智能控制大作业-神经网络

合集下载

控制系统中的神经网络控制方法

控制系统中的神经网络控制方法

控制系统中的神经网络控制方法控制系统是指通过对被控对象进行监测和调节,以达到预定要求的系统。

而神经网络控制方法是指利用神经网络模型和算法对控制系统进行优化和改进的方法。

本文将介绍神经网络控制方法在控制系统中的应用以及其原理和优势。

一、神经网络控制方法的原理神经网络控制方法主要基于人工神经网络模型,它模拟了生物神经系统的结构和功能。

该模型由多个神经元组成,这些神经元相互连接并通过权重参数传递和处理信息。

其原理主要包括以下几个方面:1. 网络拓扑结构:神经网络控制方法中使用的神经网络有多种拓扑结构,如前馈神经网络、循环神经网络和自适应神经网络等。

这些网络结构可以灵活地应用于不同的控制问题。

2. 学习算法:神经网络通过学习算法来调整网络中神经元之间的连接权重,以逐步优化网络的性能。

常见的学习算法包括反向传播算法、遗传算法和模糊神经网络算法等。

3. 控制策略:神经网络控制方法可以基于不同的控制策略,如比例积分微分(PID)控制、模糊控制和自适应控制等。

通过在神经网络中引入相应的控制策略,可以实现对被控对象的精确控制和调节。

二、神经网络控制方法在控制系统中的应用1. 机器人控制:神经网络控制方法在机器人控制中有广泛应用。

通过将神经网络嵌入到机器人的控制系统中,可以实现对机器人运动、感知和决策等方面的智能控制。

这种方法能够提高机器人的自主性和适应性,使其能够更好地适应不同环境和任务的需求。

2. 工业过程控制:神经网络控制方法在工业过程控制中也得到了广泛应用。

通过利用神经网络对工业过程进行建模和优化,可以提高生产效率、降低能耗和减少故障率。

此外,神经网络控制方法还可以应用于故障诊断和预测维护等方面,提高工业系统的可靠性和稳定性。

3. 航天飞行器控制:神经网络控制方法在航天飞行器控制方面也有重要应用。

通过神经网络对航天飞行器的姿态、轨迹和轨道控制进行优化,可以提高飞行器的稳定性和导航精度,降低燃料消耗和飞行风险。

神经网络在智能控制系统中的应用

神经网络在智能控制系统中的应用

神经网络在智能控制系统中的应用智能控制系统是一种基于前沿技术的控制系统,它具备学习和适应能力,可以自主地做出决策并改进自身的性能。

在智能控制系统中,神经网络作为一种重要的技术手段,展示了出色的应用效果。

本文将介绍神经网络在智能控制系统中的应用,并探讨其优势和未来发展方向。

一、神经网络在智能控制系统中的基本原理神经网络是一种通过模仿生物神经系统来模拟人类智能行为的技术方法。

神经网络由大量的神经元相互联结而成,通过学习和训练,神经网络能够对输入信息进行处理和分析,并对未知的数据作出预测和决策。

在智能控制系统中,神经网络起到了关键的作用。

首先,它能够通过学习和训练来从大量的数据中提取有用的信息,并有效地进行模式识别和分类。

其次,神经网络能够建立起输入和输出之间的映射关系,从而实现对输入信号的动态处理和控制。

最后,神经网络还能够通过自适应学习的方式,主动调整自身的结构和参数,以适应不同的环境和任务需求。

二、神经网络在智能控制系统中的应用领域1.自动驾驶技术神经网络在自动驾驶技术中具有广泛的应用。

通过对实时传感器数据的处理和分析,神经网络能够实现车辆的环境感知、路径规划和行为决策,从而实现自主驾驶功能。

神经网络的高并行性和适应能力使得自动驾驶系统能够在复杂多变的交通环境中实现精确的控制和决策。

2.智能制造神经网络在智能制造领域中的应用也日益重要。

在生产线的控制与优化中,神经网络能够通过学习和模式识别来分析生产数据,探测异常和故障,并实现自动故障诊断和预防。

此外,神经网络还能够优化生产调度和质量控制,提高生产效率和产品质量。

3.智能家居随着物联网技术的发展,智能家居正逐渐成为人们生活的一部分。

神经网络在智能家居中扮演着智能控制的重要角色。

通过对家庭环境和用户行为的学习和建模,神经网络可以实现智能家居设备的自主控制和个性化服务。

它能够根据不同的需求和偏好,自动调节室内温度、照明和安全系统,提供便捷、舒适和安全的居家环境。

智能控制题目及解答

智能控制题目及解答

1. 神经网络的模型分类,分别画出网络图,简述其特点。

1)前向网络:神经网元分层排列,组成输入层,隐含层和输出层。

每一层的神经元只能接收前一层神经元的输入.输入模式经过各层的顺次变换后,得到输出层数输出。

个神经元之间不存在反馈.感知器和误差反向传播算法中使用的网络都属于这种模型.1).2)2)反馈网络:这种网路结构指的是只有输出层到输入层存在反馈,即每一个输入节点都有可能接受来自外部的输入和来自输出神经元的反馈。

这种模式可用来存储某种模式序列,也可以动态时间序列系统的神经网络建模.3)相互结合型网络:属于网状结构,这种神经网络模型在任意两个神经元之间都可能存在连接.信号要在神经元之间反复往返传递,网络处在一种不断改变的状态之中。

从某个初态开始,经过若干次变化,才能达到某种平衡状态,根据网络结构和神经元的特性,还有可能进入周期震荡或混沌状态。

4)混合型网络:是层次型网络和网状结构网络的一种结合。

通过层内神经元的相互结合,可以实现同一层内的神经元的横向抑制或兴奋机制,这样可以限制每层内能同时动作的神经元数,或者把每层内的神经元分成若干组,让每组作为一个整体来动作. 2. 神经网络学习算法有几种,分别画出网络图,简述其特点。

1)有导师学习:所谓有导师学习就是在训练过程中,始终存在一个期望的网络输出。

期望输出和实际输出之间的距离作为误差度量并用于调整权值.1。

2)无导师学习:网络不存在一个期望的输出值,因而没有直接的误差信息,因此,为实现对网络训练,需建立一个间接的评价函数,一对网络的某种行为趋向作出评价. 3、简述神经网络泛化能力。

答:人工神经网络容许某些变化,如当输入矢量带有噪声时,即与样本输出矢量存在差异时,其神经网络的输出同样能够准确地呈现出应有的输出。

这种能力就成为泛化能力.4、单层BP 网络与多层神经网络学习算法的区别。

1)单层神经网络的Delta 学习算法是通过对目标函数∑==Npp E E1的极小来实现的,其中E 的极小是通过有序地对每一个样本数据的输出误差Ep 的极小化来得到。

人工智能控制技术课件:神经网络控制

人工智能控制技术课件:神经网络控制
进行的,这种排列往往反映所感受的外部刺激的某些物理特征。
例如,在听觉系统中,神经细胞和纤维是按照其最敏感的频率分
布而排列的。为此,柯赫仑(Kohonen)认为,神经网络在接受外
界输入时,将会分成不同的区域,不同的区域对不同的模式具有
不同的响应特征,即不同的神经元以最佳方式响应不同性质的信
号激励,从而形成一种拓扑意义上的有序图。这种有序图也称之


,

,

,

)
若 输 入 向 量 X= ( 1
, 权 值 向 量
2


W=(1 , 2 , ⋯ , ) ,定义网络神经元期望输出 与
实际输出 的偏差E为:
E= −
PERCEPTRON学习规则
感知器采用符号函数作为转移函数,当实际输出符合期
望时,不对权值进行调整,否则按照下式对其权值进行
单神经元网络
对生物神经元的结构和功能进行抽象和
模拟,从数学角度抽象模拟得到单神经
元模型,其中 是神经元的输入信号,
表示一个神经元同时接收多个外部刺激;
是每个输入所对应的权重,它对应
于每个输入特征,表示其重要程度;
是神经元的内部状态; 是外部输入信
号; 是一个阈值(Threshold)或称为
第三代神经网络:
2006年,辛顿(Geofrey Hinton)提出了一种深层网络模型——深度
置信网络(Deep Belief Networks,DBN),令神经网络进入了深度
学习大发展的时期。深度学习是机器学习研究中的新领域,采用无
监督训练方法达到模仿人脑的机制来处理文本、图像等数据的目的。
控制方式,通过神经元及其相互连接的权值,逼近系统

神经网络在智能机器人中的应用

神经网络在智能机器人中的应用

神经网络在智能机器人中的应用随着人工智能技术的不断进步,智能机器人已经逐渐成为了我们日常生活中不可或缺的一部分。

而其中,神经网络技术更是智能机器人实现人工智能的关键之一。

本文将介绍神经网络在智能机器人中的应用及其优势。

一、神经网络技术概述神经网络,也称为人工神经网络,是一种模拟人脑组织结构和功能的人工智能技术。

它由多个节点和连接组成,每个节点代表一个人工神经元,连接则代表神经元间的突触连接。

通过对神经元和连接的模拟计算,神经网络能够实现模式识别、分类、预测等人类智能所具备的功能。

二、1.智能控制方面神经网络可用于智能机器人的控制系统,为机器人行为提供智能的指导。

通过神经网络对机器人环境和自身状态的分析,可以实现机器人在不同情况下的自主行动和智能决策。

例如,可以通过训练神经网络,实现智能机器人对目标物体的识别、跟踪和抓取等功能。

2.感知识别方面神经网络可用于智能机器人的感知识别系统,使机器人能够快速准确地对环境信号进行感知和处理。

例如,可以通过神经网络实现语音识别、视觉识别、手势识别等智能交互功能。

通过神经网络对数据的分析和训练,机器人能够识别不同的声音、图像和姿态,从而实现复杂的人机交互。

3.智能学习方面神经网络可用于智能机器人的学习系统,使机器人能够通过对数据的分析和学习,不断完善自身的识别和决策能力。

例如,可以通过神经网络实现机器人的强化学习,通过不断尝试和反馈,机器人逐渐改进自己的行为策略,从而实现更高效的任务完成。

三、神经网络在智能机器人中的优势1.自适应性强神经网络具有自适应性强的特点,可以根据环境和任务的变化,动态调整神经网络结构和参数,从而实现更好的性能表现。

智能机器人使用神经网络可以根据不同的环境和任务自主调整行为决策,从而更好地适应复杂多变的场景。

2.学习能力强神经网络具有学习能力强的特点,可以通过对数据的学习和不断尝试,逐渐改进自己的决策和行为策略。

智能机器人使用神经网络可以进行强化学习和监督学习等多种方式的学习,从而不断完善自己的能力和表现。

智能控制方法

智能控制方法

智能控制方法智能控制方法是指采用人工智能技术来设计、实现和控制系统的一种方法。

智能控制方法具有高效性、可靠性和自适应性等特点,在工业生产、机器人控制、交通运输和医疗等领域得到了广泛应用。

本文主要介绍人工神经网络、遗传算法和模糊逻辑控制等几种常用的智能控制方法。

一、人工神经网络人工神经网络(Artificial Neural Network, ANN)是一种模仿生物神经系统的信息处理方式的计算模型。

它由输入层、隐藏层和输出层组成,每层包含多个神经元,神经元之间通过连接实现信息传递和处理。

ANN具有自适应性和高度非线性特性,可以用于模式识别、预测和控制等方面。

在智能控制领域中,可以使用ANN对系统进行建模和控制。

具体地说,输入层用来接收传感器数据,输出层用来输出控制指令,隐藏层则根据输入层的数据,使用反向传播算法对权值进行训练,以使得预测误差最小化。

然后,将训练后的ANN用于实时控制系统,以实现自适应控制。

二、遗传算法遗传算法(Genetic Algorithm, GA)是一种计算智能方法,模拟自然选择和遗传进化过程,通过适应度函数来评估个体的优劣程度,并利用交叉、变异等操作来优化个体的特征。

遗传算法具有全局优化、自适应性和并行处理等特点,适用于求解局部极小值和高维空间优化问题。

在智能控制领域中,可以使用遗传算法优化控制器的参数。

具体地说,先使用传统控制器设计方法获得一个初步的控制器,然后使用遗传算法优化控制器的参数,以使得控制效果最优。

在优化过程中,可以通过适应度函数评估控制器的性能,并通过群体演化的过程实现控制器参数的迭代优化。

三、模糊逻辑控制模糊逻辑控制(Fuzzy Logic Control, FLC)是一种基于模糊逻辑的控制方法。

模糊逻辑是一种模糊概念的推理和处理方法,它考虑到了不确定性和模糊性,使得控制器更加灵活和鲁棒。

FLC通常由模糊化、规则库、推理和去模糊化等步骤组成。

在智能控制领域中,可以使用FLC来控制具有复杂非线性特性的系统。

大工22夏《神经网络》大作业

大工22夏《神经网络》大作业

大工22夏《神经网络》大作业
1. 项目介绍
本次《神经网络》大作业旨在让同学们深入理解神经网络的工作原理,并能够独立实现一个简单的神经网络模型。

通过完成本次作业,同学们将掌握神经网络的基本结构,训练过程以及参数优化方法。

2. 任务要求
1. 独立实现一个具有至少三层神经网络的结构,包括输入层、隐藏层和输出层。

2. 选择一个合适的激活函数,并实现其对应的激活和导数计算方法。

3. 实现神经网络的正向传播和反向传播过程,包括权重更新和偏置更新。

4. 在一个简单的数据集上进行训练,评估并优化所实现的神经网络模型。

3. 评分标准
1. 神经网络结构实现(30分)
2. 激活函数实现(20分)
3. 正向传播和反向传播实现(20分)
4. 模型训练与评估(20分)
5. 代码规范与文档说明(10分)
4. 提交要求
1. 提交代码文件,包括神经网络结构、激活函数、正向传播、反向传播以及训练与评估的实现。

2. 提交一份项目报告,包括项目简介、实现思路、实验结果及分析。

3. 请在提交前确保代码的可运行性,并在报告中附上运行结果截图。

5. 参考资料
1. Goodfellow, I. J., Bengio, Y., & Courville, A. C. (2016). Deep learning. MIT press.
2. Russell, S., & Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson Education Limited.
祝大家作业顺利!。

智能控制--神经网络控制PPT课件

智能控制--神经网络控制PPT课件
11. 结合多神经网络自学习控制器的结构图,说明多神 经网络自学习控制系统的基本思想、原理和特点。
.
71
权衡的有效途径:进行多次仿真实验。
✓ 输入信号的选择
时域上,要求输入信号持续加在系统对象上,以便在辨识 时间内充分激励系统的所有模态、反映系统对象的完整 动态过程。(这里的输入信号是加在系统上的信号,也将构成神经
网络的输入或输出信号)
频域上,要求输入信号的频谱覆盖系统的频谱。
✓ 等价准则的选择
等价意味着按照某种误差评价准则,使确定的神经网络模 型最好地拟合所关心的被辨识系统的静态或动态特性。
.
43
(2) 再励学习(强化学习)
介于上述两种情况之间,外部环境只对输出结果给 出评价,而不给出具体答案,学习系统通过强化那 些受奖励的动作来改善自身的性能。
离线学习
对一批实现给定的系统输入输出样本数据进行离线 学习,建立系统的一个逆模型,然后用此逆模型进 行在线控制。
.
44
非线性系统 +
-
神经网络
.
25
神经网络辨识的特点(与传统辨识方法相比)
✓ 神经网络本身作为一种辨识模型,其可调参数反映在网 络内部的极值上,无需建立实际系统的辨识格式。
✓ 借助网络外部的输入/输出数据拟合系统的输入/输出关 系,可对本质非线性系统进行辨识。(网络内部隐含着系统的
特性)
✓ 辨识的收敛速度不依赖于被辨识系统的维数,只与神经 网络本身所采用的学习算法有关。
神经网络控制
.
1
神经网络控制的优越性
神经网络可以处理那些难以用模型或规则描述的过程 或系统。
神经网络采用并行分布式信息处理,具有很强的容错 性。
神经网络是本质非线性系统,可实现任意非线性映射。

基于神经网络的智能控制方法

基于神经网络的智能控制方法

基于神经网络的智能控制方法智能控制是近年来兴起的一种控制方法,它借助于神经网络的强大计算能力,能够对复杂的系统进行智能化的控制与决策。

本文将介绍基于神经网络的智能控制方法,并探讨其在实际应用中的潜力和优势。

一、神经网络简介神经网络是一种模拟人脑神经系统的计算模型,它由大量的神经元通过连接构成,能够对海量的信息进行高效的处理和学习。

神经网络具有自适应性、容错性和并行处理能力等特点,被广泛应用于图像识别、语音处理、自动驾驶等领域。

二、智能控制方法的基本原理基于神经网络的智能控制方法主要包括感知、决策和执行三个阶段。

感知阶段通过传感器采集系统的输入信号,并将其转化为神经网络可以处理的形式。

决策阶段利用训练好的神经网络对输入信号进行学习和判断,生成相应的控制策略。

执行阶段将控制策略转化为实际控制信号,通过执行器对系统进行控制。

三、基于神经网络的智能控制方法的优势1. 强大的学习能力:神经网络具有良好的自适应性和学习能力,能够通过大量的训练样本不断优化模型的参数,使之具备更好的控制性能。

2. 复杂系统的控制:神经网络可以对具有较高维度和非线性特性的复杂系统进行控制,能够应对更加复杂的实际场景和问题。

3. 实时性和适应性:神经网络能够在实时性要求较高的情况下对输入信号进行快速处理和决策,具备较强的适应性和反应能力。

4. 容错性和鲁棒性:神经网络在面对部分信息丢失或者噪声干扰时,仍能够保持较好的控制性能,具备较强的容错性和鲁棒性。

四、基于神经网络的智能控制方法的应用1. 智能交通系统:利用基于神经网络的智能控制方法,可以对交通流量进行实时监测和调度,达到优化交通流的效果,提高道路的通行能力和交通效率。

2. 工业自动化:神经网络可以应用于工业自动化领域中的生产线控制、设备故障预测等任务,提高生产效率和产品质量。

3. 智能机器人:通过神经网络实现智能机器人的导航、目标识别和路径规划等功能,使其具备更强的自主决策和执行能力。

智能控制简明教程-神经网络原理

智能控制简明教程-神经网络原理
并由神经冲动进行信息传递的神经网络。分为 单层与多层感知器,是一种具有学习能力的神 经网络。
①单层感知器
感知器模型是由美国学者 F.Rosenblatt于
1957年建立的,它是一个具有单层处理单元的 神经网络。
Hale Waihona Puke 知器的输出:学习规则:向量形式:
下面讨论单层感知器实现逻辑运算问题: a.单层感知器的逻辑“与”运算
0 0 0 -1.5 0 o 0 0 1 -0.5 0 o 0 1 0 -0.5 0 o 1 1 1 0.5 1 *
b.单层感知器的逻辑“或”运算
0 0 0 -0.5 0 o 1 0 1 0.5 1 * 1 1 0 0.5 1 * 1 1 1 1.5 1 *
c.“异或”运算线性不可分
000 011 101 110
①Hebb学习规则(无导师学习)
在Hebb学习规则中,取神经元的输出为学习 信号:
神经网络调整权值的原则: 若第i个与第j个神经元同时处于兴奋状态,则它们之间 的连接权应加强。符合心理学中条件反射的机理两 个神经元同时兴奋(输出同时为‘1’态)时w加强,

则应削弱。
4.3 感知器(perceptron) 感知器是模拟人的视觉,接受环境信息,
前向网络特点
1. 神经元分层排列,可多层 2. 层间无连接 3. 方向由入到出 感知网络(perceptron即为此) 应用最为广泛
注意:构成多层网络时,各层间的转移函数应 是非线性的,否则多层等价一个单层网络。
另外,隐层的加入大大提高NN对信息的处理能 力,经过训练的多层网络,具有较好的性能, 可实现X→Y的任意非线性映射的能力。
5.神经网络的学习功能
a.学习方法
学习是NN最重要的特征,学习learning,训练 training。

智能控制简明教程第6章卷积神经网络

智能控制简明教程第6章卷积神经网络

Dropout前
Dropout后
( ) (6)卷积神经网络训练
W W J (W , b)
W
b b J (W , b)
b
( ) 3. 典型卷积神经网络
(1) LeNet模型结构
实现对10个手写字母的识别分类
( ) . 卷积神经网络应用
卷积核 层 - -- 池化 层--- 卷积核层--- 池化层---全连接层
( f g)(n) f ( )g(n )d
2.1
1. 卷积神经网络的基本概念
(2)输入层
输入层严格意义上并不属于卷积结构,它的作用是对输入网络的数据 图像进行预处理,即在这一层完成图像增强、归一化、标准化等操作。
(3)卷积层
卷积层作为主干层级结构,通过卷积核和图像之间卷积操作,实现 特征图的提取,随着层级的加深,提取的特征越高级。
( ) 2. 卷积神经网络的操作
(1)卷积操作
在卷积层中,卷积操作是按一定大小、步长滑动的卷积核来对局部的数 据进行加权求和,并将计算得到的结果保存在对应位置,一般简单的特征只 需要几层卷积层,而较为复杂的特征则需要使用更深的卷积层。
( ) (1)卷积操作
通常,卷积核为方形,以便实现两个维度上的等比例采样。设卷积网络 的输入图像大小为 W W ,卷积核的大小为 F F,步长为 S ,补零 数为 P 。
全连接层用于构建卷积神经网络的输出网络
将前一卷积层(池化层)得到的二维矩阵压平为一维向量
( ) (4)激活函数层
( ) (5) 抑制过拟合Dropout
在前向传播时,设置一定的概率,使得某些神经元停止工作,从而达到 提高模型泛化能力的目的,同时减少参数的训练时间。
神经元的失活概率设为0.5。将网络中50%的神经元使用随机的方法删除 掉,并且在删除的同时保持输入输出层的神经元个数不发生变化。

智能控制系统 -神经网络-PPT课件

智能控制系统 -神经网络-PPT课件
1 1T 2 Jn () e ( n ) e( n )( e n ) k 2k 2
1 1T 2 J E e ( n ) E e ( n )( e n ) k 2 2 k
13
误差纠正学习
w J 用梯度下降法求解 k 对于感知器和线性网络:
1
感知器网络
感知器是1957年美国学者Rosenblatt提出的 一种用于模式分类的神经网络模型。 感知器是由阈值元件组成且具有单层计算单元 的神经网络,具有学习功能。 感知器是最简单的前馈网络,它主要用于模式 分类,也可用在基于模式分类的学习控制和多 模态控制中,其基本思想是将一些类似于生物 神经元的处理元件构成一个单层的计算网络
w ( p w ) 若 神 经 元 k 获 胜 k j j k j w 0 若 神 经 元 k 失 败 k j
wkj
pj
k
5.2
前向网络及其算法
前馈神经网络(feed forward NN):各神经元接受 前级输入,并输出到下一级,无反馈,可用一 有向无环图表示。 图中结点为神经元(PE):多输入单输出,输 出馈送多个其他结点。 前馈网络通常分为不同的层(layer),第i层的输入 只与第i-1层的输出联结。 可见层:输入层(input layer)和输出层(output layer) 隐层(hidden layer) :中间层
5.1
神经网络的基本原理和结构
1
神经细胞的结构与功能
神经元是由细胞体、树突和轴突组成
图 生物神经元模型
神经网络的基本模型
2
人工神经元模型
人工神经网络是对生物神经元的一种模拟和简化,是 神经网络的基本处理单元。
神经元输出特性函数常选用的类型有:

神经网络在机器人控制中的应用

神经网络在机器人控制中的应用

神经网络在机器人控制中的应用神经网络是一种模仿人类大脑神经元网络而设计的人工神经元网络系统。

它的应用涵盖了许多领域,包括机器人控制。

随着科技的不断进步,神经网络在机器人控制中的应用也越来越广泛。

本文将介绍神经网络在机器人控制中的应用,并探讨其在未来的发展前景。

神经网络在机器人控制中的应用可以说是非常广泛的。

通过将神经网络应用到机器人控制中,可以提高机器人的智能化水平,使其能够更好地感知环境、做出反应,并完成各种任务。

在工业领域,神经网络可以用于控制机器人完成自动化生产线上的各种操作,提高生产效率和产品质量。

在军事领域,神经网络可以用于控制无人作战飞机、地面车辆等,执行各种特定任务。

在医疗领域,神经网络可以应用于机器人辅助手术系统中,提高手术精确度和安全性。

在日常生活中,神经网络还可以应用于智能家居中,控制各种家庭机器人完成家务等。

要实现神经网络在机器人控制中的应用,首先需要对神经网络进行训练。

机器人通过神经网络获得环境信息,然后做出相应的反应。

神经网络的训练是一个非常重要的过程,它直接决定了机器人控制的效果。

在训练神经网络时,需要给它提供大量丰富的训练数据,使其能够学习到各种环境下的反应规律。

还需要对神经网络进行不断地调优和改进,以提高机器人控制的稳定性和准确性。

现有的神经网络在机器人控制中的应用主要有两种类型:一种是基于传统的神经网络算法,如BP神经网络、CNN等;另一种是基于深度学习的神经网络算法,如深度神经网络、循环神经网络等。

传统的神经网络算法在机器人控制中的应用主要是针对简单的环境和任务,其优势在于算法简单、易于实现,但对于复杂的环境和任务往往表现不佳。

深度学习的神经网络算法则可以处理更为复杂的环境和任务,其优势在于可以通过大量数据进行训练,学习到更为复杂的规律,因此在机器人控制中的应用具有更大的潜力。

随着人工智能技术的不断发展,神经网络在机器人控制中的应用也在不断地取得新突破。

未来,随着神经网络技术的进一步发展,我们可以预见到以下几个方面的发展趋势。

智能控制系统中的神经网络控制算法研究

智能控制系统中的神经网络控制算法研究

智能控制系统中的神经网络控制算法研究智能控制系统,作为现代智能技术的重要应用领域之一,正逐渐在各个行业和领域中得到广泛应用。

智能控制系统的核心是算法,而神经网络控制算法作为其中一种重要技术手段,正在引起学术界和工业界的高度关注和广泛研究。

本文将从神经网络控制算法的基本原理、应用领域以及未来的发展方向等角度进行深入探讨。

第一部分:神经网络控制算法的基本原理神经网络控制算法是通过模拟人类神经系统的工作原理,将模糊控制、遗传算法等多种智能算法与控制系统相结合,形成一种新的控制方法。

神经网络控制算法的基本原理是神经元之间通过权值的连接来传递信号,并通过训练来调整神经元之间的连接权值,从而实现对控制系统的优化调节。

神经网络控制算法的基本结构包括输入层、隐层和输出层。

输入层接收外部的控制信号,隐层是神经网络的核心部分,通过神经元之间的连接进行信息传递和处理,输出层将隐层的结果转化为实际控制信号。

第二部分:神经网络控制算法的应用领域神经网络控制算法具有很强的适应性和优化能力,因此在许多领域都得到了广泛应用。

在工业自动化领域,神经网络控制算法可以对复杂的工业过程进行建模和控制,例如化工过程中的温度、压力和流量等参数控制。

在机器人技术领域,神经网络控制算法可以实现机器人的智能控制和路径规划,提高机器人的自主性和适应性。

在金融领域,神经网络控制算法可以用于股票价格预测和交易策略优化,提高投资者的收益率和风险控制能力。

第三部分:神经网络控制算法的未来发展方向虽然神经网络控制算法已经在多个领域得到应用,但仍然面临一些挑战和难题。

首先,神经网络控制算法的鲁棒性和可解释性需要进一步提高。

目前的神经网络模型往往是黑箱模型,难以解释其内部的决策过程,这在某些关键领域(如医疗和安全)可能会受到限制。

其次,神经网络控制算法在处理大规模数据和复杂问题时的计算复杂度较高。

如何提高算法的计算效率和准确性是一个亟待解决的问题。

此外,在人工智能和大数据的推动下,深度学习等新兴技术也对神经网络控制算法的发展提出了新的要求和机遇。

神经网络控制大作业-南航-智能控制

神经网络控制大作业-南航-智能控制

神经网络控制大作业-南航-智能控制-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII南京航空航天大学研究生实验报告实验名称:神经网络控制器设计姓名:学号:专业:201 年月日一、题目要求考虑如下某水下航行器的水下直航运动非线性模型:()||a m m v k v v u y v++==其中v R ∈为水下航行器的前进速度, u R ∈为水下航行器的推进器推力,y R ∈为水下航行器的输出,航行器本体质量、附加质量以及非线性运动阻尼系数分别为100,15,10a m m k ===。

作业具体要求:1、设计神经网络控制器,对期望角度进行跟踪。

2、分析神经网络层数和神经元个数对控制性能的影响。

3、分析系统在神经网络控制和PID 控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。

二、神经网络控制器的设计1.构建系统的PID 控制模型在Simulink 环境下搭建水下航行器的PID 仿真模型,如下图1所示:图1 水下航行器的PID 控制系统其中,PID控制器的参数设置为:K p=800,K i=100,K d=10。

需要注意的一点是,经过signal to workspace模块提取出的数据的Save format为Array格式。

2.BP神经网络控制器的训练首先将提取出的训练数据变为标准的训练数据形式,标准的训练数据分为输入和目标输出两部分。

经过signal to workspace模块提取出的数据为一个训练数据个数乘以输入(或输出)个数的矩阵,因此分别将x、u转置后就得到标准训练数据x’,u’。

然后,新建m文件,编写神经网络控制器设计程序:%----------------------------------------------------------------p=x'; %inputt=u'; %inputnet=newff(p,t,3,{'tansig','purelin'},'trainlm');net.trainparam.epochs=2500;net.trainparam.goal=0.00001;net=train(net,x',u'); %train networkgensim(net,-1); %generate simulink block%----------------------------------------------------------------上述m文件建立了如下图所示的神经网络,包含输入层、1个隐含层和输出层,各层神经元节点分别为 1、 3 和1。

武汉理工大学智能控制大作业

武汉理工大学智能控制大作业

智能控制理论与技术设计报告学院自动化学院专业控制科学与工程班级1303姓名聂鹏指导教师徐华中2014 年 2 月20 日武汉理工大学硕士研究生试题课程名称:智能控制理论与技术专业:双控1303班学号:1049721303692 姓名:聂鹏一、简答题(每小题10分)1.智能控制由哪几部分组成?各自的特点是什么?答:智能控制系统由广义对象、传感器、感知信息处理、认知、通信接口、规划和控制和执行器等七个功能模块组成;各部分的特点是:广义对象——包括通常意义下的控制对象和外部环境;传感器——包括关节传感器、力传感器、视觉传感器、距离传感器、触觉传感器等;感知信息处理——将传感器得到的原始信息加以处理;认知——主要用来接收和储存信息、知识、经验和数据,并对它们进行分析、推理,作出行动的决策,送至规划和控制部分;通信接口——除建立人机之间的联系外,还建立系统各模块之间的联系;规划和控制——是整个系统的核心,它根据给定的任务要求、反馈的信息以及经验知识,进行自动搜索,推理决策,动作规划,最终产生具体的控制作用;执行器——将产生的控制作用于控制对象。

2. 智能控制是在什么背景下产生的?答:传统控制理论在应用中面临的难题包括:(1) 传统控制系统的设计与分析是建立在精确的系统数学模型基础上的,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型。

(2) 研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合。

(3) 对于某些复杂的和包含不确定性的对象,根本无法以传统数学模型来表示,即无法解决建模问题。

(4) 为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初投资和维修费用,降低系统的可靠性。

传统控制理论在应用中面临的难题的解决,不仅需要发展控制理论与方法,而且需要开发与应用计算机科学与工程的最新成果。

人工智能的产生和发展正在为自动控制系统的智能化提供有力支持。

智能控制基础-神经网络

智能控制基础-神经网络

第6章 神经网络控制
7
智能控制 基是神经系统结构和功能基本单位,典型的神经 元结构图4-1所示。
第6章 神经网络控制
图4-1 神经元结构 8
智能控制 基础
4.1.1
神经网络原理
视网膜的信息处理机制
光感受器细胞将光波所携带的自 然图像信息转变成神经元电信息
囊泡
受体
K+ Na+ K+
4 神经网络具有自组织、自学习功能,是自适应组 织系统。
第6章 神经网络控制
26
智能控制 基础
4.1.2
神经网络的结构和特点
神经网络的研究主要包括: 神经网络基本理论研究 神经网络模型的研究 神经网络应用研究 神经网络及其融合应用技术
第6章 神经网络控制
27
智能控制 基础
4.1.3
神经网络学习
神经元之间高度互连实现并行处理而表现出的群体特性是非常 复杂,甚至是混沌的; 3利用神经网络通过学习过程可以从周围环境获取知识,中 间 神经元的连接强度(权值)用来表示存贮的知识。
第6章 神经网络控制
20
智能控制 基础
4.1.2
神经网络的结构和特点
神经网络的结构按照神经元连接方式可分成前馈网络 和反馈网络。
(2)Sigmoid函数
(2)
1
f ( X ) 1 eaX
a 0
图4-3 常用的几种激励函数
第6章 神经网络控制
16
智能控制 基础
4.1.1
神经网络原理
常用的激励函数如图4-3所示:
(3)双曲正切函数
(3)
f ( X ) 1 eaX 1 eaX
a 0
(4)高斯函数 X2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能控制与应用实验报告神经网络控制器设计
一、实验内容
考虑一个单连杆机器人控制系统,其可以描述为:
Mq + 0.5mgl sin(q) = r
y = q
其中M = 0.5kgm2为杆的转动惯量,“7 = 1kg为杆的质量,/ = \m为杆长, g=9.8/n/52, g为杆的角位置,刁为杆的角速度,刁为杆的角加速度,丁为系统的控制输入。

具体要求:
1、设计神经网络控制器,对期望角度进行跟踪。

2、分析神经网络层数和神经元个数对控制性能的影响。

3、分析系统在神经网络控制和PID控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。

4、为系统设计神经网络PID控制器(选作)。

二、对象模型建立
根据公式(1),令状态量得到系统状态方程为:
r 一0・5 水〃?g/*sin(xj
Af
山此建立单连杆机器人的模型如图1所示。

x2
图1单连杆机器人模型
三、系统结构搭建及神经网络训练
1 •系统PID结构如图2所示:
图2系统PID结构图
PID参数设置为Kp二16, Ki二10, Kd二8得到响应曲线如图3所示:q
0.5
A mgl
1.4
0.4
・ 0.2 ; ・
Q } r
r
r
「 「
r r r r 0123456789
10
t/s
图3 PID 控制响应曲线
采样PID 控制器的输入和输出进行神经网络训练
p 二[al' ;a2, ];
t 二b ,;
net=newff ([-1 1;T 1;T 1], [3 8 16 8 1], {' tansig" ' tansig 5 1 tansig ,
logsig , ' pure 1 in 1});
产生的神经网络控制器如图4所示:
图3神经网络工具箱
训练过程如图4所示:
1.2
Custom Neural Network
Neural Network
LtfBf
w
"T"
""H~9
"T"
T"
Algorithms Training:
Levenberg-Marquardt (匕①厂 m
Performance! Mean Squared Error( -is- Derivative: Default idefau •deriv)
Epoch; Time: Performance: Gradient Mu:
Validation Checks;
Plot Interval: ' J
1 epochs
Opening Performance Plot
• Stop Training • Caned
图4神经网络训练过程图
用训练好的神经网络控制器替换原来的PID 控制器,得到仿真系统结构图如 图5所示:
图5神经网络控制系统结构图
运行系统得到神经网络控制下的响应曲线如图6所示:
Picts
(plotperform) (plottrainstate) (plotreg ression)
Performance Training Stat^
Regression 2500
l.OOe-05 1.00e-05 L.00e + 10 6
图6神经网络控制响应曲线图
四. 神经网络和PID 控制器的性能比较
1. 抗干扰能力
在神经网络控制器和PID 控制器中分别加入相同的随机噪声,系统响应如图
7所示
:
5 6 7 8 9 10
t/s
0.4
0.2
0.6
PID 神经网络
0.4、”
-
0.2 -y -
Q } r r r
「 「
r r r r
0123456789 10
图7加入噪声的系统响应曲线
从图7中的响应曲线可以看出,神经网络控制和PID 控制的抗干扰效果相差 不大。

2. 加入饱和
饱和区间为[J 得到的系统响应曲线如图8所示:
1.2
1
0.8
0.6
1.4
1
0.8
0.6
0.4
0.2
Q t
『 『 r 「 「 r
1 2 3 4 5 6 t/s
图8加入饱和的系统响应曲线
从图8中可以看出加入饱和特性后,神经网络控制比PID 控制要平缓一些。

3. 加入时滞
在PID 系统和神经网络系统中分别加入相同的时滞后,系统的响应曲线如图
9所示:
1.2 - PID 神经网

7
8
9
10
2.5
PID 神经网络
[/ V
0123456789 10
t/s
图9加入时滞的系统响应曲线
从图9中可以看出,加入时滞特性后神经网络控制的控制效果明显比PID 控制要好很多。

五.总结
经典PID控制原理和现代控制原理的共同特点是:控制器设讣必须建立在被控对象的精确建模上。

没有精确的数学模型,控制器的控制效果及精度将受到很大的制约。

但在现实生活中,大多数系统具有非线性、时变、大延迟等特点,很难建立精确的数学模型。

因此经典控制原理和现代控制原理都很难实现对这种系统的精确控制。

神经网络控制不需要建立基于系统动态特性的数学模型。

神经网络具有的任意非线性逼近能力,可以通过对系统性能的学习来实现具有最佳组合的PID控制。

相关文档
最新文档