集合知识点与试题
集合考试题及答案
集合考试题及答案集合是数学中的一个基本概念,它在各个领域都有着广泛的应用。
以下是一些集合考试题及其答案,供参考:题目一:定义集合A={x | x是自然数,且1≤x≤10},集合B={y |y是偶数}。
求A∩B。
答案:集合A包含自然数1到10,即A={1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。
集合B包含所有的偶数。
A与B的交集是同时属于A和B的元素,即A∩B={2, 4, 6, 8, 10}。
题目二:集合C={x | x是整数,且-5≤x≤5},集合D={y | y是正整数}。
求C∪D。
答案:集合C包含从-5到5的所有整数,即C={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。
集合D包含所有的正整数,即D={1, 2, 3, ...}。
C与D的并集是包含C和D所有元素的集合,但去除重复元素。
因此,C∪D包含了从-5到无穷大的所有整数,由于题目限制,我们只列出到5,即C∪D={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。
题目三:集合E={x | x是奇数},集合F={y | y是3的倍数}。
求E∩F。
答案:集合E包含所有的奇数,集合F包含所有3的倍数。
E与F的交集是同时满足奇数和3的倍数的元素。
这些元素是3的奇数倍,即E∩F={3, 9, 15, ...},但题目中没有指定范围,我们只列出前三个元素。
题目四:集合G={x | x²=1},求G。
答案:集合G包含满足x²=1的所有x值。
解这个方程,我们得到x=1或x=-1。
因此,G={1, -1}。
题目五:集合H={x | x²-4=0},求H。
答案:集合H包含满足x²-4=0的所有x值。
解这个方程,我们得到x²=4,所以x=2或x=-2。
因此,H={2, -2}。
总结:集合论是数学的基础之一,它涉及到元素与集合之间的关系,包括交集、并集、补集等概念。
集合的分类考试题及答案
集合的分类考试题及答案一、选择题1. 以下哪个选项不属于集合的分类?A. 有限集B. 无限集C. 空集D. 非空集答案:D2. 集合A={1,2,3},集合B={3,4,5},那么集合A∩B是?A. {1,2,3}B. {3,4,5}C. {3}D. {1,2,4,5}答案:C3. 若集合A={x|x<5},集合B={x|x>3},则集合A∪B表示的数集是?A. {x|x<5}B. {x|x>3}C. {x|x<5或x>3}D. {x|x<5且x>3}答案:C二、填空题4. 集合{a, b, c}的子集个数是______。
答案:85. 若集合A={x|x^2-5x+6=0},则A的元素为______。
答案:{2, 3}三、解答题6. 已知集合A={1,2,3},集合B={3,4,5},求A∩B和A∪B。
答案:A∩B={3},A∪B={1,2,3,4,5}7. 集合M={x|x^2-x-6=0},请写出M的所有元素。
答案:M={-2, 3}8. 集合P={x|x是偶数},集合Q={x|x是奇数},求P∩Q。
答案:P∩Q=∅(空集)四、证明题9. 证明:若A⊆B且B⊆C,则A⊆C。
答案:根据子集的定义,若A⊆B,则A中的所有元素都属于B;同理,若B⊆C,则B中的所有元素都属于C。
因此,A中的所有元素也都属于C,所以A⊆C。
10. 证明:若A∩B=∅,则A∪B=A∪(C-B)。
答案:由于A∩B=∅,说明A和B没有共同元素。
因此,A∪B中的元素要么是A中的元素,要么是B中的元素。
而C-B表示C中不属于B的元素,所以A∪(C-B)中的元素要么是A中的元素,要么是C中不属于B的元素,这与A∪B相同,因此A∪B=A∪(C-B)。
集合的概念与运算例题及答案
集合的概念与运算例题及答案1 集合的概念与运算(一)目标:1.理解集合、子集的概念,能利用集合中元素的性质解决问题2.理解交集、并集、全集、补集的概念,掌握集合的运算性质,3.能利用数轴或文氏图进行集合的运算,掌握集合问题的常规处理方法.重点:1.集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用;2.交集、并集、补集的求法,集合语言、集合思想的运用.基本知识点:知识点1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素知识点2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合N ,{}Λ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {}Λ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {}Λ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *知识点3、元素与集合关系(隶属)(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ?注意:“∈”的开口方向,不能把a ∈A 颠倒过来写知识点4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)知识点5、集合与元素的表示:集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……例题精析1:1、下列各组对象能确定一个集合吗(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)2、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是_-2,0,2__ 3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素(B )3个元素(C )4个元素(D )5个元素4、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证:(1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,而x1不一定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2∵a ∈Z, b ∈Z,c ∈Z, d ∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d)2 ∈G ,又∵211b a x +==2222222b a b b a a --+- 且22222,2b a b b a a ---不一定都是整数,∴211b a x +==2222222b a b b a a --+-不一定属于集合G知识点6、集合的表示方法:(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素(2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x ∈A| P (x )} 含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或}23|{>-x x 所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}(3)、文氏图:用一条封闭的曲线的内部来表示一个集合的方法思考:何时用列举法何时用描述法},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗 }1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集例题精析2:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}③=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)}⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 巩固提升:1、数集{}21,,x x x -中元素x 所满足的条件是 2、已知{}23,21,1A a a a =--+,其中a R ∈,⑴若3A -∈,求实数a 的值;⑵当a 为何值时,集合A 的表示不正确。
高一集合知识点和练习
一、集合:1.定义: 把研究的对象统称为元素, 把一些元素组成的总体叫做集合。
2、集合与元素的关系:(1)如果a是集合A的元素,就说a属于集合A, 记作a A;(2)如果a不是集合A的元素, 就说a不属于集合A , 记作a A。
3.常见集合:(1)非负整数集(或自然数集) :N ;(2)正整数集合:或;(3)整数集合:Z, (4)有理数集合:Q;(5)实数集合:R.注意: (1)自然数集N含有0;(2)整数集Z、有理数Q、实数集R内排除0的集合分别表示为: Z*或Z+、Q*或Q+、R*或R+。
4、集合三要素: 确定性、互异性、无序性。
5、集合的分类: (1)有限集——含有有限个元素的集合。
(2)无限集——含有无限个元素的集合。
特别地, 不含任何元素的集合叫做空集, 记作。
6.集合的表示方法:(1)列举法——把集合中的元素一一列举出来的方法。
如{x1, x2, …, xn}。
(2)描述法: { x | p(x) }有时也可写成{ x: p(x) }。
(3)文氏图(又叫韦恩图): (4)区间表示法知识点二: 集合之间的关系1.子集:一般地, 对于两个集合A.B, 如果集合A中任意一个元素都是集合B中的元素, 则称集合A是集合B的子集。
记作:A B或(B A).性质: ①A(特别地);②A A ;③若A B,B C,则A C。
2.集合相等:只要构成两个集合的元素是一样的, 就称这两个集合相等性质: A=B A B,B A3.真子集: 如果集合,但存在元素,且,则称集合A是集合B的真子集..记作:A B A B,A B性质:①若A ,则有A。
②如果A B,B C, 那么A C。
③规定: 空集合是任何集合的子集.4.子集的性质①A A, 即任何一个集合都是它本身的子集②如果A B, B A, 那么A B③如果A B, B C, 那么A C④如果A B, B C, 那么A C二空集1.不含任何元素的集合叫做空集, 记作.2.空集是任何集合的子集, 是任何非空集合的真子集。
集合知识点+练习题
集合知识点+练习题第⼀章集合§ 1.1集合基础知识点:1.集合的定义: ⼀般地,我们把研究对象统称为兀素,⼀些兀素组成的总体叫集合,也简称集2.表⽰⽅法:集合通常⽤⼤括号{}或⼤写的拉丁字母A,B,C…表⽰,⽽元素⽤⼩写的拉丁字母a,b,c…表⽰。
3.集合相等: 构成两个集合的兀素完全⼀样。
4. 常⽤的数集及记法:⾮负整数集(或⾃然数集),记作N ;正整数集,记作N*或N + ;N内排除0的集.整数集,记作Z ;有理数集,记作Q;实数集,记作R ;5. 关于集合的元素的特征⑴确定性:给定⼀个集合,那么任何⼀个兀素在不在这个集合中就确定了。
⼥⼝:“地球上的四⼤洋”(太平洋,⼤西洋,印度洋,北冰洋)。
“中国古代四⼤发明”(造纸,印刷,⽕药,指南针)可以构成集合,其元素具有确定性;⽽“⽐较⼤的数”,“平⾯点P周围的点”⼀般不构成集合,因为组成它的兀素是不确定的.⑵互异性:⼀个集合中的兀素是互不相冋的,即集合中的兀素是不重复出现的。
如:⽅程(x-2)(x-1)2=0的解集表⽰为1,2 ,⽽不是1, 1,2⑶⽆序性:即集合中的元素⽆顺序,可以任意排列、调换。
练1:判断以下元素的全体是否组成集合,并说明理由:⑴⼤于3⼩于11的偶数;⑵我国的⼩河流;⑶⾮负奇数;⑷⽅程x2+仁0的解;⑸徐州艺校校2011级新⽣;⑹⾎压很⾼的⼈;⑺著名的数学家;⑻平⾯直⾓坐标系内所有第三象限的点6. 元素与集合的关系:(元素与集合的关系有“属于”及“不属于”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a_A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a A。
例如,(1)A表⽰“ 1~20以内的所有质数”组成的集合,则有 3 € A , 4 A,等等。
(2)A={2 , 4, 8, 16},贝U 4_A, 8_A, 32 A.典型例题例1⽤“ €”或“”符号填空:⑴ 8_ N ; ⑵ 0 ___ N; ⑶-3 ___ Z ; ⑷ 2_Q;⑸设A为所有亚洲国家组成的集合,则中国_A,美国_________ A,印度_____A,英国A。
高一数学集合知识点及练习题
高一数学集合知识点及练习题由一个或多个元素所构成的叫做集合,集合是数学中一个基本概念,它是集合论的研究对象。
这次小编给大家整理了高一数学集合知识点及练习题,供大家阅读参考。
高一数学集合知识点(一)1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。
数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。
比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。
a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。
有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N_或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。
如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。
集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B注意:该题有两组解。
(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
(完整版)集合知识点总结及习题,推荐文档
集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA A ABC A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.元素与集合的关系——(不)属于关系(1)集合用大写的拉丁字母A 、B 、C…表示元素用小写的拉丁字母a、b、c…表示(2)若a是集合A的元素,就说a属于集合A,记作a∈A;∉若不是集合A的元素,就说a不属于集合A,记作a A;4.集合的表示方法:列举法与描述法。
高中数学集合的知识点总结与常考题(附经典例题与解析)
集合的知识点与常考题 【知识点分析】: 一、一元二次不等式及其解法1.形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式.如:x 2﹣8x +7≧0。
2.如果单纯的解一个一元二次不等式的话,可以按照一下步骤处理:(1) 化二次项系数为正;(2) 若二次三项式能分解成两个一次因式的积,则求出两根12,x x .那么“0>”型的解为12x x x x <>或(俗称两根之外);“0<”型的解为12x x x <<(俗称两根之间);(3) 否则,对二次三项式进行配方,变成2224()24b ac b ax bx c a x a a -++=++,结合完全平方式为非负数的性质求解.二、分式不等式的解法类似于一元二次不等式的解法,运用“符号法则”将之化为两个一元一次不等式组处理;或者因为两个数(式)相除异号,那么这两个数(式)相乘也异号,可将分式不等式直接转化为整式不等式求解.0>ab 等价于:0b >•a 0<ab 等价于:0b <•a 如:解011x ≥-+x 等价于:解011x ≥-•+)()(x 三、绝对值不等式的解法利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。
对于含绝对值的双向不等式应化为不等式组求解,也可利用结论:“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解。
如:|1﹣3x |<3,得到﹣3<1﹣3x <3两个绝对值不等式的解法:法一:利用分界点分类讨论,例:解不等式 2|x ﹣3|+|x ﹣4|<2,①若x ≥4,则3x ﹣10<2,x <4,∴舍去.②若3<x <4,则x ﹣2<2,∴3<x <4.③若x ≤3,则10﹣3x <2,∴<x ≤3.综上,不等式的解集为.法二:利用数形结合去掉绝对值符号利用绝对值的几何意义画出数轴,将绝对值转化为数轴上两点间的距离求解。
(完整版)集合知识点总结与习题《经典》
集合详解集合的含义与表示1、集合的概念把某些特定的对象集在一起就叫做集合. 2、常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.3、集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. 4、集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. 5、集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅). 二、集合间的基本关系 1、子集、真子集、集合相等2、已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.三、集合的基本运算1、交集、并集、补集【经典例题】1.知集合{(,)|,A x y x y=为实数,且}221,x y +={(,)|,B x y x y =为实数,且},A By x =I 则的元素个数为( )A 、0B 、1C 、2D 、3 2.已知集合{{},1,,A B m A B A==⋃=,则m = ( )A 、0或3B 、0或3C 、1或3D 、1或33.A={1,2,3,4},B==⋂∈=B A A n n x x 则},,|{2( ) A,{1,4} B,{2,3} C,{9,16} D,{1,2}4.已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则)(B A C U ⋃=( )A .{1,3,4}B .{3,4}C .{3}D .{4}5.已知集合{}{}1,2,3,4,|2,A B x x A B ==<=I 则( )A .{1}B .{}0,1C .{}0,2D .{}0,1,26.若集合A ={x ∈R|ax 2+ax+1=0}其中只有一个元素,则a=( )A .4B .2C .0D .0或47.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =IA .{0}B .{0,2}C .{2,0}-D .{2,0,2}-8.下列八个关系式①{0}=φ;①φ=0;①φ={φ};①φ∈{φ};①{0}⊇φ;①0∉φ;①φ≠{0};①φ≠{φ}其中正确的个数( )A.4B.5C.6D.7 9.下列各式中,正确的是( ) A.2}2{≤⊆x x B.{}≠<>12x x x 且φC.{Z k k x x ∈±=,14}},12{Z k k x x ∈+=≠D.{Z k k x x ∈+=,13}={Z k k x x ∈-=,23}练习:一、选择题1.若集合{|1}X x x =>-,下列关系式中成立的为( )A .0X ⊆B .{}0X ∈C .X φ∈D .{}0X ⊆2.已知集合{}2|10,A x x A R φ=+==I 若,则实数m 的取值范围是( ) A .4<m B .4>m C .40<≤m D .40≤≤m 3.下列说法中,正确的是( )A . 任何一个集合必有两个子集;B . 若,A B φ=I则,A B 中至少有一个为φC . 任何集合必有一个真子集;D . 若S 为全集,且,A B S =I 则,A B S ==4.设集合22{|0},{|0}A x x x B x x x =-==+=,则集合A B =I ( ) A .0 B .{}0 C .φ D .{}1,0,1- 二、填空题 7.已知{}Rx x x y y M ∈+-==,34|2,{}Rx x x y y N ∈++-==,82|2则__________=N M I 。
数学集合试题及答案
数学集合试题及答案数学集合是数学中的基础概念之一,它涉及到元素和集合之间的关系,以及集合与集合之间的操作。
以下是一些常见的集合试题及答案,以供学习和练习。
试题一:判断题1. 空集是所有集合的子集。
()2. 集合{1, 2, 3}和集合{3, 2, 1}是同一个集合。
()3. 集合{1, 2, 3}是集合{1, 2, 3, 4}的真子集。
()4. 集合A和集合B的交集是A和B的公共元素组成的集合。
()5. 集合A和集合B的并集是包含A和B所有元素的集合。
()答案:1. 正确。
空集不含任何元素,因此它是所有集合的子集。
2. 正确。
集合的元素是无序的,所以{1, 2, 3}和{3, 2, 1}是同一个集合。
3. 正确。
集合{1, 2, 3}中的所有元素都在集合{1, 2, 3, 4}中,且后者包含一个额外的元素4,所以是真子集。
4. 正确。
交集操作的结果就是两个集合共有的元素集合。
5. 正确。
并集操作的结果包含了两个集合中的所有元素,没有重复。
试题二:选择题1. 设集合A={1, 2, 3},B={2, 3, 4},求A∪B。
A. {1, 2, 3}B. {2, 3, 4}C. {1, 2, 3, 4}D. {1, 4}答案:C. {1, 2, 3, 4}试题三:填空题1. 如果A={x | x是小于10的正整数},那么A的元素个数是____。
2. 集合{1, 2, 3}的补集(相对于全集U={1, 2, 3, 4, 5, 6})是____。
答案:1. 9(因为A的元素是1, 2, ..., 9)2. {4, 5, 6}试题四:简答题1. 解释什么是子集,并给出一个例子。
2. 解释什么是集合的差集,并给出一个例子。
答案:1. 子集是指一个集合中的所有元素都是另一个集合的元素。
例如,集合{1, 2}是集合{1, 2, 3}的子集。
2. 集合的差集是指从第一个集合中移除与第二个集合共有的元素后剩下的元素组成的集合。
集合知识点汇总与练习
1.1 集合1.1.1 集合的含义与表示一集合与元素1.集合是由元素组成的集合通常用大写字母A、B、C,…表示,元素常用小写字母a、b、c,…表示。
2.集合中元素的属性(1)确定性:一个元素要么属于这个集合,要么不属于这个集合,绝无模棱两可的情况。
(2)互异性:集合中的元素是互不相同的个体,相同的元素只能出现一次。
(3)无序性:集合中的元素在描述时没有固定的先后顺序。
3.元素与集合的关系(1)元素a是集合A中的元素,记做a∈A,读作“a属于集合A”;(2)元素a不是集合A中的元素,记做a∉A,读作“a不属于集合A”。
4.集合相等如果构成两个集合的元素一样,就称这两个集合相等,与元素的排列顺序无关。
二集合的分类1.有限集:集合中元素的个数是可数的,只含有一个元素的集合叫单元素集合;2.无限集:集合中元素的个数是不可数的;3.空集:不含有任何元素的集合,记做∅.三集合的表示方法1.常用数集(1)自然数集:又称为非负整数集,记做N;(2)正整数集:自然数集内排除0的集合,记做N+或N※;(3)整数集:全体整数的集合,记做Z(4)有理数集:全体有理数的集合,记做Q(5)实数集:全体实数的集合,记做R3.集合的表示方法(1)自然语言法:用文字叙述的形式描述集合。
如大于等于2且小于等于8的偶数构成的集合。
(2)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法,一般适用于元素个数不多的有限集,简单、明了,能够一目了然地知道集合中的元素是什么。
注意事项:①元素间用逗号隔开;②元素不能重复;③元素之间不用考虑先后顺序;④元素较多且有规律的集合的表示:{0,1,2,3,…,100}表示不大于100的自然数构成的集合。
(3)描述法:用集合所含元素的共同特征表示集合的方法,一般形式是{x∈I | p(x)}.注意事项:①写清楚该集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使用“且”、“或”;⑤所有描述的内容都要写在集合符号内;⑥语句力求简明、准确。
高一数学集合、函数知识点总结、相应试题及答案
第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:1)元素的确定性如:世界上最高的山2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集性质 A A=A A Φ=Φ A B=B A A B ⊆AA B ⊆BA A=A A Φ=A A B=B A A B ⊇A A B ⊇B(C u A) (C u B) = C u (A B) (C u A) (C u B) = C u (A B) A (C u A)=U A (C u A)= Φ.例题:1.下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
2020版高中数学新教材第一章《集合》知识点总结及对应练习
集合概念、关系、运算知识点一:集合:由一些确定对象组成的整体。
常见数集:R、Q、Z、N。
很重要,要牢记重点剖析:如何判断一些对象是否组成一个集合:判断一组对象能否组成集合,主要是要看这组对象是否是确定的,即对任何一个对象,要么在这组之中,要么不在,二者必居其一,如果这组对象是确定的,那么,这组对象就能够组成一个集合。
例:看下面几个例子,判断每个例子中的对象能否组成一个集合。
(1)大于等于1,且小于等于100的所有整数;(2)方程x2=4的实数根;(3)平面内所有的直角三角形;(4)正方形的全体;(5)∏的近似值的全体;(6)平面集合中所有的难证明的题;(7)著名的数学家;(8)平面直角坐标系中x轴上方的所有点。
课堂练习:考察下列各组对象能否组成一个集合,若能组成集合,请指出集合中的元素,若不能,请说明理由:(1)平面直角坐标系内x轴上方的一些点;(2)平面直角坐标系内以原点为圆心,以1为半径的园内的所有的点;(3)一元二次方程x2+bx-1=0的根;(4)平面内两边之和小于第三边的三角形(5)x2,x2+1,x2+2;(6)y=x,y=x+1,y=ax2+bx+c(a≠0);(7)2x2+3x-8=0,x2-4=0,x2-9=0;(8)新华书店中有意思的小说全体。
知识点二.有关元素与集合的关系的问题:确定元素与集合之间的关系,即元素是否在集合中,还要看元素的属性是否与集合中元素的属性相同。
例:集合A={y|y=x2+1},集合B={(x,y)| y=x2+1},(A、B中x∈R,y∈R)选项中元素与集合之间的关系都正确的是()A、2∈A,且2∈BB、(1,2)∈A,且(1,2)∈BC、2∈A,且(3,10)∈BD、(3,10)∈A,且2∈B解:C课堂练习:3.1415 Q;∏ Q; 0 R+; 1 {(x,y)|y=2x-3}; -8 Z;知识点三、集合中的元素有三个性质:①确定性,本质属性,在或不在,非常明确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合知识点与试题
一、元素与集合
1.集合中元素的三个特性:确定性、互异性、无序性.
2.集合中元素与集合的关系:
元素与集合之间的关系有属于和不属于两种,表示符号为∈和∉.
3.常见集合的符号表示:
集合自然数集正整数集整数集有理数集实数集表示N N*或N+Z Q R .集合的表示法:列举法、描述法、韦恩图.
二、集合间的基本关系
描述关系文字语言符号语言
集合间的基本关系
相等集合A与集合B中的所有元素都相同A=B
子集A中任意一元素均为B中的元素A⊆B或B⊇A 真子集
A中任意一元素均为B中的元素,且B中至
少有一个元素A中没有
A B或
B A 空集
空集是任何集合的子集∅⊆B
空集是任何非空集合的真子集∅B(B≠∅) 集合的并集集合的交集集合的补集
符号表示A∪B A∩B 若全集为U,则集合A的
补集为∁U A
图形表示
意义{x|x∈A,或x∈B} {x|x∈A,且x∈B} {x|x∈U,且x∉A}
四、典型试题
1、已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x 是菱形},则()
A.A⊆B B.C⊆B C.D⊆C D.A⊆D 2、A={1,2,3},B={x∈R|x2-ax+1=0,a∈A},则A∩B=B时a的值是()
A.2 B.2或3 C.1或3 D.1或2
3、下列说法正确的是()
A.某个村子里的年青人组成一个集合B.所有小正数组成的集合
C.集合{}
1,2,3,4,5和{}
5,4,3,2,1表示同一个集合
D.
1361
1,0.5,,,
2244
4.下面有四个命题:(1)集合N中最小的数是零;(2)0是自然数;(3){}
1,2,3是不大于3的自然数组成的集合;(4),
a N B N a b
∈∈+
则不小于2。
其中正确的命题的个数是()A.1个B.2个C.3个D.4个
5.给出下列关系:(1);R
∈
1
2
2;
Q(3)3;
N
+
-∉(4)3.Q
-其中正确的个数为()A.1个B.2个C.3个D.4个
6.下列四个命题:(1)空集没有子集;(2)空集是任何一个集合的真子集;(3)空集的元素个数为零;(4)任何一个集合必有两个或两个以上的子集.其中正确的有()A.0个B.1个C.2个D.3个
7.集合{},a b的子集有( ) A.1个B.2个C.3个D.4个
8.集合{|03}
A x x x N
=≤<∈
且的真子集个数是()A.16;B.8;C.7;D.4.
9.若集合{}
1,3,
A x
=,{}21,
B x
=且B⊆A,则满足条件的实数x的个数是( ) A.1 B.2 C.3 D.4
10、设集合{}
4,5,6,8
M=,集合{}
3,5,7,8
N=,那么M∪N等于( )
A .{}3,4,5,6,7,8
B .{}5,8
C .{}3,5,7,8
D .{}4,5,6,8
11.设集合A ={x|2x +1<3},B ={x|-3<x <2},则A∩B 等于 ( ) A .{x|-3<x <1} B .{x|1<x <2} C .{x|x >-3} D .{x|x <1}
12.已知集合M ={(x ,y)|x +y =2},N ={(x ,y)|x -y =4},那么集合M∩N 为 ( ) A .x =3,y =-1 B .(3,-1) C .{3,-1} D .{(3,-1)}
13.已知全集{}0,1, 2.3,4,I =----集合{}{}()0,1,2,0,3,4,I M N M N =--=--=I 则ð( ) A.{0}
B.{}3,4--
C.{}1,2--
D.∅
14、已知U ={2,3,4,5,6,7},M ={3,4,5,7},N ={2,4,5,6},则 ( ) A .M∩N ={4,6} B .M ∪N =U C .()U N M U ⋃=ð D .()U M N N ⋂=ð 15、在下列各式: ①{}10,1,2∈;②{}{}10,1,2∈;③{}{}0,1,20,1,2⊆;④{}{}0,1,22,0,1=.其中错误的个数是 ( ) A .1 B .2 C .3 D .4 16、方程的解集为{}
22320,x R x x ∈--=用列举法表示为____________.
17、用列举法表示不等式组()27211,32
5312
x x x x x -⎧
+->-⎪⎪⎨-⎪-≤-⎪⎩的整数解集合为____________.
18、已知{}1,0,1,2A =-,{}
,,B y y x x A ==∈,则B =________.
19、已知集合{}1,3,21A m =--,集合{}23,B m =,若B ⊆A ,则实数m =________. 20、设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或,则__,a b == .
21、设A 表示集合{2,3,a 2+2a -3},B 表示集合{|a +3|,2},若已知5∈A ,且5∉B ,求实数a 的值.
22、设{}{}1,,A x x B x x a =>=>⊆且A B,求a 的取值范围.
23、设A ={x ∈Z||x|≤6},B ={1,2,3},C ={3,4,5,6},求:(1)A ∩(B ∩C);(2)
().A A B C ⋂⋃ð。