have x y ≥.译文:根据引理2可推出x y ≥。
(6)、有时用现在分词表示“经过……而得到……”(推论)。
Integrating the above inequality twice,we see that . log )(0t t c t y ≥译文:将上一不等式两次积分得到. log )(0t t c t y ≥。
(7)、表示充分必要条件The sufficient and necessary condition for the equality isα>0 and ≥p 3. 译文:该等式成立的充分必要条件是α>0 且≥p 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
These statements are neither true nor false when the values of the variables are not specified. In this section we will discuss the ways that propositions can be produced from such statements.
Two types of quantification will be discussed here, namely, universal quantification and existential quantification . 这里讨论两种量词化方法,也就是全称量词化和存在 量词化。
Many mathematical statements assert that a property is true for all values of a variable in a particularse.
Key points:
introduction to predicates and quantifiers
Difficult points:
special terminology peculiar to probability
theory
Requirements:
1. 了解谓词和量词的基本表示方法。
语句“x大于3”分成两部分,第一部分,变量,是语 句的主语。 The second part-the predicate, “is greater than 3”refers to a property that the subject of the statement can have. 第二部分,谓语,“大于3”,指的是语句主语具有的 性质。
许多数学语句认为,性质对论域这个特定领域内变量 的所有值都成立。 Such a statement is expressed using a universal quantification. 这样的语句可用全称量词化表示。
The universal quantification of a propositional function is the proposition that assert that P(x) is true for all values of x in the universe of discourse. The universe of discourse specifies the possible values of the variable x. 命题函数的全称量词化是一个命题,认为P(x)对论域 中x的所有值P(x)都是真的。论域指定变量x的可能取 值.
2.11 数理逻辑入门 Elementary Mathematical Logic
New Words & Expressions:
assert 断言,主张 predicate 谓词
conjunction 合取
connective 连词 disjunction 析取
quantifier 量词
quantification 量词化 statement 语句
The event A is said to be certain if A=S, because then every outcome is automatically an element of A. 如果A=S,则称事件A是必然事件,因为每一个结果 必然是A中的元素。 Each event A has a probability P(A) assigned to it by the probability function P. 每一个事件A都通过概率函数P被赋予一个概率P(A)。
本概念来解释这种语句的含义。
※Because of the way probability is used in practice, it is convenient to imagine that each probability space (S,B,P) is associated with a real or conceptual experiment. 根据概率论实际应用的方式,把每一个概率空间 (S,B,P)想象成对应于一个实际的或者概念上的试验 是很方便的。
Assume we have a probability space (S,B,P) associated with an experiment. Let A be an event, and suppose the experiment is performed and that its outcome is x. (In other words, let x be a point of S.) 假设有一个对应于某一个试验的概率空间(S,B,P) 。A 是一个事件,假设试验已经完成,结果是x(换句话说, x是S中的一个点)。 This outcome x may or may not belong to the set A. If it does, we say that the event A has occurred. 结果x可能属于集合A,也可能不属于A。如果属于, 则称事件A发生。
11-B Quantifiers
When all the variables in a propositional function are assigned values, the resulting statement has a truth value. However, there is another important way, called quantification, to create a proposition from a propositional function. 当命题函数所有变量都赋值时,结果语句就有了真假 值。但是还有另外一种方式,称为量词化,可从命题 函数中得到命题。
Otherwise, we say that the event A has not occurred, in which case x A' , so the complementary event A' has occurred.
否则,称事件A不发生,那么余事件发生。 An event A is called impossible if A , because in this case no outcome of the experiment can be an element of A. 如果A等于空集,事件A称为不可能事件,因为在这 种情况下试验的任何结果都不是A中的元素。
Expressions of this sort have intuitive appeal and it is both pleasant and helpful to be able to employ such colorful language in mathematical discussions. 这种表达方式非常直观,在数学讨论中,乐于使用这 样有色彩的语言,而且使用起来很有帮助。 Before we can do so, however, it is necessary to explain the meaning of this language in terms of the fundamental concepts of our theory. 但是,在我们这么做之前,有必要根据我们理论的基
The universal set S can then be thought of as the collection of all conceivable outcomes of the experiment, as in the example of coin tossing discussed in the foregoing section. 全集S是试验中所有可能结果的集体,就像前面章节 讨论的掷硬币的例子。
2 . 掌握概率论基本的表示方法。
11-A Predicates
Statements involving variables, such as “x>3”, “x+y=3”, “x+y=z” are often found in mathematical assertion and in computer programs.
We can denote the statement “x is greater than 3” by P(x), where P denotes the predicate “is greater than 3” and x is the variable.
把语句“x大于3”记为P(x), 其中P表示谓词“大于3”, 而x是变量。 The statement P(x) is also said to be the value of the propositional function P at x. Once a value has been assigned to the variable x, the statements P(x) becomes a proposition and has a truth value. 语句P(x)也称为命题函数P在x点处的值。一旦赋予变 量x一个值,语句P(x)就成为一个命题,有了真假值。
New Words & Expressions event 事件 sample 样本
population 总体
probability 概率
statistics 统计学
In discussions involving probability, one often sees phrases from everyday language such as “two events are equally likely,” “an event is impossible,” or “an event is certain to occur.” 在讨论概率论时,会常常从日常用语中看到这样的语 句:两个事件是同等可能的,一个事件是不可能的, 一个事件肯定发生。