2019北京市中考数学试题试卷及答案

合集下载

北京市2019年中考数学试题(解析版)

北京市2019年中考数学试题(解析版)

2019年北京市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只.有.一个。

1. 如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为(A) 45°(B) 55°(C) 125°(D) 135°答案:B考点:用量角器度量角。

解析:由生活知识可知这个角小于90度,排除C、D,又OB边在50与60之间,所以,度数应为55°。

2. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。

将28 000用科学计数法表示应为(A)(B) 28(C)(D)答案:C考点:本题考查科学记数法。

解析:科学记数的表示形式为10na⨯形式,其中1||10≤<,n为整数,28000=。

故选C。

a3. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是(A)a(B)(C)(D)答案:D考点:数轴,由数轴比较数的大小。

解析:由数轴可知,-3<a<-2,故A、B错误;1<b<2,-2<-b<-1,即-b在-2与-1之间,所以,。

4. 内角和为540的多边形是答案:c考点:多边形的内角和。

n-⨯︒,当n=5时,内角和为540°,所以,选C。

解析:多边形的内角和为(2)1805. 右图是某个几何体的三视图,该几何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱答案:D考点:三视图,由三视图还原几何体。

解析:该三视图的俯视为三角形,正视图和侧视图都是矩形,所以,这个几何体是三棱柱。

6. 如果,那么代数2()b aaa a b--的值是(A) 2 (B)-2 (C)(D)答案:A考点:分式的运算,平方差公式。

解析:2()b aaa a b--=22a b aa a b--=()()a b a b aa a b-+-=a b+=2。

7. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是答案:D考点:轴对称图形的辨别。

2019年北京市中考数学试卷

2019年北京市中考数学试卷

2019年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.(2分)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将439000用科学记数法表示为4.39×105.故选:C.2.(2分)下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.3.(2分)正十边形的外角和为()A.180°B.360°C.720°D.1440°【分析】根据多边的外角和定理进行选择.【解答】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.4.(2分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【分析】根据CO=BO可得点C表示的数为﹣2,据此可得a=﹣2﹣1=﹣3.【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.5.(2分)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;设∠MOA=∠AOB=∠BON=α,则∠OCD=∠OCM=,∴∠MCD=180°﹣α,又∵∠CMN=∠OCN=α,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.6.(2分)如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.3【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•(m+n)(m﹣n)=•(m+n)(m﹣n)=3(m+n),当m+n=1时,原式=3.故选:D.7.(2分)用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.3【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【解答】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b,<,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.8.(2分)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5﹣25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20﹣30 之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10 的人数在0﹣15 之间,当人数为0 时中位数在20﹣30 之间;当人数为15 时,中位数在20﹣30 之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0﹣15,35,15,18,1,当0≤t<10时间段人数为0 时,中位数在10﹣20 之间;当0≤t<10时间段人数为15 时,中位数在10﹣20 之间,故④错误.故选:C.二、填空题(本题共16分,每小题2分)9.(2分)分式的值为0,则x的值是1.【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.10.(2分)如图,已知△ABC,通过测量、计算得△ABC的面积约为 1.9cm2.(结果保留一位小数)【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB=2.2cm,CD=1.7cm,∴S△ABC=AB•CD=×2.2×1.7≈1.9(cm2).故答案为:1.9.11.(2分)在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.12.(2分)如图所示的网格是正方形网格,则∠P AB+∠PBA=45°(点A,B,P是网格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠P AB+∠PBA=45°,故答案为:45.13.(2分)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为0.【分析】由点A(a,b)(a>0,b>0)在双曲线y=上,可得k1=ab,由点A与点B 关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y=上,∴k1=ab;又∵点A与点B关于x轴的对称,∴B(a,﹣b)∵点B在双曲线y=上,∴k2=﹣ab;∴k1+k2=ab+(﹣ab)=0;故答案为:0.14.(2分)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为12.【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,得出AC=2OA=6,BD=2OB=4,即可得出菱形的面积.【解答】解:如图1所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,∴AC=2OA=6,BD=2OB=4,∴菱形ABCD的面积=AC×BD=×6×4=12;故答案为:12.15.(2分)小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12=s02(填“>”,“=”或”<”)【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.16.(2分)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.【分析】直接利用绝对值的性质以及零指数幂的性质、特殊角的三角函数值、负指数幂的性质分别化简得出答案【解答】解:原式=﹣1+2×+4=﹣1++4=3+.18.(5分)解不等式组:【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<2,解②得x<,则不等式组的解集为x<2.19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.【分析】(1)由菱形的性质得出AB=AD,AC⊥BD,OB=OD,得出AB:BE=AD:DF,证出EF∥BD即可得出结论;(2)由平行线的性质得出∠G=∠ADO,由三角函数得出tan G=tan∠ADO==,得出OA=OD,由BD=4,得出OD=2,得出OA=1.【解答】(1)证明:连接BD,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠ADO,∴tan G=tan∠ADO==,∴OA=OD,∵BD=4,∴OD=2,∴OA=1.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.【解答】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;故答案为:2.8;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值;合理;故答案为:①②.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【分析】(1)利用圆的定义得到图形G为△ABC的外接圆⊙O,由∠ABD=∠CBD得到=,从而圆周角、弧、弦的关系得到AD=CD;(2)如图,证明CD=CM,则可得到BC垂直平分DM,利用垂径定理得到BC为直径,再证明OD⊥DE,从而可判断DE为⊙O的切线,于是得到直线DE与图形G的公共点个数.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图形G为△ABC的外接圆⊙O,∵AD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为4,5,6;(3)7天后,小云背诵的诗词最多为23首.【分析】(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论.【解答】解:(1)(2)∵每天最多背诵14首,最少背诵4首,∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4=14③,x2+x4≤14④,①+②+④﹣③得,3x2≤28,∴x2≤,∴x1+x2+x3+x4≤+14=,∴x1+x2+x3+x4≤23,∴7天后,小云背诵的诗词最多为23首,故答案为:23.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:在PC,PD,AD的长度这三个量中,确定AD的长度是自变量,PD的长度和PC 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 2.3和4cm.【分析】(1)按照变量的定义,根据函数的定义,PC、PD不可能为自变量,只能是AD 为自变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC=2PD,从图和表格可以看出位置4和位置6符合要求,即AD的长度为2.3和4.0.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k 分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.【分析】(1)令x=0,y=1,直线l与y轴的交点坐标(0,1);(2)①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点;②当x=k+1时,y=﹣k+1,则有k2+2k=0,k=﹣2,当0>k≥﹣1时,W内没有整数点;【解答】解:(1)令x=0,y=1,∴直线l与y轴的交点坐标(0,1);(2)由题意,A(k,k2+1),B(,﹣k),C(k,﹣k),①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2);②直线AB的解析式为y=kx+1,当x=k+1时,y=﹣k+1,则有k2+2k=0,∴k=﹣2,当0>k≥﹣1时,W内没有整数点,∴当0>k≥﹣1或k=﹣2时W内没有整数点;26.(6分)在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.【分析】(1)A(0,﹣)向右平移2个单位长度,得到点B(2,﹣);(2)A与B关于对称轴x=1对称;(3)①a>0时,当x=2时,y=﹣<2,当y=﹣时,x=0或x=2,所以函数与AB无交点;②a<0时,当y=2时,ax2﹣2ax﹣=2,x=或x=当≤2时,a≤﹣;【解答】解:(1)A(0,﹣)点A向右平移2个单位长度,得到点B(2,﹣);(2)A与B关于对称轴x=1对称,∴抛物线对称轴x=1;(3)∵对称轴x=1,∴b=﹣2a,∴y=ax2﹣2ax﹣,①a>0时,当x=2时,y=﹣<2,当y=﹣时,x=0或x=2,∴函数与AB无交点;②a<0时,当y=2时,ax2﹣2ax﹣=2,x=或x=当≤2时,a≤﹣;∴当a≤﹣时,抛物线与线段PQ恰有一个公共点;27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.【分析】(1)根据题意画出图形.(2)由旋转可得∠MPN=150°,故∠OPN=150°﹣∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP=180°﹣30°﹣∠OPM=150°﹣∠OPM,得证.(3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP =∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD =NC,DM=CP.此时加上ON=QP,则易证得△OCN≌△QDP,所以OC=QD.利用∠AOB=30°,设PD=NC=a,则OP=2a,OD=a.再设DM=CP=x,所以QD =OC=OP+PC=2a+x,MQ=DM+QD=2a+2x.由于点M、Q关于点H对称,即点H为MQ中点,故MH=MQ=a+x,DH=MH﹣DM=a,所以OH=OD+DH=a+a=+1,求得a=1,故OP=2.证明过程则把推理过程反过来,以OP=2为条件,利用构造全等证得ON=QP.【解答】解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN﹣∠OPM=150°﹣α∵∠AOB=30°∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α∴∠OMP=∠OPN(3)OP=2时,总有ON=QP,证明如下:过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2∴∠NCP=∠PDM=∠PDQ=90°∵∠AOB=30°,OP=2∴PD=OP=1∴OD=∵OH=+1∴DH=OH﹣OD=1∵∠OMP=∠OPN∴180°﹣∠OMP=180°﹣∠OPN即∠PMD=∠NPC在△PDM与△NCP中∴△PDM≌△NCP(AAS)∴PD=NC,DM=CP设DM=CP=x,则OC=OP+PC=2+x,MH=MD+DH=x+1∵点M关于点H的对称点为Q∴HQ=MH=x+1∴DQ=DH+HQ=1+x+1=2+x∴OC=DQ在△OCN与△QDP中∴△OCN≌△QDP(SAS)∴ON=QP28.(7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.【分析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE 为直径的半圆,的长即以DE为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,①当t=时,要注意圆心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角∠AEP 满足90°≤∠AEP<135°;②根据题意,t的最大值即圆心P在AC上时求得的t值.【解答】解:(1)如图2,以DE为直径的半圆弧,就是△ABC的最长的中内弧,连接DE,∵∠A=90°,AB=AC=,D,E分别是AB,AC的中点,∴BC===4,DE=BC=×4=2,∴弧=×2π=π;(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直平分线上,连接DE,作DE 垂直平分线FP,作EG⊥AC交FP于G,①当t=时,C(2,0),∴D(0,1),E(1,1),F(,1),设P(,m)由三角形中内弧定义可知,圆心线段DE上方射线FP上均可,∴m≥1,∵OA=OC,∠AOC=90°∴∠ACO=45°,∵DE∥OC∴∠AED=∠ACO=45°作EG⊥AC交直线FP于G,FG=EF=根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;∴m≤综上所述,m≤或m≥1.②如图4,设圆心P在AC上,∵P在DE中垂线上,∴P为AE中点,作PM⊥OC于M,则PM=,∴P(t,),∵DE∥BC∴∠ADE=∠AOB=90°∴AE===,∵PD=PE,∴∠AED=∠PDE∵∠AED+∠DAE=∠PDE+∠ADP=90°,∴∠DAE=∠ADP∴AP=PD=PE=AE由三角形中内弧定义知,PD≤PM∴AE≤,AE≤3,即≤3,解得:t≤,∵t>0∴0<t≤.。

2019年北京中考数学试题及答案

2019年北京中考数学试题及答案

2019年北京中考数学试题及答案2019年北京中考数学试题及答案如下:一、选择题(每题2分,共8分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333…D. 3.14答案:B2. 一个数的相反数是-5,这个数是:A. -5B. 5C. 0D. 10答案:B3. 一个等腰三角形的底角为45°,那么顶角的度数是:A. 45°B. 60°C. 90°D. 135°答案:C4. 一个二次函数的图象开口向上,且经过点(1,0),(3,0),则该二次函数的解析式为:A. y = (x-1)(x-3)B. y = (x+1)(x+3)C. y = (x-1)(x-3) + 1D. y = (x+1)(x+3) + 1答案:A二、填空题(每题3分,共24分)5. 一个数的绝对值是5,这个数可以是______。

答案:±56. 一个数的立方是-8,这个数是______。

答案:-27. 一个等腰三角形的周长是30cm,底边长是8cm,那么腰长是______。

答案:11cm8. 一个二次函数的顶点坐标是(2,-1),且经过点(0,3),则该二次函数的解析式为y = a(x-2)^2 - 1,其中a的值为______。

答案:19. 一个直角三角形的两直角边长分别为3和4,那么斜边长为______。

答案:510. 一个圆的半径是5cm,那么它的周长是______。

答案:10π cm11. 一个扇形的圆心角是60°,半径是4cm,那么它的面积是______。

答案:4π cm^212. 一个等差数列的首项是2,公差是3,那么第5项的值是______。

答案:17三、解答题(共78分)13. (本题满分8分)已知一个等腰三角形的底边长为10cm,腰长为13cm,求该三角形的面积。

解:首先,我们可以利用勾股定理求出底边上的高。

设高为h,则有:h^2 + (10/2)^2 = 13^2h^2 + 25 = 169h^2 = 144h = 12cm然后,我们可以利用三角形面积公式求出面积:面积 = (底边长× 高) / 2 = (10 × 12) / 2 = 60 cm^2所以,该等腰三角形的面积是60 cm^2。

2019北京中考数学试卷及答案

2019北京中考数学试卷及答案

2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第18题均有四个选项,符合题意得选项只有一个.1.4月24日就是中国航天日,1970年得这一天,我国自行设计、制造得第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它得运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为(A) (B)(C) (D)2.下列倡导节约得图案中,就是轴对称图形得就是(A) (B) (C) (D)3.正十边形得外角与为(A) (B) (C) (D)4.在数轴上,点A,B在原点O得两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a得值为(A) (B) (C) (D)5.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误得就是(A)∠=∠COD(B)若OM=MN,则∠AOB=20°(C)MN∥CD(D)MN=3CDNMDO BCPA6.如果,那么代数式得值为(A) (B) (C)1 (D)37.用三个不等式,,中得两个不等式作为题设,余下得一个不等式作为结论组成一个命题,组成真命题得个数为(A)0 (B)1 (C)2 (D)38.某校共有200名学生,为了解本学期学生参加公益劳动得情况,收集了她们参加公益劳动时间(单位:小时)等数据,以下就是根据数据绘制得统计图表得一部分.5学生类别下面有四个推断:①这200名学生参加公益劳动时间得平均数一定在24、525、5之间②这200名学生参加公益劳动时间得中位数在2030之间③这200名学生中得初中生参加公益劳动时间得中位数一定在2030之间④这200名学生中得高中生参加公益劳动时间得中位数可能在2030之间所有合理推断得序号就是 (A)①③ (B)②④(C)①②③(D)①②③④二、填空题(本题共16分,每小题2分) 9.若分式得值为0,则得值为、10.如图,已知,通过测量、计算得得面积约为cm 2、(结果保留一位小数)11.在如图所示得几何体中,其三视图中有矩形得就是、(写出所有正确答案得序号)第10题图CBA第11题图③圆锥②圆柱①长方体12.如图所示得网格就是形网格,则=°(点A ,B ,P 就是网格线交点)、13.在平面直角坐标系中,点在双曲线上.点关于轴得对称点在双曲线上,则得值为、 14.把图1中得菱形沿对角线分成四个全等得直角三角形,将这四个直角三角形分别拼成如图2,图3所示得形,则图1中菱形得面积为.图3图2图115.小天想要计算一组数据92,90,94,86,99,85得方差.在计算平均数得过程中,将这组数据中得每一个数都减去90,得到一组新数据2,0,4,4,9,5.记这组新数据得方差为,则、 (填“”,“”或“”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上得点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中,①存在无数个四边形MNPQ就是平行四边形;②存在无数个四边形MNPQ就是矩形;③存在无数个四边形MNPQ就是菱形;④至少存在一个四边形MNPQ就是形.所有正确结论得序号就是.三、解答题(本题共68分,第1721题,每小题5分,第2224题,每小题6分,第25题5分,第26题6分,第2728题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:、18.解不等式组:19.关于x得方程有实数根,且m为正整数,求m得值及此时方程得根.20.如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD得延长线于点G,连接BD交AC于点O,21.创新指数就是反映一个科学技术与创新竞争力得综合指数.对创新指数得分排名前40得得有关数据进行收集、整理、描述与分析.下面给出了部分信息:a.创新指数得分得频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.创新指数得分在60≤x<70这一组得就是:61、7 62、4 63、6 65、9 66、4 68、5 69、1 69、3 69、5c.40个得人均国生产总值与创新指数得分情况统计图:40/万元d.中国得创新指数得分为69、5、(以上数据来源于《创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国得创新指数得分排名世界第;(2)在40个得人均国生产总值与创新指数得分情况统计图中,包括中国在得少数几个所对应得点位于虚线得上方.请在图中用“”圈出代表中国得点;(3)在创新指数得分比中国高得中,人均国生产总值得最小值约为万美元;(结果保留一位小数)(4)下列推断合理得就是.①相比于点A,B所代表得,中国得创新指数得分还有一定差距,中国提出“加快建设创新型”得战略任务,进一步提高综合创新能力;②相比于点B ,C 所代表得,中国得人均国生产总值还有一定差距,中国提出“决胜全面建成小康社会”得奋斗目标,进一步提高人均国生产总值.22.在平面,给定不在同一直线上得点A ,B ,C ,如图所示.点O 到点A ,B ,C 得距离均等于a (a 为常数),到点O 得距离等于a 得所有点组成图形G ,得平分线交图形G 于点D ,连接AD ,CD .(1)求证:AD =CD ;(2)过点D 作DEBA ,垂足为E ,作DFBC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD =CM ,求直线DE 与图形G 得公共点个数.CBA23.小云想用7天得时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第天背诵第二遍,第天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4;③每天最多背诵14首,最少背诵4首. 解答下列问题:(1)填入补全上表;(2)若,,,则得所有可能取值为;(3)7天后,小云背诵得诗词最多为首.24.如图,P就是与弦AB所围成得图形得外部得一定点,C就是上一动点,连接PC交弦AB于点D.在PC,PD,AD得长度这三个量中,确定得长度就是自变量,得长度与得长度都就是这个自变量得函数;(2)在同一平面直角坐标系中,画出(1)中所确定得函数得图象;(3)结合函数图象,解决问题:当PC=2PD时,AD得长度约为cm.25、在平面直角坐标系中,直线l:与直线,直线分别交于点A,B,直线与直线交于点.(1)求直线与轴得交点坐标;(2)横、纵坐标都就是整数得点叫做整点.记线段围成得区域(不含边界)为.①当时,结合函数图象,求区域得整点个数;②若区域没有整点,直接写出得取值围.26.在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B得坐标(用含得式子表示);(2)求抛物线得对称轴;(3)已知点,.若抛物线与线段PQ恰有一个公共点,结合函数图象,求得取值围.27.已知,H为射线OA上一定点,,P为射线OB上一点,M为线段OH上一动点,连接PM,满足为钝角,以点P为中心,将线段PM顺时针旋转,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:;(3)点M关于点H得对称点为Q,连接QP.写出一个OP得值,使得对于任意得点M总有ON=QP,并证明.备用图图1BAOB28.在△ABC 中,,分别就是两边得中点,如果上得所有点都在△ABC 得部或边上,则称为△ABC 得中弧.例如,下图中就是△ABC 得一条中弧.(1)如图,在Rt △ABC 中,分别就是得中点.画出△ABC 得最长得中弧,并直接写出此时得长;(2)在平面直角坐标系中,已知点,在△ABC 中,分别就是得中点. ①若,求△ABC 得中弧所在圆得圆心得纵坐标得取值围;②若在△ABC 中存在一条中弧,使得所在圆得圆心在△ABC 得部或边上,直接写出t 得取值围.2019年北京市中考数学答案一、 选择题、二、 填空题、 9、 1 10、 测量可知11、 ①② 12、45°13、 0 14、 1215、 =16、 ①②③ 三、 解答题、 17.【答案】18.【答案】19、【答案】m=1,此方程得根为20、【答案】(1)证明:∵四边形ABCD为菱形∴AB=AD,AC平分∠BAD∵BE=DF∴∴AE=AF∴△AEF就是等腰三角形∵AC平分∠BAD∴AC⊥EF(2)AO =1、21、【答案】(1)17(2)(3)2、7(4)①②22、【答案】(1)∵BD平分∴∴AD=CD(2)直线DE与图形G得公共点个数为1、23.【答案】(1)如下图第1天第2天第3天第4天第5天第6天第7天第1组第2组第3组第4组(2)4,5,6(3)2324.【答案】(1)AD, PC,PD;(2)(3)2、29或者3、9825、【答案】(1)(2)①6个②或26、【答案】(1);(2)直线;(3).27、【答案】(1)见图(2)在△OPM中,=180150∠︒-∠-∠=︒-∠OMP POM OPM OPM(3)OP=2、28、【答案】(1)如图:(2)①或;②。

2019年北京市中考数学试卷附分析答案

2019年北京市中考数学试卷附分析答案


美元;(结果保留一位小数)
(4)下列推断合理的是

①相比于点 A,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加
快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
②相比于点 B,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决
胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.
位长度,得到点 C,若 CO=BO,则 a 的值为( )
A.﹣3
B.﹣2
C.﹣1
D.1
5.(2 分)已知锐角∠AOB,如图,
(1)在射线 OA 上取一点 C,以点 O 为圆心,OC 长为半径作 ,交射线 OB 于点 D,
连接 CD;
(2)分别以点 C,D 为圆心,CD 长为半径作弧,交 于点 M,N;
26.(6 分)在平面直角坐标系 xOy 中,抛物线 y=ax2+bx 与 y 轴交于点 A,将点 A 向右 平移 2 个单位长度,得到点 B,点 B 在抛物线上. (1)求点 B 的坐标(用含 a 的式子表示); (2)求抛物线的对称轴;
(3)已知点 P( , ),Q(2,2).若抛物线与线段 PQ 恰有一个公共点,结合函数 图象,求 a 的取值范围. 27.(7 分)已知∠AOB=30°,H 为射线 OA 上一定点,OH h1,P 为射线 OB 上一点, M 为线段 OH 上一动点,连接 PM,满足∠OMP 为钝角,以点 P 为中心,将线段 PM 顺 时针旋转 150°,得到线段 PN,连接 ON. (1)依题意补全图 1;
组值,如下表:
位置 1 位置 2 位置 3 位置 4 位置 5 位置 6 位置 7 位置 8
PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83

北京市2019年中考数学试题(含解析)

北京市2019年中考数学试题(含解析)

2019年北京市中考数学试卷一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )A.0.439×106B.4.39×106C.4.39×105D.139×1032.下列倡导节约的图案中,是轴对称图形的是( )A. B. C. D.3.正十边形的外角和为( )A.180°B.360°C.720°D.1440°4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO =BO ,则a 的值为( )A.-3B.-2C.-1D.15.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A.∠COM =∠CODB.若OM =MN ,则∠AOB =20°BC.MN ∥CDD.MN =3CD6.如果1m n +=,那么代数式()22221m nm n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为()A.-3B.-1C.1D.37.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A.0B.1C.2D.38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是( )A.①③B.②④C.①②③D.①②③④二、填空题(本题共16分,每小题2分)9.若分式1x x的值为0,则x 的值为______.10.如图,已知△ABC ,通过测量、计算得△ABC 的面积约为 cm 2.(结果保留一位小数) 11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)学生类别5102012.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.第10题图CBA第11题图③圆锥②圆柱①长方体第12题图15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中, ①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()1142604sin π----++().图3图2图118.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.20.如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tanG=12,求AO的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息: a .国家创新指数得分的频数分布直方图(数据分成7组:30≤x <40,40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:d .中国的国家创新指数得分为69.5./万元(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数) (4)下列推断合理的是______.①相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离∠的平分线交图形均等于a(a为常数),到点O的距离等于a的所有点组成图形G,ABCG于点D,连接AD,C D.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.23.小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i 组有i x 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;③每天最多背诵14首,最少背诵4首. 解答下列问题: (1)填入3x 补全上表; (2)若14x =,23x =,34x =,则4x 的所有可能取值为_________;(3)7天后,小云背诵的诗词最多为______首.24.如图,P是AB与弦AB所围成的图形的外部的一定点,C是AB上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在AB上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:在PC,PD,AD的长度这三个量中,确定的长度是自变量,的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;AB(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为______cm.25. 在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线yk =-交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W . ①当2k=时,结合函数图象,求区域W 内的整点个数;②若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy中,抛物线21y ax bxa与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点11(,)2Pa,(2,2)Q.若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.已知30AOB ∠=︒,H 为射线OA上一定点,1OH =+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON =QP ,并证明.备用图图1BAO28.在△ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC 的中内弧.例如,下图中是△ABC 的一条中内弧.(1)如图,在Rt △ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出△ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00AB C t t >,,,在△ABC 中,D E ,分别是AB AC ,的中点.①若12t=,求△ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧,使得所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.ABCDE AED CB2019年北京市中考数学试卷一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )A.0.439×106B.4.39×106C.4.39×105D.139×103【解析】本题考察科学记数法较大数,N a 10⨯中要求10||1<≤a ,此题中5,39.4==N a ,故选C2.下列倡导节约的图案中,是轴对称图形的是( )B. B.C.D. 【解析】本题考察轴对称图形的概念,故选C3.正十边形的外角和为( )A.180°B.360°C.720°D.1440°【解析】多边形的外角和是一个定值360°,故选B4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO =BO ,则a 的值为( )A.-3B.-2C.-1D.1【解析】本题考察数轴上的点的平移及绝对值的几何意义.点A 表示数为a ,点B 表示数为2,点C 表示数为a +1,由题意可知,a <0,∵CO =BO ,∴2|1|=+a ,解得1=a (舍)或3-=a ,故选A5.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( ) A.∠COM =∠COD B.若OM =MN ,则∠AOB =20°C.MN ∥CDD.MN =3CD【解析】连接ON ,由作图可知△COM ≌△DON .A. 由△COM ≌△DON .,可得∠COM =∠COD ,故A 正确.B. 若OM =MN ,则△OMN 为等边三角形,由全等可知∠COM =∠COD =∠DON =20°,故B 正确C.由题意,OC =OD ,∴∠OCD =2COD180∠-︒.设OC 与OD 与MN 分别交于R ,S ,易证△MOR ≌△NOS ,则OR =OS ,∴∠ORS =2COD180∠-︒,∴∠OCD =∠ORS .∴MN ∥CD ,故C 正确.D.由题意,易证MC =CD =DN ,∴MC +CD +DN =3C D.∵两点之间线段最短.∴MN <MC +CD +DN =3CD ,故选D6.如果1m n +=,那么代数式()22221m nm n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为()A.-3B.-1C.1D.3【解析】:()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭B))(()()(2n m n m n m m n m n m m n m -+⋅⎥⎦⎤⎢⎣⎡--+-+= )(3))(()(3n m n m n m n m m m+=-+⋅-=1=+n m∴原式=3,故选D7.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A.0B.1C.2D.3【解析】本题共有3种命题: 命题①,如果0,>>ab b a ,那么ba 11<. ∵b a >,∴0>-b a ,∵0>ab ,∴0>-ab b a ,整理得ab 11>,∴该命题是真命题. 命题②,如果,11,ba b a <>那么0>ab . ∵,11b a <∴.0,011<-<-aba b b a ∵b a >,∴0<-a b ,∴0>ab . ∴该命题为真命题. 命题③,如果ba ab 11,0<>,那么b a >. ∵,11b a <∴.0,011<-<-aba b b a ∵0>ab ,∴0<-a b ,∴a b < ∴该命题为真命题.故,选D9.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间学生类别51020③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是( )A.①③B.②④C.①②③D.①②③④【解析】①由条形统计图可得男生人均参加公益劳动时间为24.5h ,女生为25.5h ,则平均数一定在24.5~25.5之间,故①正确②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t <10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确. ④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当 0≤t <10时间段人数为0时,中位数在10~20之间;当0≤t <10时间段人数为15时,中位数在10~20之间,故④错误 故,选C二、填空题(本题共16分,每小题2分)9.若分式1x x-的值为0,则x 的值为______.【解析】本题考查分式值为0,则分子01=-x ,且分母0≠x ,故答案为110.如图,已知△ABC ,通过测量、计算得△ABC 的面积约为 cm 2.(结果保留一位小数)【解析】本题考查三角形面积,直接动手操作测量即可,故答案为“测量可知”11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)【解析】本题考查对三视图的认识.①长方体的主视图,俯视图,左视图均为矩形;②圆柱的主视图,左视图均为矩形,俯视图为圆;③圆锥的主视图和左视图为三角形,俯视图为圆.故答案为①②12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).【解析】本题考查三角形的外角,可延长AP 交正方形网格于点Q ,连接BQ ,如图所示,经计算105===PB BQ PQ ,,∴222PB BQ PQ =+,即△PBQ 为等腰直角三角形,∴∠BPQ =45°,∵∠P AB +∠PBA =∠BPQ =45°,故答案为45第10题图CBA第11题图③圆锥②圆柱①长方体第12题图13.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______.【解析】本题考查反比例函数的性质,A (a ,b )在反比例xk y 1=上,则ab k =1,A 关于x 轴的对称点B 的坐标为),(b a -,又因为B 在xk y 2=上,则ab k -=2,∴021=+k k 故答案为014.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.【解析】设图1中小直角三角形的两直角边分别为a ,b (b >a ),则由图2,图3可列方程组,15⎩⎨⎧=-=+a b b a 解得⎩⎨⎧==32b a ,所以菱形的面积.126421=⨯⨯=S 故答案为12. 15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)【解析】本题考查方差的性质。

2019年北京市中考数学试题及答案

2019年北京市中考数学试题及答案

2019年北京市中考数学试卷及答案一、选择题(本题共16分,每小题2分)说明:第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为(A )60.43910 (B )64.3910(C )54.3910 (D )3439102.下列倡导节约的图案中,是轴对称图形的是(A ) (B ) (C ) (D ) 3.正十边形的外角和为(A )180 (B )360 (C )720 (D )14404.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为 (A )3 (B )2 (C )1 (D )1 5.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;B(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是(A )∠COM=∠COD (B )若OM=MN ,则∠AOB=20° (C )MN ∥CD (D )MN=3CD6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为(A )3- (B )1- (C )1 (D )37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为 (A )0 (B )1 (C )2 (D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是(A )①③ (B )②④ (C )①②③ (D )①②③④ 二、填空题(本题共16分,每小题2分)9.若分式1x x 的值为0,则x 的值为______.10.如图,已知ABC ,通过测量、计算得ABC 的面积约为______cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)学生类别512.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合).对于任意矩形ABCD ,下面四个结论中,第10题图CBA第11题图③圆锥②圆柱①长方体第12题图图3图2图1①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sin π----++().18.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.20.如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF .(1)求证:AC ⊥EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O,若BD=4,tanG=12,求AO的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:/万元d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l 的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数.23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有i x 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;③每天最多背诵14首,最少背诵4首.CBA解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________; (3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦AB 于点D .小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整: (1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:AB在PC ,PD ,AD 的长度这三个量中,确定______的长度是自变量,______的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD 时,AD 的长度约为______cm .25. 在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线y k =-交于点C . (1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W .①当2k =时,结合函数图象,求区域W 内的整点个数; ②若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy 中,抛物线21y ax bxa 与y 轴交于点A ,将点A向右平移2个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点11(,)2P a ,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知30AOB ∠=︒,H为射线OA 上一定点,1OH =+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1; (2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.28.在△ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC 的中内弧.例如,下图中是△ABC 的一条中内弧.(1)如图,在Rt △ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出△ABC 的最长的中内弧,并直接写出此时的长;备用图图1BAOABCDE AED CB(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t>,,,在△ABC中,D E,分别是AB AC,的中点.①若12t =,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.参考答案一. 选择题.1 C ;2 C ;3 B ;4 A ;5 D ;6 D ;7 D ;8 C 。

2019年北京中考数学试题及答案

2019年北京中考数学试题及答案

2019年北京中考数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个选项是正确的?A. 2 + 3 = 5B. 2 × 3 = 5C. 2 ÷ 3 = 5D. 2 - 3 = 5答案:B2. 一个数的平方等于它本身,这个数可能是:A. 0B. 1C. -1D. 以上都是答案:D3. 一个等腰三角形的两边长分别为3和4,那么第三边的长度是:A. 1B. 3C. 4D. 7答案:C4. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A5. 下列哪个选项是不等式?A. 2 + 3 = 5B. 2 × 3 = 6C. 2 > 3D. 2 = 3答案:C6. 一个长方体的长、宽、高分别为2cm、3cm和4cm,它的体积是:A. 24立方厘米B. 12立方厘米C. 8立方厘米D. 6立方厘米答案:A7. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 负数C. 零D. 以上都是答案:A8. 一个等差数列的前三项是2、5、8,那么第四项是:A. 11B. 10C. 9D. 8答案:A9. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A10. 一个数的立方等于它本身,这个数可能是:A. 0B. 1C. -1D. 以上都是答案:D二、填空题(每题4分,共40分)1. 一个数的相反数是-5,那么这个数是 _ 。

答案:52. 一个数的倒数是1/2,那么这个数是 _ 。

答案:23. 一个数的平方根是4,那么这个数是 _ 。

答案:164. 一个数的立方根是2,那么这个数是 _ 。

答案:85. 一个数的1/3是10,那么这个数是 _ 。

答案:306. 一个数的2/3是20,那么这个数是 _ 。

答案:307. 一个数的3/4是36,那么这个数是 _ 。

答案:488. 一个数的4/5是40,那么这个数是 _ 。

2019年北京市中考数学试卷及答案解析

2019年北京市中考数学试卷及答案解析

2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)1.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×1032.下列倡导节约的图案中,是轴对称图形的是()A .B .C .D .3.正十边形的外角和为()A.180°B.360°C.720°D.1440°4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.15.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC 长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD 长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD6.如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.37.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳时间t0≤t<1010≤t<2020≤t<3030≤t<40t≥40人数学生类型性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④二、填空题(本题共16分,每小题2分)9.分式的值为0,则x的值是.10.如图,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.15.小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12s02(填“>”,“=”或”<”)16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.18.(5分)解不等式组:19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为;(3)7天后,小云背诵的诗词最多为首.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k 分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.26.(6分)在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.28.(7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.2019年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×103【答案】C2.下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【答案】C3.正十边形的外角和为()A.180°B.360°C.720°D.1440°【分析】根据多边的外角和定理进行选择.【解答】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.【点评】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【分析】根据CO=BO可得点C表示的数为﹣2,据此可得a=﹣2﹣1=﹣3.【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.6.如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.3【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•(m+n)(m﹣n)=•(m+n)(m﹣n)=3(m+n),当m+n=1时,原式=3.故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.7.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.3【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【解答】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b,<,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.【点评】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳时间t人数学生类型0≤t<1010≤t<2020≤t<3030≤t<40t≥40性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5﹣25.5之间,正确;②这200名学生参加公益劳动时间的中位数在20﹣30之间,正确;③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间,正确;④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间,错误.故选:C.【点评】本题考查了中位数与平均数,正确理解中位数与平均数的意义是解题的关键.二、填空题(本题共16分,每小题2分)9.分式的值为0,则x的值是1.【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.【点评】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.10.如图,已知△ABC,通过测量、计算得△ABC的面积约为 1.9cm2.(结果保留一位小数)【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB=2.2cm,CD=1.7cm,∴S△ABC=AB•CD=×2.2×1.7≈1.9(cm2).故答案为:1.9.【点评】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.11.在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【点评】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.12.如图所示的网格是正方形网格,则∠P AB+∠PBA=45°(点A,B,P是网格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠P AB+∠PBA=45°,故答案为:45.【点评】本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为0.【分析】由点A(a,b)(a>0,b>0)在双曲线y=上,可得k1=ab,由点A与点B关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y=上,∴k1=ab;又∵点A与点B关于x轴的对称,∴B(a,﹣b)∵点B在双曲线y=上,∴k2=﹣ab;∴k1+k2=ab+(﹣ab)=0;故答案为:0.【点评】考查反比例函数图象上的点坐标的特征,关于x轴对称的点的坐标的特征以及互为相反数的和为0的性质.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为12.【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,得出AC=2OA=6,BD=2OB=4,即可得出菱形的面积.【解答】解:如图1所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,∴AC=2OA=6,BD=2OB=4,∴菱形ABCD的面积=AC×BD=×6×4=12;故答案为:12.【点评】本题考查了菱形的性质、正方形的性质、二元一次方程组的应用;熟练掌握正方形和菱形的性质,由题意列出方程组是解题的关键.15.小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12=s02(填“>”,“=”或”<”)【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.【点评】本题考查方差的意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是菱形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.【点评】本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.【分析】直接利用绝对值的性质以及零指数幂的性质、特殊角的三角函数值、负指数幂的性质分别化简得出答案【解答】解:原式=﹣1+2×+4=﹣1++4=3+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(5分)解不等式组:【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<2,解②得x<,则不等式组的解集为2<x<.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.【点评】此题主要考查了根的判别式,正确得出m的值是解题关键.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.【分析】(1)由菱形的性质得出AB=AD,AC⊥BD,OB=OD,得出AB:BE=AD:DF,证出EF∥BD即可得出结论;(2)由平行线的性质得出∠G=∠ADO,由三角函数得出tan G=tan∠ADO==,得出OA=OD,由BD=4,得出OD=2,得出OA=1.【解答】(1)证明:连接BD,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠ADO,∴tan G=tan∠ADO==,∴OA=OD,∵BD=4,∴OD=2,∴OA=1.【点评】本题考查了菱形的性质、平行线的判定与性质、解直角三角形等知识;熟练掌握菱形的性质是解题的关键.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.【解答】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;故答案为:2.8;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;故答案为:①②.【点评】本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【分析】(1)利用圆的定义得到图象G为△ABC的外接圆⊙O,由∠ABD=∠CBD得到=,从而圆周角、弧、弦的关系得到AD=CD;(2)如图,证明CD=CM,则可得到BC垂直平分DM,利用垂径定理得到BC为直径,再证明OD⊥DE,从而可判断DE为⊙O的切线,于是得到直线DE与图形G的公共点个数.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图象G为△ABC的外接圆⊙O,∵AD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理、切线的判定.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为4,5,6;(3)7天后,小云背诵的诗词最多为23首.【分析】(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论.第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组x3x3x3第4组x4x4x4∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,①+②+④﹣③得,3x2≤28,∴x2≤,∴x1+x2+x3+x4≤+14=,∴x1+x2+x3+x4≤23,∴7天后,小云背诵的诗词最多为23首,故答案为:23.【点评】本题考查了规律型:数字的变化类,不等式的应用,正确的理解题意是解题的关键.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几位置1位置2位置3位置4位置5位置6位置7位置8 PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83 PD/cm 3.44 2.69 2.00 1.360.96 1.13 2.00 2.83 AD/cm0.000.78 1.54 2.30 3.01 4.00 5.11 6.00确定PC的长度是自变量,PD的长度和AD 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 1.59(答案不唯一)cm.【分析】(1)按照变量的定义,PC是自变量,而PD、AD随PC的变化而变化,故PD、AD都是因变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)按照变量的定义,PC是自变量,而PD、AD随PC的变化而变化,故PD、AD都是因变量,故答案为:PC、PD、AD;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值约为1.59,故答案为1.59(答案不唯一).【点评】本题考查的是动点的函数图象,此类问题主要是通过描点画出函数图象,根据函数关系,在图象上查出相应的近似数值.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k 分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;。

2019北京中考数学试题及答案

2019北京中考数学试题及答案

2019年北京市高级中等学校招生考试数学试卷姓名______________准考证号考场号座位号考生须知1.本试卷共8页,共三道大题,28道小题。

满分100分。

考试时间120分钟。

2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共16分,每小题2分)第1–8题均有四个选项,符合题意的选项只有一个.14月24日是中国航天日1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代它的运行轨道,距地球最近点439000米将439000用科学记数法表示应为(A)0439×106(B)439×106(C)439×105(D)439×1032下列倡导节约的图案中,是轴对称图形的是(A)(B)(C)(D)3正十边形的外角和为(A)180°(B)360°(C)720°(D)1440°4在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C若CO=BO,则a的值为(A)-3 (B)-2 (C)-1 (D)15已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交PQ于点M,N;(3)连接OM,MN根据以上作图过程及所作图形,下列结论中错误的是(A)∠COM=∠COD(B)若OM=MN,则∠AOB=20°(C)MN∥CD(D)MN=3CD6如果m +n =1,那么代数式(2m +n m 2-mn +1m)·(m 2-n 2)的值为(A)-3 (B)-1 (C)1 (D)37用三个不等式a >b ,ab >0,1a <1b中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为 (A)0 (B)1 (C)2 (D)38某校共有200名学生为了解本学期学生参加公益劳动的情况,收集了他们参加公益下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在245~255之间 ②这200名学生参加公益劳动时间的中位数在20~30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间 所有合理推断的序号是 (A)①③ (B)②④ (C)①②③ (D)①②③④ 二、填空题(本题共16分,每小题2分)9若分式x -1x的值为0,则x 的值为______10如图,已知△ABC ,通过测量、计算得△ABC 的面积约为______cm 2(结果保留一位小数) 11在如图所示的几何体中,其三视图中有矩形的是______(写出所有正确答案的序号)第10题图(第11题图)(第12题图)12如图所示的网格是正方形网格,则∠P AB +∠PBA =______°(点A ,B ,P 是网格线交点)13在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =k 1x上,点A 关于x 轴的对称点B 在双曲线y=k 2x上,则k 1+k 2的值为______0≤t<10 10≤t<20 20≤t<30 30≤t<40 t≥40性别男7 31 25 30 4 女 8 29 26 32 8 学段初中25 36 44 11 高中时间t 人 数人数学生类别14把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为图1图2图315小天想要计算一组数据92,90,94,86,99,85的方差20s 在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5记这组新数据的方差为21s ,则21s ______20s (填“>”,“=”或“<”)16在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合)对于任意矩形ABCD ,下面四个结论中, ①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形 所有正确结论的序号是______三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程. 17计算:3-(4-π)0+2sin60°+(14)-118解不等式组:4(1)2, 7.3x xx x19关于x 的方程x 2-2x +2m -1=0有实数根,且m 为正整数,求m 的值及此时方程的根 20如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE =DF ,连接EF (1)求证:AC ⊥EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O 若BD =4,tan G =12,求AO 的长21国家创新指数是反映一个国家科学技术和创新竞争力的综合指数对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析下面给出了部分信息: a国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c40个国家的人均国内生产总值和国家创新指数得分情况统计图:d中国的国家创新指数得分为69.5(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方请在图中用“○”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值22在平面内,给定不在同一条直线上的点A,B,C,如图所示点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM若AD=CM,求直线DE与图形G的公共点个数23小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4③每天最多背诵14首,最少背诵4首解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为______;(3)7天后,小云背诵的诗词最多为______首24如图,P是AB与弦AB所围成的图形的外部的一定点,C是AB上一动点,连接PC 交弦AB于点D小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究下面是小腾的探究过程,请补充完整:(1)对于点C在AB上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8 PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83AD/cm 0.00 0.78 1.54 2.30 3.01 4.00 5.11 6.00在PC,PD,AD的长度这三个量中,确定______的长度是自变量,______的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为______cm25在平面直角坐标系xOy 中,直线l :y =kx +1(k ≠0)与直线x =k ,直线y =-k 分别交于点A ,B ,直线x =k 与直线y =-k 交于点C (1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点记线段AB ,BC ,CA 围成的区域(不含边界)为W ①当k =2时,结合函数图象,求区域W 内的整点个数; ②若区域W 内没有整点,直接写出k 的取值范围26在平面直角坐标系xOy 中,抛物线y =ax 2+bx -1a 与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上 (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点P (12,-1a ),Q (2,2)若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围27已知∠AOB =30°,H 为射线OA 上一定点,OH = 3 +1,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足∠OMP 为钝角,以点P 为中心,将线段PM 顺时针旋转150°,得到线段PN ,连接ON (1)依题意补全图1; (2)求证:∠OMP =∠OPN ;(3)点M 关于点H 的对称点为Q ,连接QP 写出一个OP 的值,使得对于任意的点M 总有ON =QP ,并证明图1备用图28在9△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE 上的所有点都在△ABC 的内部或边上,则称DE 为△ABC 的中内弧例如,下图中DE 是△ABC 的一条中内弧(1)如图,在Rt △ABC 中,AB =AC =2 2 ,D ,E 分别是AB ,AC 的中点画出△ABC 的最长的中内弧DE ,并直接写出此时DE 的长;(2)在平面直角坐标系中,已知点A (0,2),B (0,0),C (4t ,0)(t >0)在△ABC 中,D ,E 分别是AB ,AC 的中点①若t =12,求△ABC 的中内弧DE 所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧DE ,使得DE 所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围2019年北京市高级中等学校招生考试数学试卷答案一、选择题题号 1 2 3 4 5 6 7 8 答案 CCBADDDC二、填空题9110约为2.6 11①② 1245 130 1412 15= 16①②③三、解答题 17解:原式= 3 -1+2×32+4=2 3 +318(本小题满分5分)解:原不等式组为4(1)2, 7.3x xx x ①②解不等式①,得x <2 解不等式②,得x <72∴原不等式组的解集为x <219(本小题满分5分)解:由题意,得△=(-2)2-4(2m -1)≥0 解得m ≤1 ∵m 为正整数, ∴m =1此时,方程为x 2-2x +1=0 解得x 1=x 2=1∴当m =1时,方程的根为x 1=x 2=120(本小题满分5分)(1)证明:∵四边形ABCD 为菱形,∴AB =AD ,AC 平分∠BAD ∵BE =DF , ∴AE =AF ∴AC ⊥EF(2)解:∵四边形ABCD 为菱形,∴AO =OC ,OD =12 BD ,AC ⊥BD∵EF ⊥AC , ∴BD ∥EG ∴∠G =∠BDC ∵BD =4, ∴OD =2在Rt △COD 中,tan ∠CDO =tan G =12 ,可得OC =1∴AO =121(本小题满分5分) 答:(1)17; (2)(3)人均国内生产总值的最小值约为2.8万美元; (4)①②22(本小题满分6分)(1)证明:由题意,可知图形G 是以O 为圆心,a 为半径的圆,点A ,B ,C ,D 在⊙O 上连接OA ,OC ,OD ,如图 ∵BD 平分∠ABC , ∴∠ABD =∠CBD∵∠ABD =12 ∠AOD ,∠CBD =12 ∠COD ,∴∠AOD =∠COD ∴AD =CD(2)解:∵AD =CD ,AD =CM ,∴CD =CM ∴∠CDM =∠CMD ∵∠CMD =∠CBD , ∴∠CDM =∠CBD ∵DM ⊥BC ,∴∠DCB +∠CDM =90° ∴∠DCB +∠CBD =90° ∴∠BDC =90° ∴BC 为⊙O 的直径 ∴点O 在BC 上∵OB =OD , ∴∠OBD =∠ODB ∴∠ABD =∠ODB ∴AB ∥OD ∵DE ⊥BE , ∴OD ⊥DE ∴DE 为⊙O 的切线∴DE 与⊙O 只有一个公共点,即直线DE 与图形G 的公共点个数为123(本小题满分6分) 答:(1)(2)4,5,6; (3)2324(本小题满分6分) 解:(1)AD ,PC ,PD ; (2)(3)当PC =2PD 时,AD 的长度约为2.29或3.99cm第1天 第2天 第3天 第4天 第5天 第6天 第7天 第1组 x 1 x 1 x 1 第2组 x 2 x 2 x 2 第3组 x 3 x 3 x 3 第4组x 4x 4x 425(本小题满分5分) 解:(1)令x =0,解得y =1∴直线y =k x +1(k ≠0)与y 轴的交点坐标为(0,1)(2)①当k =2时,三条直线分别为y =2x +1,x =2,y=-2∴点A (2,5),B (-32 ,-2),C (2,-2)结合函数图象,可得区域W 内的整点个数为6②-1≤k <0或k =-226(本小题满分6分)解:(1)∵抛物线y =ax 2+bx -1a与y 轴交于点A ,∴点A 的坐标为(0,-1a)∵将点A 向右平移2个单位长度,得到点B , ∴点B 的坐标为(2,-1a )(2)∵点B (2,-1a )在抛物线上,∴4a +2b -1a =-1a ,即b =-2a∴抛物线的对称轴为x=1(3)点A (0,-1a ),B (2,-1a ),P (12 ,-1a )当a >0时,-1a <0,如图1令抛物线上的点C (12 ,y C )∵当x <1时,y 随x 的增大而减小, ∴y C <-1a令抛物线上的点D (x D ,2)(x D >1) ∵当x >1时,y 随x 的增大而增大, ∴x D >2结合函数图象,可知抛物线与线段PQ 没有公共点图1当a <0时,(ⅰ)当-12 <a <0时,-1a>2,如图2令抛物线上的点C (12 ,y C )∵当x <1时,y 随x 的增大而增大, ∴y C >-1a令抛物线上的点D (x D ,2)(x D >1) ∵当x >1时,y 随x 的增大而减小, ∴x D >2结合函数图象,可知抛物线与线段PQ 没有公共点 (ⅱ)当a =-12 时,A (0,2),B (2,2),P (12,2),Q (2,2),如图3结合函数图象,可知抛物线与线段PQ 恰有一个公共点Q (2,2)(ⅲ)当a<-12 时,0<-1a<2,如图4令抛物线上的点C (12 ,y C )∵当x <1时,y 随x 的增大而增大, ∴y C >-1a令抛物线上的点D (x D ,y D )(x D ≥1,y D >-1a ),∵当x>1时,y 随x 的增大而减小, ∴x D <2结合函数图象,可知抛物线与线段PQ 恰有一个公共点 综上所述,a 的取值范围为a ≤-12图3图4图1(1)解:补全图形,如图(2)证明:∵∠MPN=150°,∴∠OPN=150°-∠OPM∵∠AOB=30°,∴∠OMP=180°-(∠AOB+∠OPM)=150°-∠OPM∴∠OMP=∠OPN(3)解:OP的值为2证明:任取满足条件的点M,过点P作PS⊥OA于点S,在OA上取一点T,使得ST=SM,连接TP,如图∴PT=PM∴∠PTM=∠PMT,PT=PN∴∠PTQ=∠PMO∴∠PTQ=∠NPO∵点M关于点H的对称点为Q,∴MH=HQ当点T在点H的左侧时,QT=HQ+HT=HM+HT=2ST+HT+HT=2(ST+HT)=2HS在Rt△OPS中,OS=OP·cos30°= 3∵OH= 3 +1,∴HS=OH-OS= 3 +1- 3 =1∴QT=2当点T在点H的右侧或与点H重合时,同理可求QT=2∴QT=OP∴△OPN≌△QTP∴ON=QP解:(1)△ABC 的最长的中内弧DE ,如图DE 的长为π(2)①当t =12时,点C (2,0)取BC 的中点F (1,0),则四边形DEFB 为正方形(ⅰ)DE (除端点外)在线段DE 的上方,当DE 所在圆⊙P 1与AC 相切时,圆心P 1是正方形DEFB 的中心 ∴点P 1(12 ,12)结合图形,可得点P 的纵坐标y P ≤12(ⅱ)DE (除端点外)在线段DE 的下方,当DE 所在圆⊙P 2与AB 相切时,圆心P 2是线段DE 的中点 ∴点P 2(12,1)结合图形,可得点P 的纵坐标y P ≥1综上所述,圆心P 的纵坐标y P 的取值范围是y P ≤12 或y P ≥1②t 的取值范围是0<t ≤ 2。

2019年北京市中考数学试题及答案解析

2019年北京市中考数学试题及答案解析

2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为 (A )60.43910(B )64.3910(C )54.3910(D )3439102.下列倡导节约的图案中,是轴对称图形的是(A ) (B ) (C ) (D )3.正十边形的外角和为(A )180 (B )360 (C )720 (D )14404.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为(A )3(B )2 (C )1 (D )15.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是 (A )∠COM=∠COD (B )若OM=MN ,则∠AOB=20°(C )MN∠CD(D )MN=3CDB6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为(A )3-(B )1-(C )1 (D )37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A )0 (B )1 (C )2 (D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:∠这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ∠这200名学生参加公益劳动时间的中位数在20-30之间∠这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间学生类别5∠这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是 (A )∠∠(B )∠∠(C )∠∠∠ (D )∠∠∠∠二、填空题(本题共16分,每小题2分)9.若分式1x x -的值为0,则x 的值为______.10.如图,已知ABC ,通过测量、计算得ABC 的面积约为______cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中, ∠存在无数个四边形MNPQ 是平行四边形; ∠存在无数个四边形MNPQ 是矩形; ∠存在无数个四边形MNPQ 是菱形; ∠至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sin π----++().18.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.图3图2图120.如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF .(1)求证:AC∠EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD=4,tanG=12,求AO 的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息: a .国家创新指数得分的频数分布直方图(数据分成7组:30≤x <40,40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数) (4)下列推断合理的是______.∠相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;∠相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数./万元23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ∠将诗词分成4组,第i 组有i x 首,i =1,2,3,4;∠对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;∠每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________;(3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PCCBA交弦AB 于点D .小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整: (1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:在PC ,PD ,AD 的长度这三个量中,确定的长度是自变量,的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;AB(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为______cm.25. 在平面直角坐标系xOy中,直线l:()10y kx k=+≠与直线x k=,直线y k=-分别交于点A,B,直线x k=与直线y k=-交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA,,围成的区域(不含边界)为W.∠当2k=时,结合函数图象,求区域W内的整点个数;∠若区域W内没有整点,直接写出k的取值范围.26.在平面直角坐标系xOy中,抛物线21y ax bxa与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点11(,)2Pa,(2,2)Q.若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.已知30AOB ∠=︒,H 为射线OA上一定点,1OH=+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.28.在∠ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在∠ABC 的内部或边上,则称为∠ABC 的中内弧.例如,下图中是∠ABC 的一条中内弧.(1)如图,在Rt∠ABC中,AB AC D E ==,分别是AB AC ,的中点.画出备用图图1BAOB ABCDE∠ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在∠ABC 中,D E ,分别是AB AC ,的中点.∠若12t =,求∠ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围; ∠若在∠ABC 中存在一条中内弧,使得所在圆的圆心P 在∠ABC 的内部或边上,直接写出t 的取值范围.AED CB2019年北京市中考数学答案参考答案与试题解析一. 选择题.二. 填空题.9. 1 10. 测量可知11. ∠∠ 12. 45°13. 0 14. 12 15. =16. ∠∠∠三. 解答题.17.【答案】18.【答案】2 x<19.【答案】m=1,此方程的根为121x x== 20.【答案】(1)证明:∠四边形ABCD为菱形∠AB=AD,AC平分∠BAD∠BE=DF∠AB BE AD DF-=-∠AE=AF∠∠AEF是等腰三角形∠AC平分∠BAD∠AC∠EF(2)AO =1.21. 【答案】 (1)17 (2)(3)2.7 (4)∠∠ 22. 【答案】 (1)∠BD 平分∠ABC ∠∠=∠ABD CBD∠AD=CD(2)直线DE 与图形G 的公共点个数为1. 23. 【答案】 (1)如下图 第1天 第2天 第3天 第4天 第5天 第6天 第7天 第1组 第2组第3组3x 3x3x(2)4,5,6 (3)23 24. 【答案】(1)AD , PC ,PD ; (2)(3)2.29或者3.98 25. 【答案】 (1)()0,1(2)∠6个 ∠10k -≤<或2k =-26. 【答案】(1)1(2,)B a ; (2)直线1x;(3)1a ≤2.27. 【答案】 (1)见图(2) 在∠OPM中,=180150OMP POM OPM OPM ∠︒-∠-∠=︒-∠150OPN MPN OPM OPM ∠=∠-∠=︒-∠ OMP OPN ∴∠=∠(3)OP=2. 28. 【答案】 (1)如图:1801180180n r l πππ===(2)∠1P y ≥或12P y ≤; ∠02t<≤BCD E。

2019年北京市中考数学试题(Word版,解析版)含答案

2019年北京市中考数学试题(Word版,解析版)含答案

12019年北京市中考数学试卷一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )A.0.439×106B.4.39×106C.4.39×105D.139×103【解析】本题考察科学记数法较大数,Na 10⨯中要求10||1<≤a ,此题中5,39.4==N a ,故选C2.下列倡导节约的图案中,是轴对称图形的是( )A. B. C. D. 【解析】本题考察轴对称图形的概念,故选C3.正十边形的外角和为( )A.180°B.360°C.720°D.1440°【解析】多边形的外角和是一个定值360°,故选B4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A.-3B.-2C.-1D.1【解析】本题考察数轴上的点的平移及绝对值的几何意义.点A 表示数为a ,点B 表示数为2,点C 表示数为a+1,由题意可知,a <0,∵CO=BO ,∴2|1|=+a ,解得1=a (舍)或3-=a ,故选A5.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( ) A.∠COM=∠COD B.若OM=MN ,则∠AOB=20°C.MN ∥CDD.MN=3CD【解析】连接ON ,由作图可知△COM ≌△DON.A. 由△COM ≌△DON.,可得∠COM=∠COD ,故A 正确.B. 若OM=MN ,则△OMN 为等边三角形,由全等可知∠COM=∠COD=∠DON=20°,故B 正确C.由题意,OC=OD ,∴∠OCD=2COD180∠-︒.设OC 与OD 与MN 分别交于R ,S ,易证△MOR ≌△NOS ,则OR=OS ,∴∠ORS=2COD180∠-︒,∴∠OCD=∠ORS.∴MN ∥CD ,故C 正确.D.由题意,易证MC=CD=DN ,∴MC+CD+DN=3CD.∵两点之间线段最短.∴MN <MC+CD+DN=3CD ,故选D6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( )A.-3B.-1C.1D.3【解析】:()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭B3))(()()(2n m n m n m m n m n m m n m -+⋅⎥⎦⎤⎢⎣⎡--+-+=)(3))(()(3n m n m n m n m m m+=-+⋅-=1=+n m∴原式=3,故选D7.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A.0B.1C.2D.3【解析】本题共有3种命题: 命题①,如果0,>>ab b a ,那么ba 11<. ∵b a >,∴0>-b a ,∵0>ab ,∴0>-ab b a ,整理得ab 11>,∴该命题是真命题. 命题②,如果,11,ba b a <>那么0>ab . ∵,11b a <∴.0,011<-<-aba b b a ∵b a >,∴0<-a b ,∴0>ab . ∴该命题为真命题. 命题③,如果ba ab 11,0<>,那么b a >. ∵,11b a <∴.0,011<-<-aba b b a ∵0>ab ,∴0<-a b ,∴a b < ∴该命题为真命题.故,选D8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.5学生类别下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【解析】①由条形统计图可得男生人均参加公益劳动时间为24.5h,女生为25.5h,则平均数一定在24.5~25.5之间,故①正确②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误故,选C二、填空题(本题共16分,每小题2分)9.若分式1xx-的值为0,则x的值为______.【解析】本题考查分式值为0,则分子01=-x,且分母0≠x,故答案为1510.如图,已知△ABC ,通过测量、计算得△ABC 的面积约为 cm 2.(结果保留一位小数)【解析】本题考查三角形面积,直接动手操作测量即可,故答案为“测量可知”11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)【解析】本题考查对三视图的认识.①长方体的主视图,俯视图,左视图均为矩形;②圆柱的主视图,左视图均为矩形,俯视图为圆;③圆锥的主视图和左视图为三角形,俯视图为圆.故答案为①②12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).【解析】本题考查三角形的外角,可延长AP 交正方形网格于点Q ,连接BQ ,如图所示,经计算105===PB BQ PQ ,,∴222PB BQ PQ =+,即△PBQ 为等腰直角三角形,∴∠BPQ=45°,∵∠PAB+∠PBA=∠BPQ=45°,故答案为45第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA713.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______. 【解析】本题考查反比例函数的性质,A (a ,b )在反比例xk y 1=上,则ab k =1,A 关于x 轴的对称点B 的坐标为),(b a -,又因为B 在xk y 2=上,则ab k -=2,∴021=+k k 故答案为014.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.【解析】设图1中小直角三角形的两直角边分别为a ,b (b >a ),则由图2,图3可列方程组,15⎩⎨⎧=-=+a b b a 解得⎩⎨⎧==32b a ,所以菱形的面积.126421=⨯⨯=S 故答案为12. 15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数图3图2图1据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)【解析】本题考查方差的性质。

2019年北京中考数学试题及答案

2019年北京中考数学试题及答案

2019年北京中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个选项是无理数?A. 0.3B. 0.33333...C. √2D. 3答案:C2. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的高是多少?A. 2B. 3C. 4D. 5答案:C3. 计算(2x-1)+(3x+2)的结果是:A. 5x-3B. 5x+1C. 5x+3D. 5x-1答案:B4. 一个数的平方根是4,那么这个数是:A. 16B. 4C. 8D. 2答案:A5. 已知一个数的相反数是-8,那么这个数是:A. 8B. -8C. 0D. 16答案:A6. 下列哪个选项是二次根式?A. √2xB. 2xC. 2√xD. √x²答案:A7. 计算(-2)³的结果是:A. -8B. 8C. -6D. 6答案:A8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C9. 已知一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A10. 下列哪个选项是不等式?A. 2x+3=5B. 2x+3>5C. 2x+3D. 2x+3<5答案:D二、填空题(本题共5小题,每小题4分,共20分)1. 一个数的平方是25,那么这个数是____。

答案:±52. 一个数的倒数是2,那么这个数是____。

答案:1/23. 一个数的绝对值是10,那么这个数是____。

答案:±104. 一个数的立方是-27,那么这个数是____。

答案:-35. 一个数的平方根是3,那么这个数是____。

答案:9三、解答题(本题共5小题,共50分)1. 已知一个直角三角形的两条直角边长分别为3和4,求斜边长。

(6分)答案:斜边长为5,因为根据勾股定理,斜边长=√(3²+4²)=√(9+16)=√25=5。

2. 计算:(2x+1)(3x-2)。

(完整版)2019年北京市中考数学试题及答案解析,推荐文档

(完整版)2019年北京市中考数学试题及答案解析,推荐文档

2019 年北京市中考数学试卷一、选择题(本题共 16 分,每小题 2 分)第 1-8 题均有四个选项,符合题意的选项只有一个.1.4 月 24 日是中国航天日,1970 年的这一天,我国自行设计、制造的第一颗人造地球卫 星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近 点 439 000 米.将 439 000 用科学记数法表示应为(A) 0.439´ 106(B) 4.39´106(C) 4.39´ 105(D) 439´ 1032. 下列倡导节约的图案中,是轴对称图形的是(A) (B) (C) (D) 3. 正十边形的外角和为(A)180 (B) 360 (C)720 (D)1440 4. 在数轴上,点 A,B 在原点 O 的两侧,分别表示数 a,2,将点 A 向右平移 1 个单位长度,得到点 C.若 CO=BO,则 a 的值为(A)- 3 (B) - 2 (C) - 1 (D)15. 已知锐角∠AOB如图, (1) 在射线 OA 上取一点 C,以点 O 为圆心,OC 长为半径 作 ,交射线 OB 于点 D,连接 CD;O(2) 分别以点 C,D 为圆心,CD 长为半径作弧,交 于1P MA CDBN Q点 M,N;(3) 连接 OM,MN.根据以上作图过程及所作图形,下列结论中错误的是(A)∠COM=∠COD (B)若 OM=MN,则∠AOB=20°(C)MN∥CD(D)MN=3CD 6. 2m n 如果 m n 1,那么代数式 m2 1 m2 n2的值为(A) 3 (B) 1 (C)1 (D)311 7. 用三个不等式 a b , ab 0 , a b 中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A)0 (B)1 (C)2 (D)38. 某校共有 200 名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳 动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.人数 时间0≤t<10 10≤t<20 20≤t<30 30≤t<40t≥40学生 性男7别女8学初中段高中31252926253630432844112万万万万万万万万万万/万万30 24.5 25.525 20 15 10 50万 万万万27.0 21.8万 万 万 万万万 万万万万下面有四个推断:①这 200 名学生参加公益劳动时间的平均数一定在 24.5-25.5 之间 ②这 200 名学生参加公益劳动时间的中位数在 20-30 之间 ③这 200 名学生中的初中生参加公益劳动时间的中位数一定在 20-30 之间 ④这 200 名学生中的高中生参加公益劳动时间的中位数可能在 20-30 之间 所有合理推断的序号是(A)①③(B)②④(C)①②③(D)①②③④二、填空题(本题共 16 分,每小题 2 分)x 19. 若分式 x 的值为 0,则 x 的值为.10. 如图,已知! ABC ,通过测量、计算得! ABC 的面积约为一位小数)cm2.(结果保留11. 在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)3CAB万 10万万PAB万 12万万①长方体②圆柱第11题图③圆锥12. 如图所示的网格是正方形网格,则 PAB+PBA=网格线交点).°(点 A,B,P 是y k113. 在平面直角坐标系 xOy 中,点 A a,ba 0,b 0在双曲线x 上.点y k2A 关于 x 轴的对称点 B 在双曲线x 上,则 k1 k2 的值为.14. 把图 1 中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图 2,图 3 所示的正方形,则图 1 中菱形的面积为.5 1万1万2万315.小天想要计算一组数据 92,90,94,86,99,85 的方差 s02 .在计算平均数的过程中,将这组数据中的每一个数都减去 90,得到一组新数据 2,0,4, 4,9, 5.记这组新数4s2 s2据的方差为 1 , 则 1s2 0 . (填“ ”,“ ”或“ ”)16.在矩形 ABCD 中,M,N,P,Q 分别为边 AB,BC,CD,DA 上的点(不与端点重合) .对于任意矩形 ABCD,下面四个结论中,①存在无数个四边形 MNPQ 是平行四边形;②存在无数个四边形 MNPQ 是矩形;③存在无数个四边形 MNPQ 是菱形;④至少存在一个四边形 MNPQ 是正方形. 所有正确结论的序号是 .三、解答题(本题共 68 分,第 17-21 题,每小题 5 分,第 22-24 题,每小题 6 分,第 25 题 5 分,第 26 题 6 分,第 27-28 题,每小题 7 分)解答应写出文字说明、演算步骤或证明过程. 4 302 sin 601 ()117.计算:4.4(x 1) x 2, x 7 x. 18. 解不等式组: 319. 关于 x 的方程 x2 2x 2m 1 0 有实数根,且 m 为正整数,求 m 的值及此时方程的根.20. 如图,在菱形 ABCD 中,AC 为对角线,点 E,F 分别在 AB,AD 上,BE=DF,连接5EF. (1) 求证:AC⊥EF;(2) 延长 EF 交 CD 的延长线于点 G,连接 BD 交 AC 于点1BO,若 BD=4,tanG= 2 ,求 AO 的长.AEFDC21. 国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得 分排名前 40 的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a. 国家创新指数得分的频数分布直方图(数据分成 7 组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);万万万万万万 万 12 9 8 62 130 40 50 60 70 80 90 100 万万万万万万万万b. 国家创新指数得分在 60≤x<70 这一组的是: 61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c.40 个国家的人均国内生产总值和国家创新指数得分情况统计图:6万万万万万万万100 90 80 70 60 50 40 3001 2 34 5A 67l1 B89l2 C10 11 万万万万万万万万/万万d.中国的国家创新指数得分为 69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1) 中国的国家创新指数得分排名世界第;(2) 在 40 个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1 的上方.请在图中用“ ”圈出代表中国的点;(3) 在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4) 下列推断合理的是.①相比于点 A,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快 建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点 B,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜 全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22. 在平面内,给定不在同一直线上的点 A,B,C,如图所示.点 O 到点 A,B,C 的距离均等于 a(a 为常数),到点 O 的距离等于 a 的所有点组成图形 G, ABC 的平分线交7图形 G 于点 D,连接 AD,CD. (1) 求证:AD=CD;(2) 过点 D 作 DE BA,垂足为 E,作 DF BC,垂足为 F,延长 DF 交图形 G 于点M,连接 CM.若 AD=CM,求直线 DE 与图形 G 的公共点个数.ABC23. 小云想用 7 天的时间背诵若干首诗词,背诵计划如下:①将诗词分成 4 组,第 i 组有 xi 首,i =1,2,3,4;②对于第 i 组诗词,第 i 天背诵第一遍,第( i +1)天背诵第二遍,第( i +3 )天背诵第 三遍,三遍后完成背诵,其它天无需背诵, i 1,2,3,4;第 1天 第 2天 第 3天 第 4天 第 5天 第 6天 第 7天第 1 组 x1x1x1第 2组x2x2x2第 3组第 4组x4x4x4③每天最多背诵 14 首,最少背诵 4 首.8解答下列问题:(1) 填入 x3 补全上表;(2) 若 x1 4 , x2 3 , x3 4 ,则 x4 的所有可能取值为;(3)7 天后,小云背诵的诗词最多为首.24. 如图,P 是 与弦 AB 所围成的图形的外部的一定点,C 是 交弦 AB 于点 D.上一动点,连接 PCC ADPB小腾根据学习函数的经验,对线段 PC,PD,AD 的长度之间的关系进行了探 究. 下面是小腾的探究过程,请补充完整:(1) 对于点 C 在 组值,如下表:上的不同位置,画图、测量,得到了线段 PC,PD,AD 的长度 的几位置 1 位置 2 位置 3 位置 4 位置 5 位置 6 位置 7 位置 89PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83AD/cm 0.00 0.78 1.54 2.30 3.01 4.00 5.11 6.00在 PC,PD,AD 的长度这三个量中,确定 的长度都是这个自变量的函数;的长度是自变量,的长度和(2) 在同一平面直角坐标系 xOy 中,画出(1)中所确定的函数的图象;y/cm6 54 321O1 2 3 4 5 6 x/cm(3) 结合函数图象,解决问题:当 PC=2PD 时,AD 的长度约为cm.25.在平面直角坐标系 xOy 中,直线 l: y kx 1k 0与直线 x k ,直线y k 分别交于点 A,B,直线 x k 与直线 y k 交于点C .(1) 求直线l 与 y 轴的交点坐标;(2) 横、纵坐标都是整数的点叫做整点.记线段 AB,,C CA 围成的区域(不含边界) 为W .10①当k = 2 时,结合函数图象,求区域W 内的整点个数;②若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy中,抛物线y =ax2 +bx -1a 与y 轴交于点A,将点 A 向右平移2 个单位长度,得到点B,点 B 在抛物线上.(1)求点B 的坐标(用含a的式子表示);(2)求抛物线的对称轴;1 1P( 2 , -a ) Q(2, 2)(3)已知点,.若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知∠AOB = 30︒,H 为射线OA 上一定点,OH =+1,P 为射线OB 上一点,3DE M 为线段 OH 上一动点,连接 PM ,满足∠OMP 为钝角,以点 P 为中心,将线段 PM 顺时针旋转150︒ ,得到线段 PN ,连接 ON .(1) 依题意补全图 1;(2) 求证: ∠OMP = ∠OPN ;(3) 点 M 关于点 H 的对称点为 Q ,连接 QP .写出一个 OP 的值,使得对于任意的点 M总有 ON=QP ,并证明.BOHA O A万 1万万万28. 在△ABC 中,D ,E 分别是! ABC 两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC 的中内弧.例如,下图中是△ABC 的一条中内弧.ABCD E( ) ( ) (1) 如图,在 Rt △ABC 中, AB = AC = 2 2,,E 分别是 AB ,AC 的中点.画出△ABC 的最长的中内弧 ,并直接写出此时 的长;ABCA 0, 2 ,B 0,0 (2) 在平面直角坐标系中,已知点D ,E 分别是 AB ,AC 的中点.t = 1C (4t ,0)(t > 0),在△ABC 中,①若2 ,求△ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧,使得所在圆的圆心P 在△ABC 的内部或边上, 直接写出 t 的取值范围.2019 年北京市中考数学答案参考答案与试题解析一. 选择题.题号 1 2 3 4 5 6 7 8 答案 C C B A D D D C二. 填空题.9. 1 10. 测量可知11. ①②12. 45°13. 0 14. 12 15. =16. ①②③三. 解答题.17.【答案】2 3+318.【答案】x < 219.【答案】m=1,此方程的根为x1=x2= 120.【答案】(1)证明:∵四边形ABCD 为菱形∴AB=AD,AC 平分∠BAD∵BE=DF∴ AB -BE =AD -DF∴AE=AF∴△AEF 是等腰三角形∵AC 平分∠BAD∴AC⊥EF(2)AO =1.21.【答案】(1)17(2)(3)2.7(4)①②22.【答案】∵BD 平分∠ABC∴ ∠ABD =∠CBD∴AD=CD(2)直线DE 与图形G 的公共点个数为1.23.【答案】(1)如下图第 1 天第2 天第3 天第 4 天第 5 天第 6 天第7 天第1 组第2 组第3 组x3x3x3第4 组(2)4,5,6(3)2324.【答案】(1)AD,PC,PD;(3)2.29 或者 3.9825.【答案】(1)(0,1)(2)①6 个② -1 ≤k < 0 或k =-226.【答案】B(2, -1 )(1)a ;(2)直线x =1;a≤-1(3)(2.3)27.D E【答案】(1)见图(2)在△OPM 中, ∠OMP =180︒ - ∠POM - ∠OPM = 150︒ - ∠OPM∠OPN = ∠MPN - ∠OPM∴∠OMP = ∠OPN = 150︒ - ∠OPM(3)OP=2.28.【答案】(1)如图:BCl = n r = 180 1= 180 180(2)1y ≤y P≥1或P 2 ;①② 0 <t ≤ 2At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance ofcontinuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!“”“”。

2019年北京市中考数学试卷及答案解析

2019年北京市中考数学试卷及答案解析

2019年北京市中考数学试卷及答案解析一、选择题(本题共16分,每小题2分)1.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×103解:将439000用科学记数法表示为4.39×105.故选:C.2.下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.3.正十边形的外角和为()A.180°B.360°C.720°D.1440°解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.5.已知锐角∠AOB,如图,̂,交射线OB于点D,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ连接CD;̂于点M,N;(2)分别以点C,D为圆心,CD长为半径作弧,交PQ(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA =∠AOB =∠BON =13∠MON =20°,故B 选项正确; 设∠MOA =∠AOB =∠BON =α, 则∠OCD =∠OCM =180°−α2, ∴∠MCD =180°﹣α, 又∵∠CMN =12∠CON =α, ∴∠MCD +∠CMN =180°, ∴MN ∥CD ,故C 选项正确;∵MC +CD +DN >MN ,且CM =CD =DN , ∴3CD >MN ,故D 选项错误; 故选:D .6.如果m +n =1,那么代数式(2m+n m −mn+1m)•(m 2﹣n 2)的值为( ) A .﹣3 B .﹣1C .1D .3解:原式=2m+n+m−n m(m−n)•(m +n )(m ﹣n )=3mm(m−n)•(m +n )(m ﹣n )=3(m +n ), 当m +n =1时,原式=3. 故选:D .7.用三个不等式a >b ,ab >0,1a<1b 中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( ) A .0B .1C .2D .3解:①若a >b ,ab >0,则1a<1b;真命题: 理由:∵a >b ,ab >0, ∴a >b >0,或b <a <0, ∴1a<1b ;②若ab >0,1a<1b,则a >b ,真命题;理由:∵ab >0, ∴a 、b 同号, ∵1a<1b,∴a>b;③若a>b,1a <1b,则ab>0,真命题;理由:∵a>b,1a <1b,∴a、b同号,∴ab>0∴组成真命题的个数为3个;故选:D.8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分时间t人数学生类型0≤t<1010≤t<2020≤t<3030≤t<40t≥40性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间 所有合理推断的序号是( ) A .①③B .②④C .①②③D .①②③④解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5﹣25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为 15,60,51,62,12,则中位数在20﹣30 之间,故②正确.③由统计表计算可得,初中学段栏0≤t <10 的人数在 0﹣15 之间,当人数为 0 时中位数在 20﹣30 之间;当人数为 15 时,中位数在 20﹣30 之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为 0﹣15,35,15,18,1,当0≤t <10时间段人数为 0 时,中位数在 10﹣20 之间;当 0≤t <10时间段人数为 15 时,中位数在 10﹣20 之间,故④错误. 故选:C .二、填空题(本题共16分,每小题2分) 9.分式x−1x的值为0,则x 的值是 1 .解:∵分式x−1x的值为0,∴x ﹣1=0且x ≠0, ∴x =1. 故答案为1.10.如图,已知△ABC ,通过测量、计算得△ABC 的面积约为 1.9 cm 2.(结果保留一位小数)解:过点C 作CD ⊥AB 的延长线于点D ,如图所示. 经过测量,AB =2.2cm ,CD =1.7cm ,∴S △ABC =12AB •CD =12×2.2×1.7≈1.9(cm 2).故答案为:1.9.11.在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.12.如图所示的网格是正方形网格,则∠P AB+∠PBA=45°(点A,B,P是网格线交点).解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠P AB+∠PBA=45°,故答案为:45.13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=k1x上,点A关于x轴的对称点B在双曲线y=k2x,则k1+k2的值为0.解:∵点A (a ,b )(a >0,b >0)在双曲线y =k1x 上,∴k 1=ab ;又∵点A 与点B 关于x 轴的对称, ∴B (a ,﹣b )∵点B 在双曲线y =k2x 上,∴k 2=﹣ab ;∴k 1+k 2=ab +(﹣ab )=0; 故答案为:0.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为 12 .解:如图1所示: ∵四边形ABCD 是菱形, ∴OA =OC ,OB =OD ,AC ⊥BD , 设OA =x ,OB =y , 由题意得:{x +y =5x −y =1,解得:{x =3y =2,∴AC =2OA =6,BD =2OB =4, ∴菱形ABCD 的面积=12AC ×BD =12×6×4=12; 故答案为:12.15.小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12=s02(填“>”,“=”或”<”)解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB =AD ,∴四边形ABCD 是正方形,当四边形ABCD 为正方形时,四边形MNPQ 是正方形,故错误; 故答案为:①②③.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|−√3|﹣(4﹣π)0+2sin60°+(14)﹣1.解:原式=√3−1+2×√32+4=√3−1+√3+4=3+2√3. 18.(5分)解不等式组:{4(x −1)<x +2x+73>x解:{4(x −1)<x +2①x+73>x②,解①得:x <2, 解②得x <72,则不等式组的解集为x <2.19.(5分)关于x 的方程x 2﹣2x +2m ﹣1=0有实数根,且m 为正整数,求m 的值及此时方程的根.解:∵关于x 的方程x 2﹣2x +2m ﹣1=0有实数根, ∴b 2﹣4ac =4﹣4(2m ﹣1)≥0, 解得:m ≤1, ∵m 为正整数, ∴m =1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=12,求AO的长.(1)证明:连接BD,交AC于O,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,OA=OC,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠CDO,∴tan G=tan∠CDO=OCOD=12,∴OC=12OD,∵BD=4,∴OD=2,∴OC=1,∴OA=OC=1.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;故答案为:2.8;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值;合理;故答案为:①②.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图形G为△ABC的外接圆⊙O,∵BD平分∠ABC,∴∠ABD=∠CBD,̂=CD̂,∴AD∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,̂=CD̂,∵AD∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4③每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入x 3补全上表;(2)若x 1=4,x 2=3,x 3=4,则x 4的所有可能取值为 4,5,6 ; (3)7天后,小云背诵的诗词最多为 23 首. 解:(1)第1天 第2天 第3天第4天 第5天第6天 第7天 第1组 x 1 x 1 x 1 第2组 x 2 x 2 x 2 第3组 x 3 x 3 x 3 第4组x 4x 4x 4(2)∵每天最多背诵14首,最少背诵4首, ∴x 1≥4,x 3≥4,x 4≥4, ∴x 1+x 3≥8①, ∵x 1+x 3+x 4≤14②, 把①代入②得,x 4≤6, ∴4≤x 4≤6,∴x 4的所有可能取值为4,5,6, 故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首, ∴由第2天,第3天,第4天,第5天得,x 1+x 2≤14①,x 2+x 3≤14②,x 1+x 3+x 4=14③,x 2+x 4≤14④, ①+②+2③+④≤70得,x 1+x 2+x 2+x 3+2(x 1+x 3+x 4)+x 2+x 4≤70, ∴3(x 1+x 2+x 3+x 4)≤70, ∴x 1+x 2+x 3+x 4≤703, ∴x 1+x 2+x 3+x 4≤2313,∴7天后,小云背诵的诗词最多为23首, 故答案为:23.24.(6分)如图,P 是AB̂与弦AB 所围成的图形的外部的一定点,C 是AB ̂上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:̂上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几(1)对于点C在AB组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8 PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83 PD/cm 3.44 2.69 2.00 1.360.96 1.13 2.00 2.83 AD/cm0.000.78 1.54 2.30 3.01 4.00 5.11 6.00在PC,PD,AD的长度这三个量中,确定AD的长度是自变量,PD的长度和PC 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 2.3和4cm.解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC =2PD ,从图和表格可以看出位置4和位置6符合要求, 即AD 的长度为2.3和4.0.25.(5分)在平面直角坐标系xOy 中,直线l :y =kx +1(k ≠0)与直线x =k ,直线y =﹣k 分别交于点A ,B ,直线x =k 与直线y =﹣k 交于点C . (1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB ,BC ,CA 围成的区域(不含边界)为W .①当k =2时,结合函数图象,求区域W 内的整点个数; ②若区域W 内没有整点,直接写出k 的取值范围. 解:(1)令x =0,y =1,∴直线l 与y 轴的交点坐标(0,1); (2)由题意,A (k ,k 2+1),B (−k−1k,﹣k ),C (k ,﹣k ),①当k =2时,A (2,5),B (−32,﹣2),C (2,﹣2),在W 区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2); ②当k >0时,区域内必含有坐标原点,故不符合题意;当k <0时,W 内点的横坐标在﹣1到0之间,故﹣1≤k <0时W 内无整点;当﹣2≤k <﹣1时,W 内可能存在的整数点横坐标只能为﹣1,此时边界上两点坐标为M (﹣1,﹣k )和N (﹣1,﹣k +1),MN =1;当k 不为整数时,其上必有整点,但k =﹣2时,只有两个边界点为整点,故W 内无整点; 当k ≤﹣2时,横坐标为﹣2的边界点为(﹣2,﹣k )和(﹣2,﹣2k +1),线段长度为﹣k +1>3,故必有整点.综上所述:﹣1≤k <0或k =﹣2时,W 内没有整数点;26.(6分)在平面直角坐标系xOy 中,抛物线y =ax 2+bx −1a与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点P (12,−1a),Q (2,2).若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围. 解:(1)A (0,−1a)点A 向右平移2个单位长度,得到点B (2,−1a ); (2)A 与B 关于对称轴x =1对称, ∴抛物线对称轴x =1; (3)∵对称轴x =1, ∴b =﹣2a , ∴y =ax 2﹣2ax −1a , ①a >0时,当x =2时,y =−1a <2, 当y =−1a时,x =0或x =2, ∴函数与PQ 无交点; ②a <0时,当y =2时,ax 2﹣2ax −1a=2, x =a+|a+1|a 或x =a−|a+1|a 当a−|a+1|a≤2时,a ≤−12;∴当a ≤−12时,抛物线与线段PQ 恰有一个公共点;27.(7分)已知∠AOB =30°,H 为射线OA 上一定点,OH =√3+1,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足∠OMP 为钝角,以点P 为中心,将线段PM 顺时针旋转150°,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN﹣∠OPM=150°﹣α∵∠AOB=30°∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α∴∠OMP=∠OPN(3)OP=2时,总有ON=QP,证明如下:过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2∴∠NCP=∠PDM=∠PDQ=90°∵∠AOB=30°,OP=2∴PD=12OP=1∴OD=√OP2−PD2=√3∵OH =√3+1 ∴DH =OH ﹣OD =1 ∵∠OMP =∠OPN∴180°﹣∠OMP =180°﹣∠OPN 即∠PMD =∠NPC 在△PDM 与△NCP 中 {∠PDM =∠NCP ∠PMD =∠NPC PM =NP∴△PDM ≌△NCP (AAS ) ∴PD =NC ,DM =CP设DM =CP =x ,则OC =OP +PC =2+x ,MH =MD +DH =x +1 ∵点M 关于点H 的对称点为Q ∴HQ =MH =x +1∴DQ =DH +HQ =1+x +1=2+x ∴OC =DQ在△OCN 与△QDP 中 {OC =QD∠OCN =∠QDP =90°NC =PD∴△OCN ≌△QDP (SAS ) ∴ON =QP28.(7分)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ̂上的所有点都在△ABC 的内部或边上,则称DÊ为△ABC 的中内弧.例如,图1中DE ̂是△ABC 的一条中内弧.(1)如图2,在Rt △ABC 中,AB =AC =2√2,D ,E 分别是AB ,AC 的中点,画出△ABC的最长的中内弧DÊ,并直接写出此时DE ̂的长; (2)在平面直角坐标系中,已知点A (0,2),B (0,0),C (4t ,0)(t >0),在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE ̂所在圆的圆心P 的纵坐标的取值范围; ②若在△ABC 中存在一条中内弧DÊ,使得DE ̂所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.解:(1)如图2,以DE 为直径的半圆弧DÊ,就是△ABC 的最长的中内弧DE ̂, 连接DE ,∵∠A =90°,AB =AC =2√2,D ,E 分别是AB ,AC 的中点,∴BC =AC sinB =2√2sin45°=4,DE =12BC =12×4=2,∴弧DE ̂=12×2π=π; (2)如图3,由垂径定理可知,圆心一定在线段DE 的垂直平分线上,连接DE ,作DE 垂直平分线FP ,作EG ⊥AC 交FP 于G ,①当t =12时,C (2,0),∴D (0,1),E (1,1),F (12,1), 设P (12,m )由三角形中内弧定义可知,圆心在线段DE 上方射线FP 上均可,∴m ≥1, ∵OA =OC ,∠AOC =90°∴∠ACO =45°,∵DE ∥OC∴∠AED =∠ACO =45°作EG ⊥AC 交直线FP 于G ,FG =EF =12根据三角形中内弧的定义可知,圆心在点G 的下方(含点G )直线FP 上时也符合要求; ∴m ≤12综上所述,m ≤12或m ≥1.②如图4,设圆心P 在AC 上,∵P 在DE 中垂线上,∴P 为AE 中点,作PM ⊥OC 于M ,则PM =32, ∴P (t ,32), ∵DE ∥BC∴∠ADE =∠AOB =90°∴AE =√AD 2+DE 2=√12+(2t)2=√4t 2+1, ∵PD =PE ,∴∠AED =∠PDE∵∠AED +∠DAE =∠PDE +∠ADP =90°, ∴∠DAE =∠ADP∴AP =PD =PE =12AE由三角形中内弧定义知,PD ≤PM∴12AE ≤32,AE ≤3,即2+1≤3,解得:t ≤√2, ∵t >0∴0<t ≤√2.如图5,设圆心P 在BC 上,则P (t ,0) PD =PE =√OD 2+OP 2=√t 2+1,PC =3t ,CE =12AC =12√OA 2+OC 2=√4t 2+1 由三角形中内弧定义知,∠PEC ≤90°, ∴PE 2+CE 2≥PC 2即(√t 2+1)2+(√4t 2+1)2≥(3t )2,∵t >0 ∴0<t ≤√22;综上所述,t 的取值范围为:0<t ≤√2.。

2019年北京市中考数学试卷(带解析)

2019年北京市中考数学试卷(带解析)
第 8页(共 34页)
(2)求证:∠OMP=∠OPN; (3)点 M 关于点 H 的对称点为 Q,连接 QP.写出一个 OP 的值,使得对于任意的点 M 总有 ON=QP,并证明.
28.(7 分)在△ABC 中,D,E 分别是△ABC 两边的中点,如果 上的所有点都在△ABC 的内部或边上,则称 为△ABC 的中内弧.例如,图 1 中 是△ABC 的一条中内弧.
b.国家创新指数得分在 60≤x<70 这一组的是: 61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c.40 个国家的人均国内生产总值和国家创新指数得分情况统计图:
第 5页(共 34页)
d.中国的国家创新指数得分为 69.5.
(以上数据来源于《国家创新指数报告(2018)》)
2019 年北京市中考数学试卷
一、选择题(本题共 16 分,每小题 2 分) 1.(2 分)4 月 24 日是中国航天日.1970 年的这一天,我国自行设计、制造的第一颗人造地
球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距
地球最近点 439000 米,将 439000 用科学记数法表示应为(
D.3
7.(2 分)用三个不等式 a>b,ab>0, < 中的两个不等式作为题设,余下的一个不等式
作为结论组成一个命题,组成真命题的个数为( )
A.0
B.1
C.2
D.3
8.(2 分)某校共有 200 名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加
公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分
③这 200 名学生中的初中生参加公益劳动时间的中位数一定在 20~30 之间

北京市2019年中考数学试题(含解析)和答案

北京市2019年中考数学试题(含解析)和答案

2019年北京市中考数学试卷一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.139×103【解析】本题考察科学记数法较大数,Na 10⨯中要求10||1<≤a ,此题中5,39.4==N a ,故选C2.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D. 【解析】本题考察轴对称图形的概念,故选C 3.正十边形的外角和为()A.180°B.360°C.720°D.1440°【解析】多边形的外角和是一个定值360°,故选B4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为()A.-3B.-2C.-1D.1【解析】本题考察数轴上的点的平移及绝对值的几何意义.点A 表示数为a ,点B 表示数为2,点C 表示数为a+1,由题意可知,a <0,∵CO=BO,∴2|1|=+a ,解得1=a (舍)或3-=a ,故选A5.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是() A.∠COM=∠COD B.若OM=MN ,则∠AOB=20°C.MN∥CDD.MN=3CD【解析】连接ON ,由作图可知△COM≌△DON. A. 由△COM≌△DON.,可得∠COM=∠COD,故A 正确.B. 若OM=MN ,则△OMN 为等边三角形,由全等可知∠COM=∠COD=∠DON=20°,故B 正确C.由题意,OC=OD ,∴∠OCD=2COD180∠-︒.设OC 与OD 与MN 分别交于R ,S ,易证△MOR≌△NOS,则OR=OS ,∴∠ORS=2COD180∠-︒,∴∠OCD=∠ORS.∴MN∥CD,故C 正确.D.由题意,易证MC=CD=DN ,∴MC+CD+DN=3CD.∵两点之间线段最短.∴MN<MC+CD+DN=3CD ,故选D6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为() A .-3B.-1C.1D.3【解析】:()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭))(()()(2n m n m n m m n m n m m n m -+⋅⎥⎦⎤⎢⎣⎡--+-+=)(3))(()(3n m n m n m n m m m+=-+⋅-=1=+n m∴原式=3,故选D7.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为() A.0 B.1 C.2 D.3【解析】本题共有3种命题: 命题①,如果0,>>ab b a ,那么ba 11<. ∵b a >,∴0>-b a ,∵0>ab ,∴0>-ab b a ,整理得ab 11>,∴该命题是真命题. 命题②,如果,11,ba b a <>那么0>ab . ∵,11b a <∴.0,011<-<-aba b b a ∵b a >,∴0<-a b ,∴0>ab . ∴该命题为真命题. 命题③,如果ba ab 11,0<>,那么b a >. ∵,11b a <∴.0,011<-<-aba b b a ∵0>ab ,∴0<-a b ,∴a b < ∴该命题为真命题. 故,选D8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类型人数时间010t≤<1020t≤<2030t≤<3040t≤<40t≥性别男7 31 25 30 4 女8 29 26 32 8 学段初中25 36 44 11 高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【解析】①由条形统计图可得男生人均参加公益劳动时间为24.5h ,女生为25.5h ,则平均数一定在24.5~25.5之间,故①正确②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误 故,选C二、填空题(本题共16分,每小题2分)9.若分式1x x-的值为0,则x 的值为______.【解析】本题考查分式值为0,则分子01=-x ,且分母0≠x ,故答案为110.如图,已知△ABC,通过测量、计算得△ABC 的面积约为cm 2.(结果保留一位小数) 【解析】本题考查三角形面积,直接动手操作测量即可,故答案为“测量可知”11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号) 【解析】本题考查对三视图的认识.①长方体的主视图,俯视图,左视图均为矩形;②圆柱的主视图,左视图均为矩形,俯视图为圆;③圆锥的主视图和左视图为三角形,俯视图为圆.故答案为①②第11题图③圆锥②圆柱①长方体第12题图PBA12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).【解析】本题考查三角形的外角,可延长AP 交正方形网格于点Q ,连接BQ ,如图所示,经计算105===PB BQ PQ ,,∴222PB BQ PQ =+,即△PBQ 为等腰直角三角形,∴∠BPQ=45°,∵∠PAB+∠PBA=∠BPQ=45°,故答案为4513.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______. 【解析】本题考查反比例函数的性质,A (a ,b )在反比例xk y 1=上,则ab k =1,A 关于x 轴的对称点B 的坐标为),(b a -,又因为B 在xk y 2=上,则ab k -=2,∴021=+k k 故答案为014.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.【解析】设图1中小直角三角形的两直角边分别为a ,b (b >a ),则由图2,图3可列方程组,15⎩⎨⎧=-=+a b b a 解得⎩⎨⎧==32b a ,所以菱形的面积.126421=⨯⨯=S 故答案为12. 15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______2s . (填“>”,“=”或“<”) 【解析】本题考查方差的性质。

2019北京中考数学试卷及答案

2019北京中考数学试卷及答案

k1
k2
的值为
______
.
14.把图 1 中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别
拼成如图 2,图 3 所示的形,则图 1 中菱形的面积为 ______ .
Word 资料
.
5 1万1Fra bibliotek万2万3
15.小天想要计算一组数据 92,90,94,86,99,85 的方差 s02 .在计算平均数的过程
.
2019 年北京市中考数学试卷
一、选择题(本题共 16 分,每小题 2 分)第 1-8 题均有四个选项,符合题意的选项只
有一个.
1.4 月 24 日是中国航天日,1970 年的这一天,我国自行设计、制造的第一颗人造地
球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地
球最近点 439 000 米.将 439 000 用科学记数法表示应为
②这 200 名学生参加公益劳动时间的中位数在 20-30 之间
③这 200 名学生中的初中生参加公益劳动时间的中位数一定在 20-30 之间
④这 200 名学生中的高中生参加公益劳动时间的中位数可能在 20-30 之间
所有合理推断的序号是
(A)①③
(B)②④
(C)①②③
(D)①②③④
二、填空题(本题共 16 分,每小题 2 分)
中,将这组数据中的每一个数都减去 90,得到一组新数据 2,0,4, 4,9, 5.记
这组新数据的方差为 s12 ,则 s12 ______ s02 . (填“ ”,“ ”或“ ”) 16.在矩形 ABCD 中,M,N,P,Q 分别为边 AB,BC,CD,DA 上的点(不与端点重
合).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439000用科学记数法表示应为(A)60.43910´(B)64.3910´(C)54.3910´(D)343910´2.下列倡导节约的图案中,是轴对称图形的是(A)(B)(C)(D)3.正十边形的外角和为(A)180o(B)360o(C)720o(D)1440o4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为(A)3-(B)2-(C)1-(D)15.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;NMDO BCPA(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是(A )∠COM =∠COD(B )若OM =MN ,则∠AOB =20°(C )MN ∥CD(D )MN =3CD6.如果1m n +=,那么代数式()22221m nm n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为(A )3- (B )1- (C )1 (D )37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A )0(B )1(C )2(D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类别5下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是 (A )①③ (B )②④(C )①②③(D )①②③④二、填空题(本题共16分,每小题2分)9.若分式1x x的值为0,则x 的值为______.10.如图,已知ABC !,通过测量、计算得ABC !的面积约为______cm 2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.图3图2图115.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s .(填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合).对于任意矩形ABCD ,下面四个结论中,①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sin π---++o().18.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.20.如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD 上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tan G=12,求AO的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:40/万元d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l的上1方.请在图中用“d”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD =CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD =CM ,求直线DE 与图形G 的公共点个数.CBA23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有i x 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(1i +)天背诵第二遍,第(3i +)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;第3组第4组4x4x4x③每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________; (3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦AB 于点D .ABCDP小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8 PC /cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83 PD/cm3.442.692.001.360.961.132.002.83AD/cm0.00 0.78 1.54 2.30 3.01 4.00 5.11 6.00在PC ,PD ,AD 的长度这三个量中,确定______的长度是自变量,______的长度和 ______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;x /cmy /cm123456654321O(3)结合函数图象,解决问题:当PC =2PD 时,AD 的长度约为______cm .25. 在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线y k =-交于点C . (1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W .①当2k =时,结合函数图象,求区域W 内的整点个数; ②若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy 中,抛物线21y ax bx a=+-与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点11(,)2P a -,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知30AOB ∠=︒,H 为射线OA 上一定点,31OH =+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON .(1)依题意补全图1; (2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON =QP ,并证明.备用图图1BAOB28.在△ABC 中,D ,E 分别是ABC !两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC 的中内弧.例如,下图中是△ABC 的一条中内弧.(1)如图,在Rt △ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出△ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在△ABC 中,D E ,分别是AB AC ,的中点. ①若12t =,求△ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧,使得所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.2019年北京市中考数学答案一. 选择题.二. 填空题.9. 1 10. 测量可知11. ①②12. 45°13. 0 14. 12 15. =16. ①②③三. 解答题.17.【答案】18.【答案】2x<19.【答案】m=1,此方程的根为121x x== 20.【答案】(1)证明:∵四边形ABCD为菱形∴AB=AD,AC平分∠BAD∵BE=DF∴AB BE AD DF-=-∴AE=AF∴△AEF是等腰三角形∵AC平分∠BAD∴AC⊥EF(2)AO =1.21.【答案】(1)17(2)(3)2.7(4)①②22.【答案】(1)∵BD平分∠ABC∴∠=∠ABD CBD∴AD=CD(2)直线DE与图形G的公共点个数为1. 23.【答案】 (1)如下图第1天第2天第3天第4天第5天第6天第7天第1组 第2组第3组 3x3x3x第4组(2)4,5,6 (3)23 24. 【答案】(1)AD , PC ,PD ; (2)(3)2.29或者3.98 25. 【答案】(1)()0,1(2)①6个②10k-≤<或2k=-26.【答案】(1)1 (2,)Ba-;(2)直线1x=;(3)1a-≤2.27.【答案】(1)见图(2)在△OPM中,=180150OMP POM OPM OPM∠︒-∠-∠=︒-∠150OPN MPN OPM OPM∠=∠-∠=︒-∠OMP OPN∴∠=∠(3)OP=2.28.【答案】(1)如图:1801180180n r l πππ===g (2)①1P y ≥或12P y ≤;②0t <≤BC。

相关文档
最新文档