2018-2019秋季初一数学上期期末试卷及答案
2018-2019年秋季七年级上学期期末数学测试卷及答案
2018-2019年秋季七年级上学期期末数学测试卷考试时间:120分钟,满分:150分一、选择题(每小题4分,共40分).1.如果水库水位上升3m 记作+3m ,那么水库水位下降5m 记作( C )A.-3B.-2C.-5mD.+8m2.已知x = 2是关于x 的方程3x -4m = 8的解,则 m 的值是( B )A . 21B .-21C .2D . -23.下列各组数中,互为相反数的是( D )A .)3(--与3B .(-1)2与1 C .2-与2 D .-12与14.下列计算正确的个数是( B ) A.1个 B.2个 C.3个 D.0个 ①a 2+a 2=a 4; ②3xy 2-2xy 2=1; ③3ab -2ab =ab ; ④(-2)3-(-3)2=-17.5.如左图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( C )A.B.C.D.6.在灯塔O 处观测到轮船M 位于北偏西54°的方向,同时轮船N 在南偏东15°的方向,那么∠MON的大小为 ( C ) A .69° B .111° C .141° D .159°7.莆田的母亲河——木兰溪,木兰溪两岸综合走廊及景观工程的项目,起点为木兰溪上游的仙游县度尾镇中峰村,终点至涵江区宁海桥,总长约75公里,总投资约80亿元。
其中80亿元用科学记数法表示为( C ). A. 0.8×1010元 B. 80×108元 C. 8.0×109元 D. 8.0×1010元8.某商店换季促销,将一件标价为240元的T 恤8折售出,获利20%,则这件T 恤的成本为( B )A.144元B.160元C.192元D.200元 9.轮船沿江从P 港顺流行驶到Q 港,比从Q 港返回P 港少用3小时,若船速为26千米/时,水速为2千米/时,求P 港和Q 港相距多少千米.设P 港和Q 港相距x 千米.根据题意,可列出的方程是 ( A ) A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 10.在三角形ABC 中,AB =8,AC =9,BC =10.P 0为BC 边上的一点,在边AC 上取点P 1,使得CP 1=CP 0,在边AB 上取点P 2,使得AP 2=AP 1, 在边BC 上取点P 3,使得BP 3=BP 2,若P 0P 3=1,则CP 0的长度为( D ) A.4 B.6 C.4或5 D.5或6二.填空题(每小题4分,共24分)11.如图,钟表8时30分时,时针与分针所成的角的度数为____75°______. 12.若方程(m 2-1)x 2-mx -x +2=0是关于x 的一元一次方程, 则代数式|m -1|的值为______0_______13.如图,数轴上A 表示的数为1,B 表示的数为-3, 则线段AB 中点表示的数为 -1 .14.若多项式2(x 2-xy -3y 2)-(3x 2-axy +y 2)中不含xy 项,则a = 2 .15.规定一种新的运算x ⊗y=x ﹣y 2, 则﹣2 ⊗(-3)=_-11________ .16.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式是CH 4,乙烷的化学式是C 2H 6,丙烷的化学式是C 3H 8,……,设C (碳原子)的数目为n (n 为正整数),则它们的化学式都可以用下列哪个式子来表示_______C n H 2n +2 _____. 三.解答题:(共86分) 17.计算:(10分)(1)(-1)3-14×[2-(-3)2] . (2)⎝ ⎛⎭⎪⎫58-23×24+14÷⎝ ⎛⎭⎪⎫-123+|-22|.解:(1)原式= -1-14×(2-9)=-1+ 47=43(2)原式=19.18. (10分)解方程:(1)x -12(3x -2)=2(5-x ); (2)x +24-2x -36=1.解:(1)x =6. (2)x =0. 19.(8分)一个角的余角比这个角的21少30°,请你计算出这个角的大小. 解:设这个角的度数为x .由题意得:30)90(21=--x x 解得:x =80 答:这个角的度数是80°20.(8分)某中学计划从荣威公司购买A ,B 两种型号的小黑板,经洽谈,购买一块A 型小黑板比购买一块B 型小黑板多用20元,且购买5块A 型小黑板和4块B 型小黑板共需820元.求购买一块A 型小黑板、一块B 型小黑板各需多少元.解:设购买一块A 型小黑板需要x 元,则购买一块B 型小黑板需要(x -20)元,依题意得: 5x +4(x -20)=820,解得x =100, 则x -20=80.答:购买一块A 型小黑板需要100元,一块B 型小黑板需要80元.北O MN第6题图21.(8分)某教辅书中一道整式运算的参考答案破损看不见了,形式如图:(1)求破损部分的整式;(2)若|x -2|+(y +3)2=0,求破损部分整式的值.解:(1)设破损部分的整式为A ,根据题意得 A =-11x +8y 2+4(2x -y 2)-2(3y 2-2x )=-11x +8y 2+8x -4y 2-6y 2+4x=-2y 2+x .(2) ∵|x -2|+(y +3)2=0,∴x -2=0,y +3=0,解得x =2,y =-3, ∴原式=-18+2=-16.22.(8分)如图BD 平分∠ABC ,BE 把∠ABC 分成2∶5的两部分,∠DBE =21°,求∠ABC 的度数. 解:设∠ABE =2x °,则∠CBE =5x °,∠ABC =7x °.又∵BD 为∠ABC 的平分线,∴∠ABD =12∠ABC =72x °,∴∠DBE =∠ABD -∠ABE =72x °-2x °=32x °=21°.∴x =14,∴∠ABC =7x °=98°.23.(10分)如图,已知线段AB 上有两点C ,D ,且AC =BD ,M ,N 分别是线段AC ,AD 的中点,若AB=a cm ,AC =BD =b cm ,且a ,b 满足(a -10)2+⎪⎪⎪⎪⎪⎪b 2-4=0.(1)求AB ,AC 的长度;(2)求线段MN 的长度.解:(1)由题意可知 (a -10)2=0,⎪⎪⎪⎪⎪⎪b 2-4=0, ∴a =10,b =8,∴AB =10cm ,AC =8cm.(2)∵BD =AC =8cm , ∴AD =AB -BD =2cm.又∵M ,N 分别是AC ,AD 的中点, ∴AM =4cm ,AN =1cm. ∴MN =AM -AN =3cm.24.(12分)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2017年5月份,该市居民甲用电100千瓦时,交电费60元.一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时 a超过150千瓦时但不超过300千瓦时的部分 0.65 超过300千瓦时的部分0.9(1)上表中,a = ,若居民乙用电200千瓦时,应交电费 元;(2)若某用户某月用电量超过300千瓦时,设用电量为x 千瓦时,请你用含x 的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?解:(1) 0.6 122.5解析:∵100<150,∴100a =60,∴a =0.6.若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元).(2)当x >300时,应交的电费为150×0.6+(300-150)×0.65+0.9(x -300)=0.9x -82.5. (3)设该居民用电x 千瓦时,其当月的平均电价每千瓦时为0.62元, 当该居民用电处于第二档时,90+0.65(x -150)=0.62x ,解得x =250;当该居民用电处于第三档时,0.9x -82.5=0.62x ,解得x ≈294.6<300(舍去).综上所述,该居民用电不超过250千瓦时时,其当月的平均电价每千瓦时不超过0.62元.25.(12分)如图,点O 是直线AB 上一点,射线OA 1 , OA 2均从OA 的位置开始绕点O 顺时针旋转,OA 1旋转的速度为每秒30°,OA 2旋转的速度为每秒10°.当OA 2旋转6秒后,OA 1也开始旋转,当其中一条射线与OB 重合时,另一条也停止.设OA 1旋转的时间为t 秒.(1)用含有t 的式子表示∠A 1OA=______°,∠A 2OA=______°; (2)当t =________,OA 1是∠A 2OA 的角平分线;(3)若∠A 1OA 2=30°时,求t 的值. 解:(1)30t ;10(t+6)(2)1.2(3)①当OA 1在∠AOA 2的内部时,10(t+6)- 30t = 30 解得 t=1.5 ②当OA 1在∠AOA 2的外部时,30t - 10(t+6)= 30 解得 t=4.5 ∴t 为1.5或4.5. 答:t 的值为1.5或4.5.10.D 解析:设CP 0的长度为x,则CP 1=CP 0=x ,AP 2=AP 1=9-x ,BP 3=BP 2=x -1,BP 0=10-x ,∵P 0P 3=1,∴|10-x -(x -1)|=1,11-2x =±1,解得x =5或6.故选D.。
2018-2019学年七年级数学上册第一学期期末试卷及答案含有详细解析
2018~2019学年七年级数学上册第一学期期末试卷一、选择题1、若( )﹣(﹣2)=3,则括号内的数是( )A .﹣1B .1C .5D .﹣5 2、下列所有数中,最大的数是( )A .—4B .0C .—1D .3 3、若|m -3|+(n +2) 2=0,则m +2n 的值为( ).A .-4B .- 1C .0D .4 4、雨滴滴下来形成雨丝属于下列哪个选项的实际应用( )A .点动成线B .线动成面C .面动成体D .以上都不对 5、下列各组数中,互为相反数的是( )A .3与B .(﹣1)2与1C .﹣14与(﹣1)2D .2与|﹣2|6、的倒数是( )A .3B .C .-D .﹣3 7、下图中哪个图形经过折叠后可以围成一个棱柱( )A .B .C .D .8、代数式a 2﹣b1的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 的平方与b 的差的倒数 C .a 的平方与b 的倒数的差 D .a 与b 的差的平方的倒数 9、如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是( )……○…………○……A.B.C.D.10、下列各组代数式中,是同类项的共有()(1)32与23(2)﹣5mn与(3)﹣2m2n3与3n3m2(4)3x2y3与3x3y2A.1 组B.2 组C.3 组D.4 组二、填空题11、地球上陆地的面积约为149000000平方千米,把数据149000000用科学记数法表示为。
12、小明今年m岁,5年前小明_____岁。
13、中,底数是_____,指数是_____。
14、一个正方体的六个面上分别标有1、2、3、4、5、6,根据图中从各个方向看到的数字,解答下面的问题:“?”处的数字是_____。
三、计算15、计算:(1)(﹣32)﹣(﹣27)﹣(﹣72)﹣87 (2)16、求代数式的值(1)6x+2x2﹣3x+x2+1,其中 x=﹣5;(2)2(a2b+ab2)﹣2(a2b﹣1)﹣2ab2﹣2,其中 a=﹣2,b=2。
人教版2018-2019学年七年级上学期期末测试数学试卷(解析版)
期末测试卷一、选择题:每小题3分,共30分1. 2015的相反数是()A. B. ﹣2015 C. 2015 D. ﹣【答案】B【解析】分析:利用相反数的定义即可得结果.详解:2015的相反数是﹣2015.故选B.点睛:本题主要考查了相反数的定义,熟记定义是解答此题的关键.2. 在﹣4,0,2.5,|﹣3|这四个数中,最大的数是()A. ﹣4B. 0C. 2.5D. |﹣3|【答案】D【解析】分析:|﹣3|=3,再去比较﹣4,0,2.5,3这四个数即可得出结论.详解:∵|﹣3|=3,且有﹣4<0<2.5<3,∴最大的数是|﹣3|.故选D.3. 我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A. 0.21×108B. 21×106C. 2.1×107D. 2.1×106【答案】D【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:2100000=2.1×106,故选D.考点:科学记数法—表示较大的数.4. 下列方程为一元一次方程的是()A. y+3=0B. x+2y=3C. x2=2xD. +y=2【答案】A【解析】试题分析:一元一次方程是指只含有一个未知数,且未知数的最高次数为1次的整式方程.B选项含有两个未知数;C选项未知数的最高次数为2次;D选项不是整式.考点:一元一次方程的定义5. 已知∠A=65°,则∠A的补角等于()A. 125°B. 105°C. 115°D. 95°【答案】C【解析】∵∠A=65°,∴∠A的补角为180°-65°=115°,故选C.6. 下列各式正确的是()A. ﹣8+5=3B. (﹣2)3=6C. ﹣(a﹣b)=﹣a+bD. 2(a+b)=2a+b【答案】C【解析】A. ∵﹣8+5=-3 ,故不正确;B. ∵(﹣2)3=-8,故不正确;C. ∵﹣(a﹣b)=﹣a+b,故正确;D. ∵2(a+b)=2a+2b ,故不正确;故选C.7. 如图所示,有理数a、b在数轴上的位置如图,则下列说法错误的是()A. b﹣a>0B. a+b<0C. ab<0D. b<a【答案】A【解析】A. ∵b<a, ∴ b﹣a<0 ,故不正确;B. ∵b<0,a>0,, ∴ a+b<0 ,故正确;C. ∵b<0,a>0, ab<0 ,故正确;D. ∵b<0,a>0, b<a ,故正确;故选A.8. 将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A. B. C. D.【答案】D【解析】试题分析:根据直角梯形上下底不同得到旋转一周后上下底面圆的大小也不同,进而得到旋转一周后得到的几何体的形状.解:题中的图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.故选D.考点:点、线、面、体.9. 一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A. x(30﹣2x)平方厘米B. x(30﹣x)平方厘米C. x(15﹣x)平方厘米D. x(15+x)平方厘米【答案】C【解析】试题分析:由题意先根据长方形的周长公式表示出另一边的长,再根据长方形的面积公式求解即可.由题意得该长方形的面积是x(15-x)平方厘米,故选C.考点:长方形的周长和面积公式...... ...............10. 某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A. 赚16元B. 赔16元C. 不赚不赔D. 无法确定【答案】B【解析】试题分析:此类题应算出实际赔了多少或赚了多少,然后再比较是赚还是赔,赔多少、赚多少,还应注意赔赚都是在原价的基础上.解:设赚了25%的衣服的售价x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服的售价y元,则(1﹣25%)y=120,解得y=160元,则赔了160﹣120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人是赔了40﹣24=16元.故选B.考点:一元一次方程的应用.二、填空题:每小题4分,共24分11. 如果“节约10%”记作+10%,那么“浪费6%”记作:______.【答案】﹣6%.【解析】试题分析:明确“正”和“负”所表示的意义:节约用+号表示,则浪费一定用﹣表示,据此即可解决.解:因为节约10%记作:+10%,所以浪费6%记作:﹣6%.故答案为:﹣6%.考点:正数和负数.12. 按四舍五入法则去近似值:(1)2.086≈______(精确到百分位).(2)0.03445≈______(精确到0.001)【答案】(1). 2.09(2). 0.034【解析】试题分析:精确到百分位即是对千分位四舍五入,精确到0.001即是对0.0001位四舍五入.按四舍五入法则取近似值:2.096≈2.10(精确到百分位).-0.03445≈-0.034(精确到0.001).考点:近似数和有效数字点评:本题属于基础应用题,只需学生熟练掌握取近似数的方法,即可完成.13. 若﹣5x n y2与12x3y2m是同类项,则m=______,n=______.【答案】(1). 1(2). 3【解析】试题分析:根据同类项的定义(所含字母相同,相同字母的指数相同),列出方程,从而求出m,n的值.解:因为﹣5x n y2与12x3y2m是同类项,所以n=3,2=2m,解得:m=1,n=3.故答案为:1,3.点评:本题考查同类项的知识,属于基础题目,关键是掌握同类项所含字母相同,且相同字母的指数相同,这两点是易混点,同学们要注意区分.14. 已知5是关于x的方程3x﹣2a=7的解,则a的值为______.【答案】4【解析】∵关于x的方程3x﹣2a=7的解是5,∴3×5﹣2a=7,∴a=4.故答案为:4.15. 如图,AB,CD相交于点O,OE⊥AB,垂足为O,∠COE=44°,则∠AOD=______.【答案】134°【解析】试题分析:根据题意可得∠AOE=90°,则∠AOC=46°,则∠AOD=180°-∠AOC=180°-46°=134°.考点:角度的计算.16. 已知线段AB=acm,A1平分AB,A2平分AA1,A3平分AA2,…,A n平分AA n﹣1,则AA n=____cm.【答案】【解析】分析:根据题意,找出AA1,AA2,AA3与a的关系,再按照规律解答即可.详解:∵线段AB=acm,A1平分AB,A2平分AA1,A3平分AA2,∴AA1=a,AA2=a,AA n=()na.故答案为:()n a.点睛:本题主要考查两点间的距离,熟练找出规律是解答本题的关键.三、解答题:每小题6分,共18分17. 计算:﹣12014﹣6÷(﹣2)×|﹣|.【答案】0【解析】分析:原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.详解:原式=﹣1+6××=﹣1+1=0.点睛:本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.18. 如图,已知平面上有四个点A,B,C,D.(1)连接AB,并画出AB的中点P;(2)作射线AD;(3)作直线BC与射线AD交于点E.【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析.【解析】试题分析:(1)按要求画图即可;按要求画图即可;按要求画图即可;试题解析:(1)如图所示;如图所示;如图所示。
2018-2019学期人教版七年级上册数学期末考试题及答案
2018-2019学期人教版七年级上册数学期末考试题及答案一、选择题1. 下列数中是无理数的是:A. √2B. 3C. 0.333...D. -5答案:A2. 两个互为相反数的数,它们的和是:A. 0B. 1C. -1D. 2答案:A3. 下列哪个数是最小的?A. -3B. -1/2C. 0D. 1/3答案:A4. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 菱形答案:C5. 已知 a=5,b=3,则 a²+b²的值是:A. 34B. 32C. 29D. 26答案:C二、填空题1. 0.333... 的值是 ______。
答案:1/32. 一个数的相反数是 -4,则这个数是 ______。
答案:43. 1/2 × 2/3 × 3/4 × 4/5 = ______。
答案:1/54. 矩形的对角线长度是 10,则矩形的面积是 ______。
答案:505. 七年级上册数学期末考试的平均分是 80 分,全班有 50 人,则考试及格的人数至少是 ______。
答案:41三、解答题1. 解方程:2x - 5 = 3答案:x = 42. 已知一个正方形的边长是 6,求它的面积和周长。
答案:面积是 36,周长是 243. 计算:(-3)² × (-1/2)²答案:9/44. 判断:平行四边形的对角线互相平分。
答案:正确5. 已知 a=4,b=3,求 a² - b²的值。
答案:7四、应用题1. 小明的身高是 1.6 米,小华比小明高 0.2 米,小华的身高是多少?答案:1.8 米2. 一个长方形的长是 8,宽是 6,求它的面积和周长。
答案:面积是 48,周长是 283. 小明有 2.5 千克苹果,他想把这些苹果平均分给他的 5 个朋友,每个朋友能得到多少苹果?答案:0.5 千克4. 小刚有 3 个相同的正方形拼成的图形,每个正方形的边长是2,求这个图形的面积。
2018—2019学年度新人教版七年级数学第一学期期末试卷含有参考答案带解析
2018—2019学年度新人教版七年级数学第一学期期末试卷一、选择题1、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线.能解释这一实际问题的数学知识是( ) A .两点确定一条直线 B .两点之间线段最短C .垂线段最短D .在同一平面内,过一点有且只有一条直线与已知直线垂直2、向北行驶3 km ,记作+3 km ,向南行驶2 km 记作( )A .+2 kmB .-2 kmC .+3 kmD .-3 km 3、若使等式(-4)□(-6)=2成立,则□中应填入的运算符号是( ) A .+ B .- C .× D .÷ 4、下列运算正确的是( )A .5x -3x =2B .2a +3b =5abC .-(a -b)=b +aD .2ab -ba =ab5、如果以x =-5为方程的解构造一个一元一次方程,那么下列方程中不满足要求的是( )A .x +5=0B .x -7=-12C .2x +5=-5D .=-16、张东同学想根据方程10x +6=12x -6编写一道应用题:“几个人共同种一批树苗,________,求参与种树的人数.”若设参与种树的有x 人,那么横线部分的条件应描述为( )A .如果每人种10棵,那么缺6棵树苗;如果每人种12棵,那么剩下6棵树苗未种B .如果每人种10棵,那么剩下6棵树苗未种;如果每人种12棵,那么缺6棵树苗C .如果每人种10棵,那么剩下6棵树苗未种;如果每人种12棵,也会剩下6棵树苗未种D .如果每人种10棵,那么缺6棵树苗;如果每人种12棵,同样也是缺6棵树苗 7、在数轴上,两点M ,N 分别表示数m ,n ,那么M ,N 两点之间的距离等于( ) A .m +n B .m -n C .|m +n| D .|m -n|8、在同一平面上,若∠BOA =60.3°,∠BOC =20°30′,则∠AOC 的度数是( ) A .80.6° B .40° C .80.8°或39.8° D .80.6°或40°9、-7的倒数是( )A .7B .C .-7D .-10、如图,下面几何体,从左边看得到的平面图形是( )A .AB .BC .CD .D二、填空题11、据统计,2014年全国约有939万人参加高考,939万人用科学记数法表示为____________人。
人教版2018-2019学年七年级上册数学期末考题及答案
人教版2018-2019学年七年级上册数学期末考题及答案第一部分:选择题1. 以下哪个数是自然数?- A. -3- B. 0- C. 1- D. 1/2- 答案:C2. 简化下列算式:2(3x - 4) + 5(x + 2)- A. 11x + 2- B. 11x - 8- C. 11x + 8- D. 5x + 8- 答案:B3. 已知直角三角形的斜边长为5,其中一条直角边长为3,求另一条直角边长。
- A. 4- B. 8- C. 9- D. 16- 答案:4第二部分:填空题1. 用科学记数法表示2000000。
- 答案:2 × 10^62. 等差数列的首项为20,公差为5,求第10项。
- 答案:653. 一个正方形的周长为24 cm,求其面积。
- 答案:36 cm^2第三部分:解答题1. 某商店原价200元的商品打8折出售,求打折后的价格。
- 解答:打折后的价格为200 × 0.8 = 160元。
2. 某图书馆有5000本书,其中非教材类书籍占总数的四分之一,求非教材类书籍的数量。
- 解答:非教材类书籍的数量为5000 × (1/4) = 1250本。
3. 一辆汽车以每小时60公里的速度行驶,行驶2小时后,汽车的行驶距离是多少?- 解答:汽车行驶的距离为60 km/h × 2 h = 120公里。
以上是人教版2018-2019学年七年级上册数学期末考题及答案的部分内容。
*注意:以上答案仅供参考,具体以实际试卷为准。
*。
人教版七年级上册数学期末试题及答案(2018-2019学年)
人教版七年级上册数学期末试题及答案(2018-2019学年)一、选择题1. 如果 \(a^3 = -8\),那么实数 \(a\) 等于:A. \(-2\)B. \(2\)C. \(0\)D. \(3\){答案:A}2. 下列各数中是无理数的是:A. \(3\sqrt{2}\)B. \(\sqrt{9}\)C. \(0.333...\)D. \(2\sqrt{5}\){答案:A, D}3. 已知 \(a = 5\) 和 \(b = 12\),则 \(a^2 + b^2\) 等于:A. \(119\)B. \(121\)C. \(125\)D. \(132\){答案:B}4. 下列各数中是等差数列的是:A. \(2, 5, 8, 11, ...\)B. \(1, 3, 5, 7, ...\)C. \(2, 4, 8, 16, ...\)D. \(1, 1, 1, 1, ...\){答案:B}5. 如果 \(a:b = 2:3\),那么 \(a+b : b\) 等于:A. \(5:3\)B. \(2:3\)C. \(6:5\)D. \(8:7\){答案:A}二、填空题1. \(3^0 = _______){答案:1}2. 一个数的平方根叫做它的______。
{答案:算术平方根}3. 若 \(a:b = 4:5\),那么 \(a+b : b = _______)。
{答案:9}三、解答题1. 解方程 \(2x-5=3x+1\)。
{答案:x = -6}2. 已知 \(a=6\) 和 \(b=8\),求 \(a^2+b^2\)。
{答案:100}3. 计算 \(7+8\times(-2)\)。
{答案:-3}4. 判断 \(2^3 = 8\) 是否成立。
{答案:成立}5. 解不等式 \(3x-7>2x+1\)。
{答案:x>8}四、应用题1. 小明的身高是1.6米,小华的身高是1.5米,小明比小华高多少?{答案:0.1米}2. 一个长方形的长是10厘米,宽是5厘米,求它的面积和周长。
2018-2019学年度第一学期七年级期末考试数学试卷参考答案
2018-2019学年度第一学期七年级期末考试数学试卷参考答案二、填空题(本大题共 5 小题,每小题4分,满分20分)11. 两点确定一条直线 12. 百 13. 4232'︒ 14.1003xx += 15. 60°或120°三、解答题(本大题共8小题,满分90分)16.(6分)计算题: 232123(2)(6)()3-+⨯---÷-解:原式=143(8)(6)9-+⨯---÷ (4分)42454=--+=26 (6分)17.(12分)解方程或方程组:(1)解方程:2131168x x ---= (2)解方程组:633594x y x y -=-⎧⎨-=⎩解:4(21)3(31)24x x ---= (3分) 解:将①⨯3得1899x y -=- ③ 25x -= 将③-②得1313x =-,解得1x =- (3分) 25x = (6分) 将1x =-代入②解得1y =- (4分) 所以此方程组解为11x y =-⎧⎨=-⎩(6分) 注:其他方法也可18.(10分)先化简,再求值:解:原式=223[223]x y xy xy x y xy --++=xy - (6分)当13,3x y ==-时,原式=13()13-⨯-= (10分)19.(10分)解:(1)∵多项式222,6,A x xy B x xy =-=+-∴2244(2)(6)A B x xy x xy -=--+-22846x xy x xy =---+2756x xy =-+ (6分)(2)∵由(1)知,24756A B x xy -=-+∴当1,2x y ==-时,原式=27151(2)6⨯-⨯⨯-+=7106++=23 (10分)20.(12分)解:设购得茶壶x 只,则需茶杯(30-x )只,根据题意得: (1分) 153[(30)]171x x x +--= (6分) 解得 x =9答:小王买了茶壶9只。
人教版2018-2019学年七年级上册数学期末试题解析及答案
人教版2018-2019学年七年级上册数学期末试题解析及答案一、选择题1. 下列数中是无理数的是:A. √2B. 3/4C. 0D. 2^3{content}解析:选项A√2是无理数,其余选项为有理数。
答案:A2. 如果 |x - 5| = 3,那么 x 的值是:A. 2B. 8C. -2D. -8{content}解析:根据绝对值的定义,我们可以得到两个方程:x - 5 = 3 或 x - 5 = -3。
解得 x = 8 或 x = 2。
答案:B二、填空题3. 若 a:b = 2:3,则 (3a):(5b) = ______:______。
{content}解析:由比例的性质,我们可以得到 (3a):(5b) = (3×2):(5×3) = 6:9 = 2:3。
答案:2:34. 已知一组数据的方差为9,那么这组数据的标准差为______。
{content}解析:标准差是方差的平方根,所以标准差为√9 = 3。
答案:3三、解答题5. 解方程 2x - 5 = 3x + 1。
{content}解析:将方程化简,得 x = -6。
答案:x = -66. 在三角形 ABC 中,a = 8, b = 10, ∠A = 30°,求∠B。
{content}解析:根据正弦定理,我们有 sinA/a = sinB/b。
代入已知值,得 sinB = b*sinA/a = 10*(1/2)/8 = 5/8。
因为 b > a,所以∠B为锐角,故 sinB = 5/8。
利用反正弦函数,得∠B ≈ 36.87°。
答案:∠B ≈ 36.87°。
2018-2019学年度人教版七年级上册数学期末试卷与答案
2018-2019学年度人教版七年级上册数学
期末试卷与答案
一、选择题
1. 甲、乙两个数相差1,且它们的和是11,那么甲、乙两个数分别是多少?
A. 5,6
B. 6,7
C. 7,8
D. 8,9
解析:设甲为x,乙为x+1,根据题意,有x+x+1=11,解得
x=5,乙为6,所以答案选A。
2. 某数的2倍减去5等于13,这个数是多少?
A. 8
B. 9
C. 10
D. 11
解析:设这个数为x,根据题意,有2x-5=13,解得x=9,所以答案选B。
...
二、填空题
1. 一个数的3倍加上5等于17,这个数是\_\_\_。
解析:设这个数为x,根据题意,有3x+5=17,解得x=4,所以答案是4。
2. 甲、乙两数的和是10,差是4,则甲、乙两数分别是\_\_\_和\_\_\_。
解析:设甲为x,乙为y,根据题意,有x+y=10,x-y=4,解这个方程组,得到x=7,y=3,所以答案是7和3。
...
三、解答题
1. 请计算:\(\frac{3}{4} \times \frac{5}{6}\)。
解析:两个分数相乘,只需要将分子相乘,分母相乘,得到\(\frac{3}{4} \times \frac{5}{6} = \frac{3 \times 5}{4 \times 6} =
\frac{15}{24}\),所以答案是\(\frac{15}{24}\)。
2. 请将分数\(\frac{7}{8}\)化为小数。
解析:将分子7除以分母8,得到小数0.875,所以答案是0.875。
...。
20182019人教版七年级数学上册期末试卷及答案(10套)
1
A、0
2018-2019 人教版七年级数学上册期末试卷及答案 (10 套 )
B、- 1
C、3
D、5
9、若 x + y <0, x y <0, x > y ,则有( ).
A . x >0, y <0 , x 绝对值较大
B. x >0, y <0 , y 绝对值较大
C. x <0, y >0 , x 绝对值较大
a=-
1 ,b
=
1
2
3
四、解答题(本大题共 6 个小题, 每题 5 分,共 30 分;要求写出必要的解题过程和步骤 ) 23、出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果 规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:
+15,-3,+14, -11, +10,-12. (1)将最后一名乘客送达目的地时,小石距下午出发地点的距离是多少千 米? (2)若汽车耗油量为 a 升 / 千米,这天下午汽车耗油共多少升?
7
10
7
6
B. 2.5 10 C. 2.5 10
5
D. 25 10
5、已知代数式 3y2- 2y+6 的值是 8,那么 3 y2- y+1 的值是 2
()
A .1 B
.2
C
.3
D
.4
6、2、在│ -2 │,- │ 0│,( -2 )5,- │ -2 │,-( -2 )这 5 个数中负数共有
()
A. 1 个 B . 2 个 C . 3 个 D . 4 个
线段 DC= .
18.钟表在 3 点 30 分时,它的时针和分针所成的角是
人教版2018-2019学年七年级上册数学期末考卷及解答
人教版2018-2019学年七年级上册数学期末考卷及解答一、选择题(每题4分,共40分)1. 下列数中,是无理数的是:A. √3B. 0.333…C. 3/2D. -5解答:选项A是无理数,因为√3不能表示为两个整数的比。
2. 如果 |x - 5| = 3,那么 x 的值是:A. 2B. 8C. -2D. -8解答:|x - 5| = 3 可以表示为两个方程:x - 5 = 3 或 x - 5 = -3。
解这两个方程,得到 x = 8 或 x = 2。
3. 已知一组数据的方差是9,那么这组数据的标准差是:A. 3B. 9C. √9D. √16解答:标准差是方差的平方根,所以标准差是√9 = 3。
4. 下列哪个数是函数 y = 2x + 3 的反函数?A. y = 2x - 3B. y = 3x + 2C. y = x + 3D. y = x/2解答:要找到原函数的反函数,我们需要交换 x 和 y 然后解方程。
原函数是 y = 2x + 3,交换 x 和 y 得到 x = 2y + 3。
解这个方程得到 y = (x - 3)/2,所以反函数是 y = (x - 3)/2。
5. 在直角坐标系中,点 (2, -1) 关于 y 轴的对称点是:A. (-2, -1)B. (-2, 1)C. (2, 1)D. (2, -1)解答:关于 y 轴对称的点的 x 坐标是原点的 x 坐标的相反数,y 坐标不变。
所以,点 (2, -1) 关于 y 轴的对称点是 (-2, -1)。
6. 若平行四边形 ABCD 的对角线交于点 E,已知 AB = 4,BC = 5,那么 AC 的长度是:A. 3B. 7C. √(4^2 + 5^2)D. 2√(4^2 + 5^2)解答:根据平行四边形的性质,对角线 AC 和 BD 互相平分。
所以,EC = DC = 1/2 AC。
根据勾股定理,AC = √(AB^2 + BC^2) = √(4^2 + 5^2) = √(16 + 25) = √41。
最新2018-2019年七年级上期末数学试卷含答案解析
七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.如果股票指数上涨30点记作+30,那么股票指数下跌20点记作()A. −20B. +20C. −10D. +102.如图是由一些大小相同的小正方体堆成的几何体,则该几何体的左视图是()A. B. C. D.3.已知地球围绕太阳公转的轨道半长径约为150000000km,这个数据用科学记数法表示为()A. 15×107kmB. 1.5×107kmC. 1.5×108kmD. 0.15×109km4.小明父亲拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是()A. (4a+2b)米B. (5a+2b)米C. (6a+2b)米D. (a2+ab)米5.下列两种现象:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动;②过马路时,行人选择横穿马路而不走人行天桥其中可用“两点之间线段最短”来解释的现象是()A. ①B. ②C. ①②D. 都不可以6.若关于x的方程3x+a+4=0的解是x=−1,则a的值等于()A. −1B. 1C. −7D. 77.在下列调查方式中,较为合适的是()A. 为了解深圳市中小学生的视力情况,采用普查的方式B. 为了解龙华区中小学生的课外阅读习惯情况,采用普查的方式C. 为了解某校七年级(1)班学生期末考试数学成绩情况,采用抽样调查的方式D. 为了解我市市民对社会主义核心价值观的内容的了解情况,采用抽样调查的方式8.2017年,深圳市顺利获评为全国文明城市,为此小颖特别制作了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字相对的字是()A. 全B. 城C. 市D. 明9.空气污染物主要包括可吸入颗粒物(PM10)、细颗粒物(PM2.5),臭氧/二氧化硫、氮氧化物、一氧化碳六类,为了刻画每一类污染物所占的比例,最适合使用的统计图是()A. 折线统计图B. 条形统计图C. 扇形统计图D. 以上均可以10.已知有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()>0A. a+b<0B. a−b<0C. ab>0D. ab11.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A. 9x−7x=1B. 9x+7x+1C. 17x+19x=1 D. 17x−19x=112.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36∘B. 45∘C. 60∘D. 72∘二、填空题(本大题共4小题,共12.0分)13.计算:(−1)2018的结果是______14.若−4x a+5y3+x3y b=3x3y3,则ab的值是______.15.已知数轴上的A、B两点所表示的数分别为−4和7,C为线段AB的中点,则点C所表示的数为______16.用火柴棒按如图所示的方式搭出新的图形,其中第1个图形有6个正方形,第2个图形有11个正方形,第3个图形有16个正方形,则第n个图形中正方形的个数为______.三、计算题(本大题共4小题,共24.0分)17.计算:(1)22+(−33)−4×(−11)(2)|−36|×(34−56)+(−8)÷(−2)218.(1)化简:(2a2b−6ab)−3(−ab+a2b)(2)李老师让同学们计算“当a=−2017,b=2018时,代数式3a2+(ab−a2)−2(a2+12ab−1)的值”,小亮错把“a=−2017,b=2018”抄成了“a=2017,b=−2018”,但他最终的计算结果并没错误,请问是什么原因呢?19.解方程:(1)2(x−3)+3(x−1)=6(2)x+12−2x−36=120.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(−4)❈(−3)=+7;(−5)❈(+3)=−8;(+6)❈(−7)=−13;(+8)❈0=8;0❈(−9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,______.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,______.(2)计算:[(−2)❈(+3)]❈[(−12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)”四、解答题(本大题共3小题,共24.0分)21.为了解深圳市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四个等级进行统计,并将统计结果绘制成了如下两幅不完整的统计图(图1、图2),请根据图中的信息解答下列问题.(1)这次调查的市民人数为______人,图2中,n=______(2)补全图1中的条形统计图;(3)在图2中的扇形统计图中,表示“C.基本了解”所在扇形的圆心角度数为______度;(4)据统计,2017年深圳市约有市民2000万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有______万人22.如图,已知不在同一条直线上的三点A、B、C(1)按下列要求作图(用尺规作图,保留作图痕迹)①分别作直线BC、射线BA、线段AC;②在线段BA的延长线上作AD=AC−AB(2)若∠CAD比∠CAB大100∘,则∠CAB的度数为______.23.列方程解应用题:(1)“自由骑”共享单车公司委托甲、乙两家公司分别生产一批数量相同的共享单车,已知甲公司每天能生产共享单车100辆,乙公司每天能生产共享单车70辆,甲公司比乙公司提前3天完成任务,请问乙公司完成任务需要多少天?(2)元旦期间,天虹商场用2000元购进某种品牌的毛衣共10件进行销售,每件毛衣的标价为400元,实际销售时,商场决定对这批毛衣全部按如下的方式进行打折销售:一次性购买一件打8折,一次性购买两件或两件以上,都打6折,商场在销售完这批毛衣后,发现仍能获利44%①该商场在售出这批毛衣时,属于“一次性购买一件毛衣”的方式有多少件?②小颖妈妈计划在元旦期间在天虹商场购买3件这种品牌的毛衣,请问她有哪几种购买方案?哪一种购买方案最省钱?请说明理由.答案和解析【答案】1. A2. D3. C4. B5. B6. A7. D8. B9. C10. B11. C12. D13. 114. −615. 1.516. 5n+117. 解:(1)原式=−11+44=33;(2)原式=36×(−112)+(−8)÷4=−3+(−2)=−5.18. 解:(1)原式=2a2b−6ab+3ab−3a2b=−a2b−3ab;(2)原式=3a2+ab−a2−2a2−ab+2=2,所以无论a、b为何值时,原式的都为2,因此小亮虽然抄错了a、b的值,但只要结果为2,都正确.19. 解:(1)2(x−3)+3(x−1)=62x−6+3x−3=62x+3x=6+6+35x=15x=3;(2)x+12−2x−36=13(x+1)−(2x−3)=63x+3−2x+3=63x−2x=6−3−3x=020. 同号得正、异号得负,并把绝对值相加;都得这个数的绝对值21. 1000;35;72;34022. 40∘23. 解:(1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据题意得:100(x−3)=70x,解得:x=10.答:乙公司完成任务需要10天.(2)①设属于“一次性购买一件毛衣”的方式有x件,=44%,根据题意得:0.8×400x+0.6×400(10−x)−20002000解得:x=6.答:设属于“一次性购买一件毛衣”的方式有6件.②共有三种购买方案:方案一:每次购买1件,共需400×0.8×3=960(元);方案二:一次购买1件,另一次购买2件,共需400×0.8+400×0.6×2=800(元);方案三:一次性购买3件,共需400×0.6×3=720(元).∵960>800>720,∴一次性购买3件最省钱.【解析】1. 解:如果股票指数上涨30点记作+30,那么股票指数下跌20点记作−20,故选:A.根据正数和负数表示相反意义的量,股票指数上涨记为正,可得股票指数下跌的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2. 解:左视图有2列,每列小正方形数目分别为2,1,故选:D.读图可得,左视图有2列,每列小正方形数目分别为2,1.此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.3. 解:150000000km用科学记数法表示为1.5×108km,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:依题意得:2(a+b)+3a=5a+2b.故选:B.根据矩形周长公式进行解答.考查了列代数式.解题的关键是弄清楚该窗户所含有棱的条数和对应的棱长.5. 解:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,不能用“两点之间线段最短”来解释,②过马路时,行人选择横穿马路而不走人行天桥,可用“两点之间线段最短”来解释.故选:B.直接利用两点之间线段最短分析得出答案.此题主要考查了线段的性质,正确把握线段的性质是解题关键.6. 解:把x=−1代入3x+a+4=0得,−3+a+4=0,解得a=−1.故选:A.把x=−1代入3x+a+4=0得到关于a的方程,然后解方程即可.本题考查了一元一次方程的解,熟悉等式的性质是解题的关键.7. 解:A、了解深圳市中小学生的视力情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;B、了解龙华区中小学生的课外阅读习惯情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;C、了解某校七年级(1)班学生期末考试数学成绩情况,比较容易做到,适于全面调查,采用普查,故本选项不符合题意;D、了解我市市民对社会主义核心价值观的内容的了解情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项符合题意.故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8. 解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“全”与“市”相对,“文”与“城”相对,“明”与“国”相对,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 解:根据题意,得为了刻画每一类污染物所占的比例,结合统计图各自的特点,应选择扇形统计图.故选:C.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.本题考查扇形统计图、折线统计图、条形统计图各自的特点.10. 解:根据图示知:a<0<b,|a|<|b|;∴a+b>0,a−b<0,ab<0,ab<0.故选:B.根据数轴上a、b的位置可以判定a与b大小与符号;然后据此解答.本题考查了数轴,从a小于0,到b大于0,其积小于0,从而求得.11. 解:由题意可得,1 7x+19x=1,故选:C.根据题意可以列出相应的方程,从而可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.12. 解:∵∠AOB=90∘,∠COD=90∘,∴∠AOB+∠COD=180∘,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180∘,∴∠AOD+∠BOC=180∘,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180∘,∴∠BOC=36∘,∵OE为∠BOC的平分线,∠BOC=18∘,∴∠COE=12∴∠DOE=∠COD−∠COE=90∘−18∘=72∘,故选:D.根据∠AOD+∠BOC=180∘,∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD−∠COE即可解答.本题考查了角的计算,解决本题的关键是明确∠AOD+∠BOC=180∘.13. 解:(−1)2018的结果是1;故答案为:1根据有理数乘方计算即可.此题考查有理数的乘方,关键是根据有理数乘方的法则解答.14. 解:−4x a+5y3+x3y b=3x3y3,a+5=3,b=3,a=−2,ab=−2×3=−6,故答案为:−6.根据合并同类项得出a+5=3,b=3,求出a、b的值,再代入求出即可.本题考查了合并同类项,能求出a、b的值是解此题的关键.15. 解:∵数轴上A,B两点所表示的数分别是−4和7,(−4+7)=1.5.∴线段AB的中点所表示的数=12故答案为:1.5.根据A、B两点所表示的数分别为−4和7,利用中点公式求出线段AB的中点所表示的数即可.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16. 解:∵第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……∴第n个图形中正方形的个数为5n+1,故答案为:5n+1.由第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……据此可得.本题主要考查图形的变化规律,解题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17. (1)先计算乘法,再计算加法即可得;(2)根据有理数混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18. (1)先去括号,再合并同类项可得;(2)先去括号、合并同类项化简原式,据此可得.本题主要考查整式的加减,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.19. (1)去括号、移项、合并同类项,系数化成1即可求解.(2)去分母、去括号、移项、合并同类项,系数化成1即可求解.本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20. 解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(−5)❈12=−17;(3)加法的交换律仍然适用,例如:(−3)❈(−5)=8,(−5)❈(−3)=8,所以(−3)❈(−5)=(−5)❈(−3),故加法的交换律仍然适用.(1)首先根据❈(加乘)运算的运算法则进行运算的算式,归纳出❈(加乘)运算的运算法则即可;然后根据:0❈(+8)=8;(−6)❈0=6,可得:0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,等于这个数的绝对值.(2)根据(1)中总结出的❈(加乘)运算的运算法则,以及有理数的混合运算的运算方法,求出[(−2)❈(+3)]❈[(−12)❈0]的值是多少即可.(3)加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用,并举例验证加法交换律适用即可.此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意加法运算定律的应用.21. 解:(1)这次调查的市民人数为:20÷20%=1000(人);×100%=28%,∵m%=2801000n%=1−20%−17%−28%=35%,∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补图如下:(3)基本了解”所在扇形的圆心角度数为:360∘×20%=72∘;故答案为:72;(4)根据题意得:2000×17%=340(万人),答:估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有340万人;故答案为:340.(1)根据C类的人数和所占的百分比求出调查的总人数,再根据A类的人数求出A类所占的百分比,从而求出n的值;(2)根据求出的总人数和B类所占的百分比即可求出B类的人数,从而补全统计图;(3)用360∘乘以“C.基本了解”所占的百分比即可;(4)用2017年深圳市约有的市民乘以“D.不太了解”所占的百分比即可得出答案.本题主要考查了条形统计图以及扇形统计图的运用,解题时注意:从条形图可以很容易看出数据的大小,便于比较.从扇形图上可以清楚地看出各部分数量和总数量之间的关系.22. 解:(1)①如图,直线BC、射线BA、线段AC为所作;②如图,线段AD为所作;(2)∵∠CAD−∠CAB=100∘,∠CAD+∠CAB=180∘,∴2∠CAB=80∘,∴∠CAB=40∘.故答案为40∘.(1)①利用几何语言画出对应几何图形;②先在AC上截取AB得到AC−AB,然后在线段BA的延长线上截取AD,使AD=AC−AB;(2)利用邻补角的定义得到∠CAD+∠CAB=180∘,再加上已知条件∠CAD−∠CAB= 100∘,然后通过解方程组得到∠CAB的度数.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23. (1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据工作总量=工作效率×工作时间结合该批共享单车数量相同,即可得出关于x的一元一次方程,解之即可得出结论;(2)①设属于“一次性购买一件毛衣”的方式有x件,根据利润率=(销售收入−成本)÷成本,即可得出关于x的一元一次方程,解之即可得出结论;②由购买该品牌毛衣的数量为3件,可得出共三种购买方案,分别求出三种方案所需费用,比较后即可得出结论.本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)①找准等量关系,正确列出一元一次方程;②分别求出三种购买方案的费用.。
2018-2019学年人教版七年级上册数学期末试卷及解析
2018-2019学年人教版七年级上册数学期末试卷及解析本试卷分为选择题、填空题、解答题三个部分,涵盖了人教版七年级上册数学的主要知识点,包括有理数、整式、方程、不等式、函数等。
一、选择题(每题4分,共20分)1. 下列数中,最小的数是______。
A. -3B. -1C. 1D. 32. 若 \(a+b=5\),且 \(a-b=1\),则 \(a^2-b^2\) 的值为______。
A. 18B. 20C. 22D. 243. 解方程 \(2x-3=7\) 的解为______。
A. 5B. -5C. 2D. -24. 若 \(a>b\),则下列不等式正确的是______。
A. \(a+1>b+1\)B. \(a-1<b-1\)C. \(a^2>b^2\)D. \(ab>0\)5. 已知函数 \(y=2x+1\),若 \(x=3\),则 \(y\) 的值为______。
A. 7B. 8C. 9D. 10二、填空题(每题4分,共20分)1. 若 \(a=3\),\(b=4\),则 \(a^2+b^2\) 的值为______。
2. 解方程 \(3x-7=2x+11\) 的解为______。
3. 下列数中,最大的数是______。
A. \(-2\sqrt{3}\)B. \(2\sqrt{3}\)C. \(-3+2\sqrt{3}\)D. \(3-2\sqrt{3}\)4. 已知函数 \(y=x^2-3x+2\),若 \(y=0\),则 \(x\) 的值为______。
5. 若 \(a>b\),且 \(a-b=3\),则 \(a+b\) 的值为______。
三、解答题(每题10分,共30分)1. 解方程组:\[\begin{cases}x+y=8 \\x-y=3\end{cases}\]2. 已知函数 \(y=2x+1\),求 \(x=5\) 时 \(y\) 的值。
3. 计算:\[(3a-2b)(2a+4b)\]4. 解不等式组:\[\begin{cases}2x-3<7 \\x-4>2\end{cases}\]答案与解析一、选择题1. A. -3解析:负数都小于正数,所以 A 选项正确。
2018-2019学年七年级上学期期末考试数学试题(解析版)
2018-2019学年七年级上学期期末考试数学试题一、选择题(本大题共10小题,共30.0分)1.的相反数是A. B. C. 3 D.【答案】C【解析】解:.故选:C.根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.下列方程属于一元一次方程的是A. B. C. D.【答案】D【解析】解:A、不是一元一次方程,故本选项不符合题意;B、不是一元一次方程,故本选项不符合题意;C、不是一元一次方程,故本选项不符合题意;D、是一元一次方程,故本选项符合题意;故选:D.根据一元一次方程的定义逐个判断即可.本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.3.在2018年的国庆假期里,我市共接待游客4435000人次,数4435000用科学记数法可表示为A. B. C. D.【答案】B【解析】解:数4435000用科学记数法可表示为.故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4.给出四个数0,,,,其中最小的数是A. B. C. 0 D.【答案】B【解析】解:四个数0,,,中,最小的数是,故选:B.根据有理数的大小比较法则得出即可.本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.5.下列各式正确的是A. B. C. D.【答案】D【解析】解:A.,此选项计算错误;B.,此选项计算错误;C.,此选项计算错误;D.,此选项计算正确;故选:D.根据算术平方根和立方根及有理数的乘方的定义逐一计算可得.本题主要考查立方根,解题的关键是熟练掌握算术平方根和立方根及有理数的乘方的定义.6.如图,将一三角板按不同位置摆放,其中 与 互余的是A. B.C. D.【答案】C【解析】解:C中的 ,故选:C.根据余角的定义,可得答案.本题考查了余角,利用余角的定义是解题关键.7.若单项式与单项式是同类项,则的值为A. 1B. 0C.D.【答案】D【解析】解:单项式与单项式是同类项,,,解得,,,则,故选:D.直接利用同类项的定义得出关于m,n的等式进而得出答案.此题主要考查了同类项,正确掌握同类项的定义是解题关键.8.已知,则代数式的值为A. B. C. D.【答案】A【解析】解:,,故选:A.将代入,计算可得.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为A. B. C. 9a D.【答案】C【解析】解:由题意可得,原数为:;新数为:,故原两位数与新两位数之差为:.故选:C.分别表示出愿两位数和新两位数,进而得出答案.此题主要考查了列代数式,正确理解题意得出代数式是解题关键.10.已知:有公共端点的四条射线OA,OB,OC,OD,若点,,,如图所示排列,根据这个规律,点落在A. 射线OA上B. 射线OB上C. 射线OC上D. 射线OD上【答案】A【解析】解:由图可得,到顺时针,到逆时针,,点落在OA上,故选:A.根据图形可以发现点的变化规律,从而可以得到点落在哪条射线上.本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共10小题,共30.0分)11.如果向东走60m记为,那么向西走80m应记为______【答案】【解析】解:如果向东走60m记为,那么向西走80m应记为.故答案为:.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12. 的补角是______.【答案】【解析】解: .故答案为: .利用补角的意义:两角之和等于,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.此题考查补角的意义,以及度分秒之间的计算,注意借1当60.13.16的算术平方根是______.【答案】4【解析】解:,.故答案为:4.根据算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义一个正数的算术平方根就是其正的平方根.14.若,则a应满足的条件为______.【答案】【解析】解:,,故答案为:.根据绝对值的定义和性质求解可得.本题主要考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.15.如图所示,,,BP平分 则______度【答案】60【解析】解:, ,,平分 ,.故填60.本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.16.若关于x的方程的解为最大负整数,则a的值为______.【答案】2【解析】解:最大负整数为,把代入方程得:,解得:,故答案为:2.求出最大负整数解,再把代入方程,即可求出答案.本题考查了有理数和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.17.如图,在数轴上点A,B表示的数分别是1,,若点B,C到点A的距离相等,则点C所表示的数是______.【答案】【解析】解:数轴上点A,B表示的数分别是1,,,则点C表示的数为,故答案为:.先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.18.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x人,则可列方程______.【答案】.【解析】解:设应派往甲处x人,则派往乙处人,根据题意得:.故答案为:.设应派往甲处x人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.19.已知a,b是正整数,且,则的最大值是______.【答案】【解析】解:,,,,则原式,故答案为:根据题意确定出a的最大值,b的最小值,即可求出所求.此题考查了估算无理数的大小,熟练掌握估算的方法是解本题的关键.20.已知A,B,C是同一直线上的三个点,点O为AB的中点,,若,则线段AB的长为______.【答案】4或36【解析】解:,设,,若点C在线段AB上,则,点O为AB的中点,,若点C在点B右侧,则,点O为AB的中点,,故答案为:4或36分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.本题考查了两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.三、计算题(本大题共3小题,共18.0分)21.计算【答案】解:原式;原式.【解析】先计算括号内的减法,再进一步计算减法可得;先计算乘方和括号内的减法,再计算乘法可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.22.先化简,再求值:,其中,.【答案】解:原式当,时,原式.【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23.解方程【答案】解:,,;,,,,.【解析】移项、合并同类项、系数化为1可得;依次去分母、去括号、移项、合并同类项、系数化为1计算可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向形式转化.四、解答题(本大题共3小题,共22.0分)24.如图,已知四个村庄A,B,C,D和一条笔直的公路1.要修建一条途经村庄A,C的笔直公路,请在图中画出示意图;在中的公路某处修建超市Q,使得它到村庄B,D的距离之和最小. 请在图中画出超市Q的位置;请在图中画出从超市Q到公路的最短路线QP.【答案】解:直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;【解析】直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;本题考查作图应用与设计,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示如果这批水果当天售完,水果店除进货成本外,还需其它成本元,那么水果店销售完这批水果获得的利润是多少元?利润售价成本【答案】解:设甲种水果购进了x千克,则乙种水果购进了千克,根据题意得:,解得:,则.答:购进甲种水果20千克,乙种水果30千克;元.元.答:水果店销售完这批水果获得的利润是175元.【解析】设甲种水果购进了x千克,则乙种水果购进了千克,根据总价格甲种水果单价购进甲种水果质量乙种水果单价购进乙种水果质量即可得出关于x的一元一次方程,解之即可得出结论;根据总利润每千克甲种水果利润购进甲种水果质量每千克乙种水果利润购进乙种水果质量,净利润总利润其它销售费用,代入数据即可得出结论.本题考查了一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题的关键.26.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角如图1,若,则 是 的内半角.如图1,已知 , , 是 的内半角,则______;如图2,已知 ,将 绕点O按顺时针方向旋转一个角度至 ,当旋转的角度 为何值时, 是 的内半角.已知 ,把一块含有角的三角板如图3叠放,将三角板绕顶点O 以3度秒的速度按顺时针方向旋转如图,问:在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.【答案】【解析】解:是 的内半角, ,,,,故答案为:,,,是 的内半角,,,旋转的角度 为时, 是的内半角;在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角;理由:设按顺时针方向旋转一个角度 ,旋转的时间为t,如图1,是 的内半角, ,,,解得:,;如图2,是 的内半角, ,,,,;如图3,是 的内半角, ,,,,,如图4,是 的内半角, ,,,解得: ,,综上所述,当旋转的时间为或30s或110s或时,射线OA,OB,OC,OD能构成内半角.根据内半角的定义解答即可;根据内半角的定义解答即可;根据根据内半角的定义列方程即可得到结论.本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键.。
2018-2019学年度第一学期七年级数学期末考试试卷(解析版)
2018-2019学年度第一学期七年级数学期末考试试卷一、选择题(本大题共10小题,共40.0分)1.下列四个数中最小的数是A. B. 0 C. D.【答案】D【解析】解:,四个数中最小的数是.故选:D.有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.2.巢湖是中国五大淡水湖之一,位于安徽省中部,最大水容积达亿立方米,其中“亿”用科学记数法可表示为A. B. C. D.【答案】B【解析】解:“亿”用科学记数法可表示为,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.下列关系式正确的是A. B. C. D.【答案】C【解析】解:A、,错误;B、,错误;C、15^{\circ}5’'/>,正确;D、15^{\circ}5’'/>,错误;故选:C.根据,求得结果.本题考查了度分秒的换算,相对比较简单,注意以60为进制即可.4.“把弯曲的公路改直就可以缩短路程”,其中蕴含的数学道理是A. 经过两点有一条直线,并且只有一条直线B. 直线比曲线短C. 两点之间的所有连线中,直线最短D. 两点之间的所有连线中,线段最短【答案】D【解析】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.根据线段的性质解答即可.本题考查的是线段的性质,即两点之间线段最短.5.在数轴上点M表示的数为,与点M距离等于3个单位长度的点表示的数为A. 1B.C. 或1D. 或5【答案】C【解析】解:与点M距离等于3个单位长度的点在M右边时,该点表示的数是;与点M距离等于3个单位长度的点在M左边时,该点表示的数是,故选:C.与点M距离等于3个单位长度的点在M左右两边各一个,分别用M表示的数为加减3即可.本题考查数轴的相关知识运用分类讨论和数形结合思想是解答此类问题的关键.6.如图,若AB,CD相交于点O,,则下列结论不正确的是A. 与互为余角B. 与互为余角C. 与互为补角D. 与互为补角【答案】C【解析】解:,,,,,,故A、B、D选项正确,C错误.故选:C.直接利用垂直的定义结合互余以及互补的定义分析得出答案.此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.7.在解方程过程中,以下变形正确的是A. B. C.D.【答案】A【解析】解:去分母得:,去括号得:,故选:A.方程两边乘以6去分母得到结果,即可作出判断.此题考查了解一元一次方程,以及等式的性质,熟练掌握运算法则是解本题的关键.8.已知某商店出售了两个进价不同的书包,售价都是42元,其中一个盈利,另七年级个亏损,则在这次买卖中,商店的盈亏情况是A. 盈利元B. 盈利6元C. 不盈不亏D. 亏损6元【答案】D【解析】解:设盈利的书包的进价为x元个,亏损的书包的进价为y元个,根据题意得:,,解得:,,元.答:商店亏损6元.故选:D.设盈利的书包的进价为x元个,亏损的书包的进价为y元个,根据售价进价利润,即可得出关于的一元一次方程,解之即可得出的值,再利用利润售价进价即可找出商店的盈亏情况.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.9.如图所示,圆的周长为4个单位长度在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴上的原点重合,再将圆沿着数轴向右滚动,那么数轴上的1949所对应的点与圆周上字母所对应的点重合.A. AB. BC. CD. D【答案】D【解析】解:设数轴上的一个整数为x,由题意可知当时为整数,A点与x重合;当时为整数,D点与x重合;当时为整数,C点与x重合;当时为整数,B点与x重合;而,所以数轴上的1949所对应的点与圆周上字母D重合.故选:D.因为圆沿着数轴向右滚动,依次与数轴上数字顺序重合的是A、D、C、B,且A点只与4的倍数点重合,即数轴上表示4n的点都与A点重合,表示的数都与D点重合,依此按序类推.本题考查的是数轴上数字在圆环旋转过程中的对应规律,看清圆环的旋转方向是重点,关键要找到旋转过程中数字的对应方式.10.有理数a,b,c在数轴上的对应点如图所示,化简代数式,结果为A. B. C. D.【答案】C【解析】解:由数轴知,,,故选:C.由数轴知,,,去绝对值合并同类项即可.本题考查绝对值的性质确定绝对值符号内代数式的性质符号是解答此类题目的关键.二、填空题(本大题共6小题,共24.0分)11.如果向东走10米记作米,那么向西走15米可记作______米【答案】【解析】解:向东走10米记作米,向西走15米记作米.故答案为:.明确“正”和“负”所表示的意义,再根据题意作答.本题主要考查了正数与负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.若的值与2互为相反数,则x的值为______.【答案】【解析】解:的值与2互为相反数,,解得:.故答案为:.直接利用相反数的定义得出,进而得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.13.如图是某市2015年至2018年各年底私人汽车拥有量折线统计图从中可以看出该市私人汽车数量增加最多的年份是______年【答案】~【解析】解:由图可得,~年增加辆,~年增加辆,~年增加辆,故答案为:~.根据函数图象中的数据,可以求得该市私人汽车数量增加最多的年份.本题考查折线统计图,解答本题的关键是明确题意,利用数形结合的思想解答.14.m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,用代数式表示这个三位数为______.【答案】【解析】解:由题意,可得这个三位数为:.故答案为.根据m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,即m扩大了10倍,n不变,即可得出答案.主要考查了列代数式,掌握三位数的表示方法,能够用字母表示数是本题的关键.15.当时,代数式的值为3,则______.【答案】1【解析】解:根据题意,将代入,得:,则原式,故答案为:1.由已知条件得出,代入原式计算可得.本题主要考查代数式的求值,解题的关键是熟练掌握整体代入思想的运用.16.已知,,OM平分,ON平分,那么等于______度【答案】或80【解析】解:当射线OC在内部时,,OM平分,ON平分,,,;当射线OC在外部时,,OM平分,ON平分,,,,故答案为:或80.分射线OC在内部和外部两种可能来解答.本题考查角平分线的意义分类讨论是解答此题的关键.三、计算题(本大题共3小题,共24.0分)17.计算:【答案】解:原式.【解析】根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.先化简再求值:,其中,.【答案】解:原式当,时,原式【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.《九章算术》是中国古代数学的经典著作书中有一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六问人数、鸡价各几何?”意思是:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多出11文钱;如果每人出6文钱,又会缺16文钱问买鸡的人数、买鸡的钱数各是多少?请解答这个题目.【答案】解:设买鸡的人数为x,则鸡的钱数为文钱,根据题意,得:,解得:,则,答:买鸡的人数为9,则鸡的钱数为70文钱.【解析】设买鸡的人数为x,则鸡的钱数为文钱,根据“每人出6文钱,又会缺16文钱”列出方程求解可得.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.四、解答题(本大题共3小题,共32.0分)20.解方程.【答案】解:去括号得:,移项得:,合并同类项得:,系数化为1得:.【解析】依次去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.某中学为了了解学生参加体育运动的兴趣情况,从全校学生中随机抽取部分学生进行调查,对样本数据整理后画出如下统计图统计图不够完整请结合图中信息解答下列问题:此样本的样本容量为:______;补全条形统计图;求兴趣为“中”的学生所占的百分比以及对应扇形的圆心角.【答案】200【解析】解:样本容量为:,故答案为:200;兴趣为“高”的学生有:人,补全的条形统计图如右图所示;兴趣为“中”的学生所占的百分比是:,兴趣为“中”的学生对应扇形的圆心角是:.根据统计图中兴趣为“极高”的学生所占的百分比和人数,可以求得此样本的容量;根据中的结果,可以求得条形统计图中兴趣为“高”的学生人数,从而可以将条形统计图补充完整;根据统计图中的数据可以求得兴趣为“中”的学生所占的百分比以及对应扇形的圆心角.本题考查条形统计图、扇形统计图、总体、个体、样本、样本容量,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,数轴上点A表示的数为,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动设运动时间为t秒.,B两点间的距离等于______,线段AB的中点表示的数为______;用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;求当t为何值时,?若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.【答案】20 6【解析】解:点A表示的数为,点B表示的数为16,,B两点间的距离等于,线段AB的中点表示的数为故答案为:20,6点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,点P表示的数为:,点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,点Q表示的数为:,故答案为:,或6答:或6时,线段MN的长度不会变化,点M为PA的中点,点N为PB的中点,,由数轴上两点距离可求A,B两点间的距离,由中点公式可求线段AB的中点表示的数;由题意可求解;由题意可列方程可求t的值;由线段中点的性质可求MN的值不变.本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019秋季初一上期期末试卷
数学
时间:90分钟 分值:120分 得分:______
班级:____________学号:____________姓名:_____________
题目要求)
1.下列表述错误的是( )
A.-2的相反数是2
B.3的倒数是
3
1 C.-3()5--=
2 D.-11,0,4这三个数中最小的数是0 2.如图所示的几何体,从几何体的左面看,得到的图形是( )
3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源. 据报道,仅我国可燃冰预测远景资源量就超过了1 000亿吨油当量. 将1 000亿用科学计数法可表示为( ) A.3
101⨯ B.8
101000⨯ C.11
101⨯ D.14
101⨯ 4.若m n y x 123-与35y x m -是同类项,则m 和n 的值是( )
A.3和-2
B.-3和2
C.3和2
D.-3和-2
5.已知a ,b 在数轴上的位置如图所示,那么下列结论正确的是( ) A.0<-b a B.0>+b a
C.0<ab
D.
0>b
a
6.元旦期间,商场将某电器按进价提高30%后标价,再打八折(标价的80%)销售,每件售价为2 080元. 设该电器每件的进价是x 元,根据题意,下列方程正确的是( )
A.()2080%80%301=⨯+x
B.2080%80%30=⋅⋅x
C.x =⨯⨯%80%302080
D.%802080%30⨯=⋅x
7.钟表8时30分,时针与分针所成的角的度数为( )
A.30
B.60
C.75
D.90
8.在解方程2
1
33123+-=-+
x x x 时,去分母正确的是( ) A.()()131812218+-=-+x x x B.()()13123+-=-+x x x C.()()1181218+-=-+x x x D.()()1331223+-=-+x x x
9.如图所示,直线AB 与CD 相交于点O ,21∠=∠,若
140=∠AOE ,则
AOC ∠的度数为( )
A.40
B.60
C.75
D.100
10.一列长为150m 的火车,以15m/s 的速度通过600m 的隧道,从火车头进入隧
道口算起,这列火车完全通过隧道所用的时间是( )
A.60s
B.50s
C.40s
D.30s
二、填空题(本大题共8个小题,每小题3分,共24分. 把答案写在题中横线上)
11.多项式635222+-y x y x 是_____次_____项式,常数项是______. 12.若一个角的补角是这个角的4倍,则这个角的度数是_______. 13.若x ,y 互为相反数,a ,b 互为倒数,则代数式ab
y x 2
33-
+的值为______. 14.在一次实践操作中,小丁把两根长为20cm 的竹签绑接成一根35cm 长的竹签,则重叠部分的长度 为________cm.
15.一个圆柱的侧面展开图是相邻两边长分别为6和8的长方形,则该圆柱的底面半径为______. 16.按如图所示的程序计算,若开始输入的x 的值为-2,则最后输出的结果是______.
17.某特产商店销售甲、乙两种人参,甲种人参每棵100元,乙种人参每棵70元. 王叔叔用1200元在此特产商店购买这两种人参共15课,则王叔叔购买甲、乙两种人参的棵树分别为___________.
18.如图所示,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;···.按照此规律,第n 个图中正方形和等边三角形的个数之和为________.
三、解答题(本大题共7个小题,共66分. 解答应写出文字说明、证明过程或演算步骤)
19.(10分)计算:⑴()()5221342
2
2-+--⎪⎭
⎫ ⎝⎛-+-;
⑵()2.1814.33.2328.62.3514.3⨯--⨯+⨯-.
20.(6分)解方程:13
1
61221-+=---x x x .
21.(8分)先化简,再求值:⎪⎭
⎫ ⎝⎛--⎪⎭⎫ ⎝⎛
-mn n m mn 313212,其中()0232
=-+++mn n m .
B
A
C D
22.(10分)油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片. 如图所示,一个油桶由两片圆形铁片和一片长方形铁片相配套. 生产圆形铁片和长方形铁片的工人各为多少人时,才能使每小时生产的铁片恰好配套?
23.(10分)如图所示,已知cm AC 6.9=,BC AB 5
1
=
,AB CD 2=,求CD 的长.
24.(10分)如图所示,OE ,OD 分别平分AOB ∠,BOC ∠,若 90=∠AOB ,
70=∠EOD ,求B
O C ∠
的度数.
25.(12分)网络给人们带来了很多益处,某地开通了电话拨号入网, 收费方式有两种,用户可任选其一. A.计时制:0.05元/min ;
B.包月制:40元/月(限一部个人住宅电话上网).
此外,每一种上网方式都需加收通信费0.02元/min.
(1)某用户某月上网时间为x h ,请你分别写出两种收费方式下该用户应该支付的费用. (2)若某用户估计一个月内上网时间为15h ,你认为他采用哪种方式较为合算? (3)一个月上网多少小时,两种收费方式的收费一样多?
2018-2019秋季初一上期期末试卷
数学参考答案
选择题:DCCCC ACACB
11. 四 三 6 12. 36
13. -2 14. 5
15. ππ43或
16. 160 17. 5,10 18. 9n+3 19. -314 20. 2 21. 13
22. 生产圆形铁片的工人为24人,生产长方形铁片的工人为18人时,恰好每小时生产的铁片配套 23. 3.2cm 24. 50
25. ⑴A 计时制4.2x 元 B 计时制()402.1+元 ⑵包月制较划算
⑶3
40
=x h 时,两种收费方式一样多。