主蒸汽再热蒸汽及过热再热器管壁超温
4号炉高温再热器超温原因分析及解决办法
4 号炉高温再热器超温原因分析及解决办法摘要:火电厂机组非计划停运统计显示锅炉四管泄漏在机组非计划停运事件上一直占有很高比例,锅炉四管泄漏的非停事件会造成供暖、供电中断,在社会上产生负面影响,同时也会给火电厂带来检修成本增加、影响电量考核、机组启动消耗等安全生产成本经济上的影响。
引起锅炉四管泄漏的原因有很多,锅炉承压部件的缺陷主要有裂纹、过热、变形、泄漏、腐蚀、磨损等,我公司3、4号锅炉高温再热器长期超温运行自二期机组投产以来一直未得到解决,受热面超温爆管是造成机组非停最普遍、最常见形式的原因之一,要彻底解决受热面管排超温的问题就要了解超温原因根本所在,才能提出有针对性的预防措施解决问题。
关键词:锅炉;高温再热器;超温;原因;解决1二期4号锅炉高温再热器超温原因二期4号锅炉2×300MW火电机组的1100t/h亚临界自然循环锅炉。
此炉型是在总结国内300MW等级机组锅炉运行经验基础上,结合云冈热电地理条件、燃煤特点和武汉锅炉股份有限公司多年积累的经验而设计的。
在设计中采用了ALSTOM-CE公司典型炉型,成熟可靠技术和设计、制造标准,同时采用运行可靠的结构,满足我公司基本技术要求。
我公司二期锅炉设计建造之初为了缩减基建人工成本、材料消耗成本达到节能降耗的目的,对再热器导汽形式进行了简化,省去了屏式再热器出口联箱、高温再热器入口联箱,屏式再热器与高温再热器连接依靠420根连接管组(规格均为ø63*4)连接,管子通经相同、蒸汽流量分配基本一致使得烟温高区域的管屏冷却不佳,炉膛两侧烟温低受热面管排吸收热量少,因此导致高温再热器第28至32排区域管子壁温经常超报警值(报警值593℃),最高达620℃以上。
2解决对策针对高温再热器第28至32排管子运行期间壁温经常超报警值(报警温度593℃)的问题,从设计角度考虑彻底解决超温问题需根据运行数据及锅炉原始设计参数进行热力计算,按照计算结果改变屏式再热器与高温再热器连接管的通经,使得每排管子都有充足的蒸汽冷却,减小系统内热偏差,达到屏式再热器与高温再热器连通管内蒸汽分配更为合理、运行期间高温再热器运行壁温不超报警值的目的。
电厂锅炉过热器 再热器管壁超温原因分析及预防措施
电厂锅炉过热器再热器管壁超温原因分析及预防措施电厂锅炉过热器再热器管壁超温原因分析及预防措施在电厂中,锅炉过热器和再热器是非常重要的设备,它们承担着将焚烧过程中产生的高温高压蒸汽进行过热和再热的任务。
然而,在运行过程中,经常会出现过热器和再热器管壁超温的问题,这会导致设备的性能下降、安全性降低。
因此,本文将对过热器和再热器管壁超温的原因进行分析,并提出相应的预防措施。
一、过热器和再热器管壁超温原因分析1. 燃烧状况异常燃烧状况异常是导致过热器和再热器管壁超温的主要原因之一。
燃烧不完全、气流分布不均匀、火焰在炉膛内波动剧烈等问题都会导致辐射和对流传热不均匀,使得部分管壁温度升高,超过其设计温度。
2. 水质问题水质问题也是导致管壁超温的重要因素之一。
当水中含有过多的溶解气体、不溶性物质或其他杂质时,会导致管壁附着物形成,形成热阻,导致管壁温度升高。
3. 管道堵塞管道堵塞同样会导致管壁温度升高。
当锅炉管道内的水垢、沉积物或其它杂质积聚过多时,不仅会降低热传导能力,还会阻碍管道内流体的流动,导致局部管壁温度升高。
4. 运行参数异常运行参数异常也会导致管壁超温的问题。
例如,过高的蒸汽流量、过低的供水温度、过高的供水压力等都会使管壁温度超过设计温度。
二、过热器和再热器管壁超温的预防措施1. 优化燃烧状况通过调整锅炉的燃烧参数和火焰分布,减少炉膛内火焰的波动,提高燃烧效率,降低管壁温度。
此外,定期清洗燃烧器、炉膛和锅炉的燃烧区域,避免积聚物的形成,以减少管壁温度升高的可能性。
2. 加强水质管理加强水质管理,控制水中的溶解气体、不溶性物质和杂质的含量。
定期进行水处理,清除管道内的水垢和附着物。
同时,排放并替换含有过多杂质的水,以保持良好的水质,降低管壁温度。
3. 定期清洗管道定期清洗管道,减少管道内的沉积物、水垢和杂质的积聚。
可以采用化学清洗、水冲洗等方法,对管道进行彻底的清洗和冲洗,保持管道的畅通,减少管壁温度升高。
锅炉爆管典型事故案例及分析
锅炉典型事故案例及分析第一节锅炉承压部件泄露或爆破事故大型火力发电机组的非停事故大部分是由锅炉引起的。
随着锅炉机组容量增大,“四管”爆泄事故呈现增多趋势,严重影响锅炉的安全性,对机组运行的经济性影响也很大。
有的电厂因过热器、再热器管壁长期超温爆管,不得不降低汽温5~10℃运行;而主汽温度和再热汽温度每降低10℃,机组的供电煤耗将增加0.7~1.1g/kWh;主蒸汽压力每降低1MPa,将影响供电煤耗2g/kWh。
为了防止锅炉承压部件爆泄事故,必须严格执行《实施细则》中关于防止承压部件爆泄的措施及相关规程制度。
一.锅炉承压部件泄露或爆破的现象及原因(一)“四管”爆泄的现象水冷壁、过热器、再热器、省煤器在承受压力条件下破损,称为爆管。
受热面泄露时,炉膛或烟道内有爆破或泄露声,烟气温度降低、两侧烟温偏差增大,排烟温度降低,引风机出力增大,炉膛负压指示偏正。
省煤器泄露时,在省煤器灰斗中可以看到湿灰甚至灰水渗出,给水流量不正常地大于蒸汽流量,泄露侧空预器热风温度降低;过热器和再热器泄露时蒸汽压力下降,蒸汽温度不稳定,泄露处由明显泄露声;水冷壁爆破时,炉膛内发出强烈响声,炉膛向外冒烟、冒火和冒汽,燃烧不稳定甚至发生锅炉灭火,锅炉炉膛出口温度降低,主汽压、主汽温下降较快,给水量大量增加。
受热面炉管泄露后,发现或停炉不及时往往会冲刷其他管段,造成事故扩大。
(二)锅炉爆管原因(1)锅炉运行中操作不当,炉管受热或冷却不均匀,产生较大的应力。
1)冷炉进水时,水温或上水速度不符合规定;启动时,升温升压或升负荷速度过快;停炉时冷却过快。
2)机组在启停或变工况运行时,工作压力周期性变化导致机械应力周期性变化;同时,高温蒸汽管道和部件由于温度交变产生热应力,两者共同作用造成承压部件发生疲劳破坏。
(2)运行中汽温超限,使管子过热,蠕变速度加快1)超温与过热。
超温是指金属超过额定温度运行。
超温分为长期超温和短期超温,长期超温和短期超温是一个相对概念,没有严格时间限定。
660MW机组启动过程中锅炉受热面汽温超限原因分析及控制措施
660MW机组启动过程中锅炉受热面汽温超限原因分析及控制措施【摘要】本文简要分析茶园660MW机组在启动、锅炉熄火恢复过程中主要存在的屏式过热器、高温过热器、低温再热器汽温超限,锅炉湿态转干态过程中主蒸汽汽温突降以及锅炉在转态时锅炉水冷壁壁温差超限的原因分析,并提出如何防止锅炉受热面汽温超限的控制措施。
【关键词】启动汽温突降水冷壁壁温差超限控制措施1.我厂锅炉设备概述贵州金元茶园发电有限责任公司2×660MW超临界锅炉是采用东方锅炉厂制造的DG2020/25.31-Π12型超临界变压直流锅炉,主要技术特征为一次中间再热、单炉膛、平衡通风、W型火焰燃烧、固态连续排渣、尾部双烟道结构、露天岛式布置、全钢架、全悬吊结构Π型炉。
1.1 燃烧和制粉系统锅炉配置6套双进双出球磨机正压式直吹系统,每套制粉系统包括1台北方重工生产的MGS4766双进双出钢球磨煤机、2台电子称重给煤机和4只双旋风煤粉浓缩燃烧器。
燃烧器顺列布置在下炉膛的前后墙炉拱上,前、后墙各12只。
在离炉拱上拐点2米处沿炉宽方向前、后墙各布置13只燃尽风调风器。
1.2 汽水和启动系统每台机组给水系统配置两台50%BMCR容量的汽动给水泵和一台30%BMCR容量的定速电动给水泵。
电动给水泵仅做为机组启停使用,不做备用。
锅炉采用带再循环泵(BCP)的内置式启动系统,由启动分离器、储水罐、再循环泵、再循环泵流量调节阀(360阀)、储水罐水位控制阀(361阀)、疏水扩容器(一体式)、疏水泵等组成。
2.并网后升负荷过程中屏式过热器、高温过热器以及低温再热器汽温超温。
1.1主要原因:1.1.1锅炉在转为干态运行前的湿态运行状态,由于锅炉受热面产汽量少,造成受热面不能得到充分的冷却而引起屏式过、高温过热超温;低温再热器由于进口没有减温水控制,同样也是由于蒸汽流量较小,亦是造成受热面未得到充分冷却而低再超温的主要原因。
1.1.2并网前往往是一台磨煤机处于运行状态的,一次风压维持得较低、粉管风速较低,同时整个炉膛温度也较低,造成煤粉燃烧推迟,引起炉膛火焰中心上移,也是造成炉膛正上方的屏式过热器超温的一个原因。
金属技术监督管理制度
金属技术监督管理制度一金属技术监督范围1、工作温度大于和等于450℃的高温承压金属部件(含主蒸汽管道、高温再热蒸汽管道、过热器管、再热器管、联箱、阀壳和三通),以及与主蒸汽管道相联的小管道;2、工作温度大于和等于435℃的导汽管;3、工作压力大于和等于3.82Mpa的锅筒;4、工作压力大于和等于5.88Mpa的承压汽水管道和部件(含水冷壁管、省煤器管、联箱和主给水管道);5、300MW及以上机组的低温再热蒸汽管道;6、汽轮机大轴、叶轮、叶片和发电机大轴、护环、风扇叶;7、工作温度大于和等于400℃的螺栓;8、工作温度大于和等于435℃的汽缸、汽室、主汽门。
二监督管理的一般要求1、设立与工程相适应的现场金属监督网,由分公司总工直接领导,金属监督专职工程师与其他成员具体负责工程施工中的金属技术监督工作,并接受公司金属技术监督网的归口管理。
2、在开工初期,人员基本到位的情况下,召开金属技术监督会议,落实本工程金属技术监督工作任务及相关工作,明确各相关专业和部门的金属技术监督网成员职责。
3、受监金属部件检验必须出具检验技术报告,报告中应注明被检部件名称、方法、项目、内容、日期、结果以及需要说明的问题。
4、在金属技术监督工作范围内,金属技术监督人员有如下权限:a)有权对本专业的金属技术监督工作的计划制定和实施情况进行督促和检查;b)有权制止不符合有关规程、规范和技术标准的技术措施和施工作业;c)有权查验参与施工的受监各工种的资质。
如:若发现有未经相应项目考试合格(或项目不能覆盖或证件过期)的焊工进行受监管道、容器或部件的焊接施工等现象时,有权制止和上报。
d)有权制止使用和安装未经检验合格的有关设备、部件、金属材料和焊接材料。
e)有权对到达现场的有关设备,部件和材料提出质疑和查验。
对发现的存在问题和设备缺陷提出相应的处理意见,报有关部门按相应程序处理。
f)参加受监金属部件质量事故的调查和原因分析,提出处理对策,并督促实施。
生产设备评价 主蒸汽再热蒸汽及过热再热器管壁超温
一、起温严重,调控不力不少电厂主蒸汽再热汽及过热器再热器管壁经常发生超温问题,有时超温幅度比较大,时间比较长。
例如:①有一台600MW锅炉机组主蒸汽A侧552℃,B侧582℃(设计均为540℃),属严重超温,受热面必然有超温现象,汽机未停机,锅炉也未停炉,锅炉方面未做任何记录,看不出采取了什么应急处理措施;②有一台300MW机组,主蒸汽温度超过600℃才迟后打闸停机;③有一个3X660MW机组的电厂从计算机存储器中连续查阅了8个月的超温事件,1号炉共发生超温事件157起,主蒸汽有一点达到564℃,再热汽有一点达到561℃(设计均为540℃);2号炉共发生超温事件332起,过热器管炉外壁温有一点达到618℃、再热器管炉外壁温有一点达到635℃;3号炉共发生超温事件96起,主蒸汽有一点达到563℃,再热器管炉外壁温有一点达到696℃。
超温时间3~20min不等。
上述超温均未停炉停机,也未看到运行记录本上有任何记录。
超温的原因是多种多样的,对每台炉的超温问题要作具体分析。
生产技术管理部门对超温事件要作统计分析,拟订整治措施,及时通知运行人员,改进运行操作控制,由于操作不当,经常超温又不作记录的运行人员也要采取必要的考核措施。
是设备系统方面的问题,要安排进行改进改造。
应鼓励按设计参数“压红线”运行,把超温运行及低温运行参数加起来平均作考核依据显然是不科学的。
为了“安全”长时间低温运行,出现超温却视而不见,不采取调控措施,这两种倾向都是错误的,应予纠正。
二、超温记录不规范在查评中我们发现许多厂不设超温记录簿,有的虽有记录簿,也不放在操作员处,也不作记录,形同虚设,或不认真作记录。
例如有个电厂技术部门负责人说:我们没有超温问题,设超温记录簿干什么?查评人员随即在巡测仪上检查,发现主蒸汽温度547℃,超过设计值540℃,再热器壁温也有一点超温;在另一台炉上发现过热器壁温有一点超温。
还有一个电厂在2001年超温记录簿上这样写着:2001年1月份无超温现象,2001年2月份无超温现象一直写到2001年12月份无超温现象,是同一笔迹,没有记录人签名。
过热器、再热器管超温原因分析及对策
1) 长期超温爆管 长期超温爆管是指金属材料在运行中由于某些原因使管壁温度超过了 额定温度,虽然超温的幅度不大(一般为 20-50℃),但超温时间较长。长时超温爆管 过程中,钢材长期在高温和应力的作用下, 由于产生了碳化物球化、碳化物沿晶界聚集 长大等组织变化,在晶界上先产生微裂纹, 当这些微裂纹扩展甚至连续起来承受不了 管内介质的压力,就发生了爆破。过热器管 子爆破事故约有 70%是由于长期而引起的。
3 金属材料在高温下长期运行后的主要变化
(一)金属的蠕变、断裂与应力松驰 1) 金属的蠕变:金属在高温状态下,在应力作用下发生的缓慢而连续的塑性变形的现象, 称为蠕变现象。 蠕变的速度和以下因素有关: (1)金属所承受的温度:温度越高,蠕变速度越快,金属发生断裂或破坏的时间越短。 (2)金属所承受的应力:应力越大,蠕变速度越快。 (3)温度波动的影响:温度波动越大,蠕变速度越快。 2) 金属的应力松驰 金属在高温和应力状态下,如维持总变形不变,随着时间的延长,应力逐渐降低的现象称为 应力松弛。 (二)金属在长期运行中的组织性质变化 1) 珠光体球化 珠光体球化是指在高温长期应力作用下,钢中片层状珠光体组织随时间的延长逐渐变为球 状,球化后的碳化物通过聚集长大,使小球变为大球的过程。 影响珠光体球化的因素 (1)温度:温度越高,球化过程进行的愈快。 (2)时间:运行时间愈长,球化愈严重。 (3)应力:运行过程中钢材所承受的应力将促使球化过程加速。 2) 石墨化 石墨化是指钢中渗碳体分解成为游离碳并以石墨形式析出,在钢中形成了石墨“夹杂”的现 象。石墨化现象仅存在于碳钢和无铬钼钢中(如 15Mo3) 钢材石墨化的过程也同样受温度、时间、应力等因素的影响。 3) 合金元素的再分配 金属材料中合金元素随时间由一种组织组成物向另一种组织组成物转移的现象称为合金元 素的再分配。发生这种现象以后将使钢的热强性能降低。 影响钢中合金元素的再分配的主要因素是温度、运行时间、应力状态等。 (三)金属在高温下的氧化与腐蚀 1) 金属的氧化 (1)高温下的氧化。金属的氧化发展速度与温度、时间、气体介质成分、压力、流速、钢材 化学成分、形成的氧化膜的强度等因素有关。 2) 硫的腐蚀 (1)高压锅炉水冷管壁的硫腐蚀。这种腐蚀现象主要发生在锅炉燃烧区域水冷壁管的外表面。 (2)过热器管的高温硫腐蚀。这种高温硫腐蚀是由熔融态的灰粘结在过热器壁上所引起的。
锅炉“四管”失效的原因及预防控制措施
锅炉“四管”失效的原因及预防控制措施摘要:燃煤电站锅炉“四管”是指的锅炉水冷壁、过热器、再热器和省煤器,“四管”泄漏是造成机组非计划停运的主要原因,对机组的安全、稳定、经济运行威胁极大,本文介绍了电站锅炉“四管”失效的主要原因及预防控制措施。
关键词:四管泄漏;超温;腐蚀;预防;控制措施引言燃煤电站锅炉“四管”是指锅炉的水冷壁、过热器、再热器和省煤器。
“四管”泄漏是造成机组非计划停运的主要原因,对机组的安全、稳定、经济运行威胁极大,因此如何做好预防“四管”泄漏工作时发电企业面临的重要问题。
一、锅炉“四管”失效的主要原因(一)超温为了追求高效率现代电站锅炉普遍采用了高参数,主蒸汽温度达到540℃甚至更高,虽然采用了耐高温合金管材,在正常运行中已非常接近材料的耐温极限,温度的高低是影响金属材料长期安全运行的主要因素,为了经济效益多数电厂都“压红线”运行,将主蒸汽温度控制的较高,由于存在传热温差和热偏差现象,使金属材料超温现象时有发生,超温运行将对金属材料产生严重损伤,随着温度的升高,钢材的力学性能将明显下降,以121Cr1MoV为例。
480℃下其抗拉强度是481MPa,当温度升高到560℃时,其抗拉强度急剧下降到379MPa,这就是说在原设计满足正常运行的管子,如果运行温度提高,其抗拉强度将下降,此时管子的厚度就可能不能满足所承受的应力而发生爆管,另一方面温度提高将加速金属内部组织的变化过程,组织变化的结果是金属的强度下降而导致损坏。
超温分为长期超温和短期超温。
(1)短期超温的主要原因:1 火焰冲墙,导致局部热负荷过高。
2 管内汽水循环不良,如管内积聚堵塞焊渣、小工具、铁锈等。
3 汽水分配不均匀,部分管路玄幻停滞或流量过低。
4 管内结垢,使管子传热效果变差,造成管子金属超温失效。
5 给水中断。
6 尾部烟道再燃烧。
(2)长期超温1 烟气热偏差过大,局部管子热负荷超过设计值。
2 管内结垢轻微,长期传热热阻高。
超超临界锅炉氧化皮的产生和防治
超超临界锅炉氧化皮的产生和防治随着机组容量越来越大,蒸汽参数越来越高,金属在高温环境下不断产生氧化皮。
并伴随氧化皮剥落堆积,造成管壁超温并最终导致锅炉四管爆漏事故。
因此氧化皮的产生和剥落是影响机组安全稳定运行因素之一。
一、氧化皮生成的原因由于高温高压蒸汽具有氧化性,从400℃以上开始具有较强氧化性,500℃-700℃具有最强氧化性,600℃以上氧化速度加快。
500℃以上,奥氏体钢就与水蒸汽发生反应生产氧化层,570℃以上,氧化层中增加了FeO相,材料氧化速度加快。
在600℃-620℃之间,金属氧化速度存在突变点,氧化层迅速增厚,氧化层达到一定厚度,运行条件变化时,容易导致氧化层脱落,成为氧化皮。
氧化皮是高汽温参数带来的副产物。
氧化皮基本是双层结构,外层厚度相当,外层主要是疏松结构的Fe3O4,层为致密结构的(FeCr)3O4,其中Cr含量随金属不同而不同。
奥氏体钢只脱落外层氧化皮,层不易脱落。
铁素体钢外两层都易脱落,管壁部运行一段时间容易形成新的氧化皮,造成反复的形成和反复的脱落。
在机组实际运行过程中,锅炉高温过热器、高温再热器长期处于高温状态下,管壁出现短时超温是比较常见现象。
在长时超温和短时超温情况下,管材抗氧化能力大大降低。
加快氧化皮的生产和发展。
二、氧化皮的危害氧化皮的产生和剥落对机组运行的危害:(1)氧化皮剥落阻碍管蒸汽流动,使壁温大幅升高,金属蠕变胀粗,造成锅炉受热面管壁超温爆管。
(2)氧化皮的绝热作用引起受热面管金属壁温上升,影响管材寿命。
(3)氧化皮对汽轮机产生固体颗粒侵蚀,造成调门、喷嘴和叶片侵蚀损坏。
(4)氧化皮产生容易造成主汽门卡涩,机组停运造成主汽门关闭不严,威胁机组安全运行。
(5)氧化皮剥落容易堵塞疏水管,威胁机组安全运行。
(6)氧化皮剥落造成汽水污染,严重影响汽水品质。
三、氧化皮剥离的原因、条件及机理(1)原因:由于氧化皮的膨胀系数与碳钢和低合金钢接近,但是奥氏体钢的膨胀系数要比氧化皮大很多,大幅度的温度变化将导致金属应力增大而使氧化皮剥离。
锅炉主、再热蒸汽超温分析及控制措施
S c 科 i e n c e & 技 T e c h 视 n o l o g y 界 V i s i o n
锅炉主 、 再热蒸汽超温分析及控制措施
杨朝 阳
( 宁夏大唐国际大坝发电有限责任公司, 宁夏 青铜峡 7 5 1 6 0 7 )
【 摘 要】 主、 再热 蒸汽超温频繁 出 现, 对机组性能产生影响 , 在机组运行工况发 生变化 时, 应加强对汽温的监视与调整 , 分析 其影 响因素与
t h e s e me a s u r e s i n v a l u e s i n c e a p p l i c a t i o n s t a r t wi t h i n ,l o n g t i me n o p r o b l e m o f o v e r he a t i n g .
宁夏 大唐 国际大坝 发电有 限责任 公司大坝 两 台 6 0 0 M W 机 组锅 炉为东方锅炉厂生产的亚 临界参数、 自然循环 、 前后墙对 冲燃烧方式 、 次中间再热 、 单炉膛平衡 通风 、 固态排渣 、 全 钢构架 的 H 型汽包锅 炉 。在炉膛上部垂 直布置有屏式过热器 , 水平烟道 由上部后墙水冷壁 管绕制而成 . 在折焰角上方水平烟道内按照烟气流动方 向依次布置有 末级( 高 温1 过热器和高温再 热器; 尾部后竖井 四周由包墙过热器组成 . 尾部竖井烟道被中隔墙分为两部分 . 前后分别 布置低温再热器和低温 过热器 . 低温再热器和低温过热器被省煤器 中间联箱 引出的吊挂管悬 吊; 其后分别布置省煤 器、 烟道挡板 、 空气预热 器。 自 投产 以来 , 主、 再 热蒸汽超温频繁出现 , 对机组性能产生影响。主蒸汽 、 再热汽温 、 锅炉 受热 面金属温度是发电厂汽机 、 锅炉安全经济运行所必须监视 与调整 的主要参数 . 由于影响汽温的因素多 . 影响过程复杂多变 , 调节过程惯 性大, 这就要求 汽温调节应 勤分析 、 多观察 , 树立起超 前调节 的思想 。 在机组运行 工况发 生变化 时 . 应加强对汽温 的监 视与调整 . 分析其影 响因素与变化的关 系 . 摸索出汽温调节 的一些 经验 . 来指导我们 的调 整操作 由于汽温变化的复杂性 , 在实际调节过程中要灵活应用
安全生产事故案例分析
安全生产事故案例分析安全生产是全社会必须遵从的原则。
而安全生产教育培训是安全生产的重要保障措施,目的是提升安全意识、安全素质以及安全技能,以杜绝或减少安全事故的发生。
下面是管理资源吧小编为大家整理的安全生产事故案例分析,供大家分享。
安全生产事故案例分析一1993年3月10日14时07分24秒,某发电厂1号机组锅炉发生特大炉膛爆炸事故,人员伤亡严重,死23人,伤24人(重伤8人)。
发电厂1号锅炉是美国ABB一CE公司(美国燃烧工程公司)生产的亚临界一次再热强制循环汽包锅炉,额定主蒸汽压力17.3 MPa,主蒸汽温度540℃,再热蒸汽温度540℃,主蒸汽流量2008 tlh。
1993年3月6日起该锅炉运行情况出现异常,为降低再热器管壁温度,喷燃器角度由水平改为下摆至下限。
3月9日后锅炉运行工况逐渐恶化。
3月10日事故前一小时内无较大操作。
14时,机组负荷400 MW,主蒸汽压力巧.22 MPa,主蒸汽温度513℃,再热蒸汽温度512℃,主蒸汽流量1154.6 t/h,炉膛压力维持负10 mm水柱,排烟温度A侧110℃,B 侧158℃。
磨煤机A, C、D、E运行,各台磨煤机出力分别为78.5%、73%、59%、38%,磨煤机B处于检修状态,磨煤机F备用。
主要CCs(协调控制系统)调节项目除风量在“手动”调节状态外,其余均设为“自动”,吹灰器需进行消缺,故13时后已将吹灰器汽源隔离。
事故发生时,集中控制室值班人员听到一声闷响,集中控制室备用控制盘上发出声光报警:“汽机跳闸”、“旁路快开”等光字牌亮。
逆功率保护使发电机出口开关跳开,厂用电备用电源自投成功,电动给水泵自启动成功。
由于汽包水位急剧下降,运行人员手动紧急停运炉水循环泵B, C(此时A泵已自动跳闸)。
就地检查,发现整个锅炉房迷漫着烟、灰、汽雾,人员根本无法进人,同时发现主汽压急剧下降,即手动停运电动给水泵。
由于锅炉部分PLC(可编程逻辑控制)柜通讯中断,引起CRT(计算机显示屏)画面锅炉侧所有辅助设备的状态失去,无法控制操作,运行人员立即就地紧急停运两组送引风机。
防止锅炉受热面管壁超温措施
防止锅炉受热面管壁超温技术措施1.在锅炉启动及停运过程中,要严格按照机组启停曲线进行,再热器未通汽时,要控制炉膛出口烟温小于538℃,严禁超温运行。
2.锅炉启动点火前,必须经化学化验炉水水质合格,否则不允许点火,防止锅炉受热面因结垢而超温。
3.锅炉点火后汽包水位保护必须投入运行,在锅炉点火前配合热工做汽包水位保护定值传动,保证保护动作准确可靠,严禁锅炉满水、缺水运行。
4.加强运行监视与调整,使火焰中心不偏斜,保持两侧烟温差小于50℃,汽温差小于15℃,维持锅炉正常的主、再热蒸汽温度,严禁锅炉超温运行。
5.锅炉运行中必须保证炉底水封完好,防止由于炉底水封不严漏风使火焰中心上移或偏斜,造成管壁温度超限。
6.锅炉运行中在保证氧量不变的情况下,适当增加上层二次风量,减小下层二次风量,降低炉膛火焰中心高度,使炉膛出口烟温适当降低。
7.合理控制氧量,按照给定的氧量曲线进行调整,避免锅炉高负荷下缺氧运行,防止燃料缺氧燃烧产生还原性气体降低灰份的软化温度,而引起炉膛结焦造成受热面超温。
8.在保证锅炉总燃料不变的情况下,适当增加下层磨煤机的煤量,减小上层磨煤机的煤量,适当降低炉膛火焰中心高度,使炉膛出口烟温适当降低。
9.锅炉正常运行中,按规程规定进行锅炉各受热面吹灰,吹灰时应保证吹灰蒸汽参数正常,并比较吹灰前后参数变化分析炉膛结焦情况,防止受热面积灰、结渣造成受热面超温;吹灰结束后,在控制屏及就地确认吹灰器已经全部退出且锅炉吹灰电动门及调节门全部关闭严密。
10.定期化验煤粉细度,保证其在合适范围内,防止煤粉过粗,使炉膛火焰中心上移,造成受热面金属壁温升高。
11.锅炉各受热面金属壁温经调整后仍超过报警值时,为保证锅炉运行安全,运行人员应坚持保设备的原则,必须采取降低锅炉负荷每次降20MW负荷后观察,直至锅炉受热面的金属壁温低于其相应的报警温度,严禁在锅炉受热面超温的情况下强带负荷。
12.在机组高加退出运行、煤质变化等工况变化导致汽温、壁温难以控制时,机组带负荷应以满足汽温壁温不超限为前提。
主蒸汽、再热蒸汽系统
主蒸汽、再热蒸汽系统一、作用1、从蒸汽发生器向汽轮机供给蒸汽;2、正常运行时向汽水分离再热器供汽;3、在机组事故冷却时向大气排汽;4、在汽机抽汽未投入时向厂用蒸汽系统供汽;5、在事故时将发生事故的蒸汽发生器隔离;6、防止蒸汽发生器超压。
二、工作原理2.1 主蒸汽系统工作原理主蒸汽系统包括从锅炉过热器出口联箱至汽轮机进口主汽阀的主蒸汽管道、阀门、疏水装置及通往进汽设备的蒸汽支管所组成的系统。
对于装有中间再热式机组的发电厂,还包括从汽轮机高压缸排汽至锅炉再热器出口联箱的再热冷段管道、阀门及从再热器出口联箱到汽轮机中压缸进口阀门的再热热段管道、阀门。
主蒸汽系统采用“2-1—2”布置。
主蒸汽由锅炉过热器出口集箱经两根支管接出,汇流成一根单管通往汽轮机房,在进汽轮机前用一个45°斜三通分为两根管道,分别接至汽轮机高压缸进口的左右侧主汽门。
发电厂常用的主蒸汽系统有四种形式:(1)集中母管制系统。
其特点是发电厂所有锅炉的蒸汽先引至一根蒸汽母管集中后,再由该母管引至汽轮机和各用汽处。
这种系统通常用于锅炉和汽轮机台数不匹配,而热负荷又必须确保可靠供应的热电厂以及单机容量在6MW以下的电厂。
(2)切换母管制系统。
其特点为每台锅炉与其对应的汽轮机组成一个单元,正常时机炉成单元运行,各单元之间装有母管,每一单元与母管相连处装有三个切换阀门。
它们的作用是当某单元锅炉发生事故或检修时可通过这三个切换阀门由母管引来邻炉蒸汽,使该单元的汽轮机继续运行,也不影响从母管引出的其他用汽设备。
该系统适用于装有高压供汽式机组的发电厂和中、小型发电厂采用。
(3)单元制系统。
其特点是每台锅炉与对应的汽轮机组成一个独立单元,各单元间无母管横向联系,单元内各用汽设备的新蒸汽支管均引自机炉之间的主汽管。
单元制系统的优点是系统简单、管道短、阀门少(引进型300MW级机组有的取消了主汽阀前的电动隔离阀)能节省大量高级耐热合金钢;事故仅限于本单元内,全厂安全可靠性较高;控制系统按单元设计制造,运行操作少,易于实现集中控制;工质压力损失少,散热少,热经济型较高;维护工作量少,费用低;无母管,便于布置,主厂房土建费用少。
循环流化床锅炉运行导则
前言近年来,我国因燃烧劣质煤以及环境保护的需要,循环流化床锅炉机组(简称CFB锅炉机组)的发展很快。
截止到2005年底,135MW CFB锅炉机组已投运台,此外,200MW 和300MW的CFB锅炉机组也正在大量建造。
鉴于CFB锅炉机组属于新型机组,我国尚未制定相应的过《CFB锅炉运行导则》。
目前各循环流化床机组的电厂在制定锅炉运行规程中,均是参考煤粉锅炉的运行导则和相关制造厂的技术文件进行编写。
显然,这种局面不适应电厂运行技术发展的要求。
为了规范CFB锅炉机组的运行,在通过调研、总结和吸收国内135MW级锅炉运行的先进技术和经验的基础上,特制定了《135MW级循环流化床锅炉运行导则》,以便符合当前锅炉运行的实际情况。
本导则具有原则性、通用性、实用性和先进性,经审查通过,批准为推荐性标准,并以国家发改委()文件发布。
经过一年的试用期后,200年月日起所有报批的火力发电厂135MW级循环流化床锅炉运行规程,均应符合导则规定。
本导则附录A是标准的附录。
本导则附录B、附录C、附录D是提示的附录。
本导则由中国电力企业联合会标准化中心提出。
本导则由电站锅炉标准化技术委员会归口。
本导则由中国电力企业联合会科技服务中心全国电力行业CFB机组技术交流服务协作网组织编写。
本导则主要起草单位:本导则主要起草人:本导则委托电站锅炉标准化技术委员会负责解释。
中华人民共和国电力行业标准135MW级循环流化床锅炉运行导则DL/T-200 Guide for 135MW grade Circulating fluidized bed boiler operation1范围本导则确定了在役135MW级循环流化床锅炉及主要辅机设备的启动、运行、停止、维护、锅炉试验、事故分析与处理的原则,适用于135MW级循环流化床锅炉(额定蒸发量400-500t/h)。
其他容量等级的循环流化床锅炉可参照本导则执行。
2引用标准下列标准所包含的条文,通过在本标准中引用,而构成本标准的条文。
锅炉主蒸汽、再热蒸汽温度问题原因与解决方法
锅炉主蒸汽、再热蒸汽温度问题原因与解决方法一、主蒸汽温度(℃):(一)、可能存在问题的原因:1、下列情况主蒸汽温度升高:①、炉膛火焰中心上移,炉膛出口温度升高。
②、煤量增加过快。
③、燃煤的挥发分降低,煤粉变粗,水分增加。
④、过剩空气量增加。
⑤、制粉系统启停。
⑥、减温水自动控制调整不当。
⑦、过热器吹灰选择不当。
⑧、给水温度偏低。
2、下列情况主蒸汽温度降低:①、火焰中心下偏:燃烧器摆角有偏差,下摆;喷燃器从上层切换到下层,或下层给粉量过多。
(煤粉炉)。
②、燃煤的挥发分增大,煤粉变细,水分减少。
③、过热器受热面积灰、结渣、内部结垢。
④、锅炉汽包汽水分离效果差。
⑤、减温水阀门内漏。
⑥、自动调整不当,减温水量过大。
⑦、炉水水质严重恶化或发生汽水共腾。
⑧、给水温度升高。
⑨、水冷壁和省煤器吹灰时间选择不当。
⑩、煤量减少过快。
(二)、解决问题的方法:1、运行措施:①、AGC控制时要严密监视给煤量波动情况,出现燃料猛增猛减的情况,须对减温水调节进行人工干预。
②、人为调整负荷时,煤量增减幅度不能过大。
③、进行优化燃烧调整试验,确定锅炉最佳氧量值,合理调节锅炉氧量。
④、调整燃烧器投运方式,通过燃烧调整保证锅炉的主蒸汽温度。
⑤、正常投入锅炉主蒸汽温度自动控制。
⑥、加强监视过热器各段汽温,对汽温调整做到勤调、细调,减少喷水减温水量,控制主蒸汽温度。
⑦、通过试验掌握制粉系统运行方式变化对主蒸汽汽温的影响规律,分析原因,做好预见性调整工作。
⑧、合理进行受热面吹灰。
⑨、分层调整燃料量,合理控制火焰中心,调节一、二次风配比,必要时改变过量空气系数。
2、日常维护及试验:①、进行燃烧调整试验,确定锅炉最佳的运行方式和控制参数。
②、提高主蒸汽温度自动调节品质。
③、及时发现和分析炉膛火焰中心发生偏移的原因,并采取针对性措施。
3、C/D修、停机消缺:①、消除减温水各阀门内漏现象。
②、受热面焦、积灰清理。
③、疏通预热器,处理烟道漏风。
4、A/B修及技术改造:①、对汽包内各汽水分离装置进行检查清理,及时消除有关缺陷。
电力生产:单元机组集控机组停运题库一
电力生产:单元机组集控机组停运题库一1、填空题汽轮机停机后,在盘车投入期间,应严密注意转子()的变化,以防转子弯曲。
答案:晃动值2、填空题当除氧器水位低于()mm时,给水泵跳闸。
答案:4003、填空题在汽轮机滑参数停机过程中,当调节级后汽温低于内缸法兰内壁温()℃时应暂停降温。
答案:304、填空题滑参数停机过程中,应严格控制主蒸汽、再热蒸汽的()速度和()的温降率在规定范围内。
答案:降压;汽缸金属5、问答题说明双风机运行切换为单台引风机运行时的操作步骤。
答案:(1)先将锅炉总连锁解除;(2)调整锅炉负荷(150MW左右),同时将二台引风机的动叶角度调到不稳定区域外;(3)将要停用的引风机动叶关闭,另一台运行的引风机动叶开大维持炉膛负压在一50Pa:(4)拉开准备要停用的引风机开关,红灯灭,绿灯亮,60s后出口挡板自行关闭;(5)若引风机检修,则应关闭相应侧电除尘器的进出口挡板。
6、填空题锅炉灭火后,应以额定风量的()来进行()min通风,再停运吸送风机。
答案:30%~50%;107、填空题汽轮机滑参数停机过程中,应注意控制调节主蒸汽温度不低于高压内缸法兰内壁金属温度()℃,且主蒸汽和再热蒸汽的过热度大于()℃。
答案:30;508、填空题汽轮机停机后,当真空到零时,应停止(),停止()运行。
答案:轴封供汽;轴流风机9、填空题汽轮机脱扣,通过()跳发电机。
答案:联锁保护10、问答题 DG31025型锅炉停炉后的消压工作有哪些要求和规定?答案:(1)引风机、送风机停运后,关闭锅炉所有的烟风挡板及看火孔门等,保持炉膛及烟道的严密封闭。
(2)锅炉依靠自然冷却消压,检查各排汽门、放水门应严密关闭,注意监视、记录汽包壁温,汽包壁温差不应超过40℃。
(3)锅炉灭火后,上水至汽包水位最高可见水位,在冷却消压的过程中应维持较高的汽包水位,水位低时及时补水。
但在补水时应对水位严密监视,控制上水流量及上水时间,防止汽包满水溢入过热器中。
锅炉本体典型事故分析与处理
(7)所有引风机、送风机或回转式空气预热器停止。 (8)锅炉灭火。 (9)炉膛烟道内发生爆炸,使主要设备损坏或尾部烟
道发生二次燃烧 (10)锅炉机组范围发生火灾,直接威胁锅炉的安全
运行。 (11)热控仪表电源中断,无法监视、调整主要运行
参数。 (12)再热蒸汽中断(制造厂有规定者除外)。 (13)锅水循环泵全停或出人口差压低于规定值
内爆:灭火使炉膛风压骤降,形成真空状态, 炉墙受到外界空气侧给于的巨大内向推力,称为 内爆。
外爆:炉膛灭火未能及时切断燃料,进入与积 存于炉内的燃料又突然燃烧,炉膛风压骤升,形 成正压状态,炉墙受到炉内侧给予的巨大外向推 力,称为外爆。
严重的炉膛爆炸事故将使炉墙破坏、水冷壁 管破裂,因此锅炉炉膛爆炸事故是锅炉的重大事 故之一。
在锅炉事故中,受热面(包括水冷壁、过热器、再热 器、省煤器)爆管是锅炉的严重事故。受热面爆管 时,高压高温的水汽喷出,锅炉不能继续运行, 不但要停炉限电,而且可能造成人身伤亡。因而, 防止和消除受热面爆破损坏事故,对保证安全经 济运行尤为重要。造成受热面爆管的主要原因有 以下几种:
1、 管材质量不良,制造、安装、焊接质量不合格。 2、 管壁金属超温。如锅炉水动力工况不正常,使
二、引起锅炉灭火事故的原因有哪几种?预 防灭火爆燃的措施有哪些?
产生锅炉灭火事故的原因 (1) 燃料质量低劣。运行中煤质变差、挥发分过 低、灰分、水分过高,煤粉太粗;直吹式制粉系 统堵煤、断煤且处理不当。燃用易结焦煤,炉膛 塌焦引起灭火。 (2)燃烧调节不当。风粉或风油配比适当;炉膛负 压过大,或一、二次风比例失当。 (3) 运行中辅机故障跳闸或灭火保护动作。 (4)燃烧设备损坏。喷燃器烧坏,使煤粉气流紊乱; 给粉机“缺角”运行;油喷嘴雾化不好等。
燃煤锅炉主蒸汽、再热蒸汽超温的原因分析及解决方案
燃煤锅炉主蒸汽、再热蒸汽超温的原因分析及解决方案摘要:汽温作为火力发电机组的重要运行参数,对电厂锅炉安全经济运行起着至关重要的影响。
影响汽温的因素众多,影响过程复杂多变,调节过程惯性较大,因此在调整过程中容易出现主蒸汽温度和再热蒸汽温度过高或过低的现象。
蒸汽温度过高可导致受热面超温爆管,而蒸汽温度过低将使机组经济性降低。
本文针对两台330MW燃煤机组频繁出现主蒸汽和再热蒸汽温度过高的现象,以机组正常工况下主蒸汽、再热蒸汽的温度变化情况为研究对象,通过加强对汽温的监视与调整,摸索出机组汽温控制调节的方法与措施,避免了超温现象的发生,为同类机组汽温调节控制提供借鉴。
关键词:燃煤锅炉;主蒸汽;再热蒸汽;超温引言为确保该电厂锅炉能经济、安全、满发,需对锅炉进行性能校核计算及评估研究。
通过计算和评估,发现并分析存在的问题,并提出解决方案,为锅炉及辅机系统的正常运行提供技术支持。
1燃煤锅炉主蒸汽、再热蒸汽超温的原因分析1.1再热汽温变化因素再热蒸汽容积大,流速较慢,布置在烟气低温区域,烟气侧的传热温差小,因而再热汽温变化比较迟缓。
再热蒸汽压力低,比热小,使得当工况变化时再热汽温的变化幅度较大。
同时,再热汽温不仅受锅炉工况变化的影响,还受其他因素影响,如再热汽冷段至辅汽联箱开度变化、临机用汽、抽汽量变化及高压缸排汽温度变化等都会引起再热汽温的变化。
1.2日常运行记录根据日常运行记录可以发现,每台炉都有燃烧调整不当的情况发生例如,没有根据燃烧需要及时调整各层燃烧器的配风,使燃烧工况偏离设计值,火焰中心偏移,导致燃烧行程加长,炉膛出口烟温升高。
如果锅炉各层一次风口风量不均匀,给煤量或一次风不均匀也能造成燃烧中心偏斜,甚至贴壁燃烧,使水冷壁局部超温。
在启、停磨煤机及锅炉负荷升降的过程中,由于运行工况的变化率过大,炉膛出口烟道温度场和速度场分布不均,也会加大局部超温的可能性。
1.3其他影响锅炉蒸汽温度变化的因素1)负荷变化。
1000MW超超临界直流炉汽温调整及注意事项
1000MW超超临界直流炉汽温调整及注意事项摘要:1000MW超超临界直流炉的汽温控制在火力发电厂的发展中起着很关键的作用,它是保障机组安全稳定运行的一个重要方面,决定着锅炉能否提供合格的蒸汽,本文将从主汽温和再热汽温的影响因数,深入研究主汽温和再热汽温的变化特性,最终分析得出主汽温和再热汽温的控制方法,为运行人员的汽温调整操作提供指导。
关键词:超超临界直流炉;1000MW;煤水比;主汽温;再热汽温;喷水减温0.概述直流炉具有蓄热小、汽温汽压受负荷影响大等特点,正常运行中能否保证主、再热汽温稳定将直接影响到锅炉效率和煤耗,甚至影响设备安全。
本文以上海锅炉厂生产的SG3091/27.46-M541 1000MW超超临界锅炉为例,阐述了在运行过程中积累的主、再热汽温的调整经验。
该锅炉为超超临界参数变压运行螺旋管圈直流炉,锅炉采用一次再热、单炉膛单切圆燃烧、平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构塔式布置;由上海锅炉厂有限公司引进Alstom-Power公司Boiler Gmbh的技术生产。
炉膛由膜式水冷壁组成,水冷壁采用螺旋管加垂直管的布置方式;炉膛上部依次分别布置有一级过热器、三级过热器、二级再热器、二级过热器、一级再热器、省煤器。
过热器采用三级布置,在每两级过热器之间设置喷水减温,主蒸汽温度主要靠煤水比和减温水控制。
再热器两级布置,再热蒸汽温度主要采用燃烧器摆角调节,在再热器入口和两级再热器布置危急减温水。
1.汽温调节的意义和目的在运行过程中,蒸汽温度将随锅炉负荷、燃料性质、给水温度、过量空气系数、受热面清洁程度的变化而波动,应设法予以调节。
汽温高使管壁温度高,金属材料许用应力下降,影响其安全。
长期超温运行,将缩短锅炉寿命;汽温降低,机组循效率下降,汽轮机排汽湿度增大,汽温下降10℃,煤耗增大0.2%;对于高压机组,汽温下降10℃,汽轮机排汽湿度约增加0.7%;再热蒸汽温度不稳定,还会引起汽缸与转子的胀差变化,甚至引起振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、起温严重,调控不力不少电厂主蒸汽再热汽及过热器再热器管壁经常发生超温问题,有时超温幅度比较大,时间比较长。
例如:①有一台600MW锅炉机组主蒸汽A侧552℃,B侧582℃(设计均为540℃),属严重超温,受热面必然有超温现象,汽机未停机,锅炉也未停炉,锅炉方面未做任何记录,看不出采取了什么应急处理措施;②有一台300MW机组,主蒸汽温度超过600℃才迟后打闸停机;③有一个 3X660MW机组的电厂从计算机存储器中连续查阅了8个月的超温事件,1号炉共发生超温事件157起,主蒸汽有一点达到564℃,再热汽有一点达到561℃(设计均为540℃);2号炉共发生超温事件332起,过热器管炉外壁温有一点达到618℃、再热器管炉外壁温有一点达到635℃;3号炉共发生超温事件96起,主蒸汽有一点达到563℃,再热器管炉外壁温有一点达到696℃。
超温时间3~20min不等。
上述超温均未停炉停机,也未看到运行记录本上有任何记录。
超温的原因是多种多样的,对每台炉的超温问题要作具体分析。
生产技术管理部门对超温事件要作统计分析,拟订整治措施,及时通知运行人员,改进运行操作控制,由于操作不当,经常超温又不作记录的运行人员也要采取必要的考核措施。
是设备系统方面的问题,要安排进行改进改造。
应鼓励按设计参数“压红线”运行,把超温运行及低温运行参数加起来平均作考核依据显然是不科学的。
为了“安全”长时间低温运行,出现超温却视而不见,不采取调控措施,这两种倾向都是错误的,应予纠正。
二、超温记录不规范在查评中我们发现许多厂不设超温记录簿,有的虽有记录簿,也不放在操作员处,也不作记录,形同虚设,或不认真作记录。
例如有个电厂技术部门负责人说:我们没有超温问题,设超温记录簿干什么?查评人员随即在巡测仪上检查,发现主蒸汽温度547℃,超过设计值540℃,再热器壁温也有一点超温;在另一台炉上发现过热器壁温有一点超温。
还有一个电厂在2001年超温记录簿上这样写着:2001年1月份无超温现象,2001年2月份无超温现象一直写到2001年12 月份无超温现象,是同一笔迹,没有记录人签名。
还有一个厂在一个记录本上只记了一条超温事件:X年X月X日过热器有超温现象,超温的时间(时分)、位置,超温的幅度、原因,分析及调控措施均没有记载。
我们注意到在电厂设计中均考虑了温度的监测设施,如自动记录仪、温度巡测仪、计算机屏幕显示及存储等。
我们建议要充分利用这些设备,电厂要为每台锅炉配备超温记录簿,要求运行值班人员及时认真填写。
有一个全套设备由国外引进的现代大型火力发电厂,对超温的管理认真有效,值得借鉴。
他们在每台炉上都设有《主蒸汽再热汽超温记录簿》、《锅炉受热面超温记条簿》,内有超温时间、设备名称、部件编号、超温幅度、超温原因、所采取的措施以及记录人等栏目。
记录及时、真实。
我们发现有一个值有5次超温现象,都—一作了记录。
生产技术管理部门认真统计分析,拟订整改措施。
如1号炉过热器壁温超温频繁,而且难以控制,他们进行专题研究,作了壁温测量,确定了技改措施:加装节流圈以改善由于蒸汽流量偏差引起的壁温超限,施工后彻底解决了这台炉过热器的长期存在的超温问题。
三、超温判据不要(1)有一电厂在运行规程上规定把金属最高允许温度作为超温的判据,而温度测点是装在蛇形管炉外管段上。
例如炉内过热器12Cr1MoV钢管壁温≤590℃(现在规定580℃),再热器钢102钢管壁温≤620℃(现在规定600℃),一些受热面20g钢管壁温≤490℃(现在规定450℃),即判定为没有超温,这显然是不对的,因为炉外壁温测值接近于介质温度,此值远低于炉内管子实际壁温。
为了正确判断炉内管子是否超温,可以通过计算得到炉内管子最高壁温,但难以保证其准确性;也可以在炉内装设壁温测点,但测点很容易烧坏;比较简易的办法是通过测温试验,找出炉内与炉外同一条管子对应的壁温关系。
在炉外装设壁温测点,此温度值接近于出口介质温度,进而推算出炉内最高壁温。
建议参照下列方式推算:屏式过热器再热器炉内管子最高壁温等于炉外壁温加 IQ0~120℃;靠近炉膛的对流过热器再热器炉内最高壁温等于炉外壁温加50℃;水平烟道后部及尾部烟道内的过热器再热器最高壁温等于炉外壁温加30℃。
关键是把测点装在壁温最高的管子上,壁温与管子蒸汽流速、温度及所在位置的烟气温度有关。
建议与锅炉厂取得联系,并根据已投产的同类型锅炉管子壁温分布规律加以确定。
机组投产以后,在大小修期间,在炉内通过外观检查、蠕变测量、取样分析、用仪器测量管子外壁及内壁氧化层厚度,掌握受热面的技术状态,查出温度水平高的管子,必要时在炉外补充追加部分劈温测点,以此作起温的判据比较有效和准确。
(2)有数台国外引进锅炉,在其说明书上规定:水冷壁、对流过热器、屏式过热器、再热器、省煤器管壁温度不应超过强度计算时所用的数值,并通过热力计算验证。
例如二级屏出口汽温516℃,计算壁温585℃,允许壁温560℃;高过出口汽温545℃,计算壁温577℃,允许壁温560℃。
国外公司的这一规定指出了壁温监测的方法,我们认为上述数据不一定准确,建议核实,首先所测管壁温度的正确性及代表性要核实,实际情况是各段并列装有测点的蛇形管其壁温的平均值低于该段出口汽温,另一种可能性是测点未选择最高壁温所在的管子,另外虽有屏幕显承,但不能打印留下记录,是否能采集到过热器、再热器、水冷壁管的全部运行时间的壁温值及可能出现的超温幅度,不得而知。
宜按强度裕度,选择其中比较薄弱的部位加以记录,并分析其超温情况,作为检修蠕胀检查或割管的依据。
(3)现代大型锅炉,尤其引进的大型锅炉,过热器再热器管圈一般是变材质变管径的。
炉外至联箱的管段一般都采用材质档次较低的钢管。
如引进的600MW等级锅炉,过热器再热管炉内高温区采用TP304或TP347钢管,炉外则采用T22钢管,制造厂出厂说明书规定过热器管壁温度≤594℃,再热器管壁温度≤607℃,而温度测点是装在炉外T22钢管上的,显然是处在超温运行的范围内。
据查一些600MW等级的锅炉炉外T22钢管有氧化皮,说明有超温迹象。
这件事情告诉我们:对过热器再热器蛇形管,要查清材质、管径,进行全流程监督,包括炉外联箱下的管段,任何区段的管子都不应超温。
四、运行规程起温规定不明确(1)许多电厂锅炉运行规程上没有规定超温停炉的条款,或虽有规定,但不确切。
例如有的电厂规定锅炉超温是否停炉要着汽机是否打闸停机,也就是说只要汽机不打闹就不停炉,要知道,机炉参数不一定完全匹配,耐温能力不一定完全相同,或汽机虽超温但并未及时发觉,或因人为因素不愿停机,锅炉超温再严重也不停炉,显然是不妥的。
超温是锅炉引起的,超温是否需要停炉,规程应作明确规定,让运行值班人员有章可循,临时请示领导表态可能延误时间,甚至会使超温事态扩大。
建议把主汽温度、再热汽温度、受热面金属壁温(折算到炉外测点温度)设计值、允许变动范围,超过一定数值、一定时间调整无效应申请停炉。
一些进口锅炉说明书、《200MW级锅炉运行导则》(DL/T610-1996)、《300MW级锅炉运行导则》(DL/T611-1996)中都有这样的规定。
我们建议还应补充一条:当温度继续升高,达到一定数值调整无效应停炉,以免申请延误,扩大事故。
(2)还有一些电厂规定当汽温达到XXX℃时停机,但没有说停炉。
我们知道许多进口或国产机组具有停机不停炉的功能。
这样会使运行人员有超温只停机不停炉或锅炉超温关系不大,只要不爆管就不停炉的错觉。
原电力部通报过停机后锅炉仍在运行造成受热面因超温大面积爆漏的案例。
我们建议规程应改为汽温到达XXX℃时应停炉或停炉停机。
五、设计不要引起超温在查评中我们发现,有些锅炉在设计上存在缺陷。
例如:(1)炉膛容积偏小,炉膛出口烟温比设计值高约100~120℃,致使过热器再热器吸热量增加,引起超温。
(2)炉膛出口两侧烟速烟温偏差较大,有的差值高达150~180℃,进行燃烧调整收效不大,致使烟温高,烟速大的那一侧过热器、再热器存在超温的危险。
(3)过热器再热器蒸汽流程设计不合理,两侧交插点过少,更为严重的是低蒸汽流速管排又处在高温烟气区,加剧了超温的危险。
(4)过热器、再热器管子选材上偏紧。
例如:①耐温性能较强的TP347、TP304、T91钢管用量太少,有些国产300MW锅炉,这种材料又没有用到管子温度最高的位置电厂被迫进行完善改造;②钢102,前些年建造的锅炉用到620℃,因其耐热能力不足,抗氧化能力更差,现在国内标准已降到600℃;③12Cr1MoV过去用到590℃现在已降为580℃;④20g过去用到490℃,现在降为450℃等。
上述设计问题给电厂带来了很大的负担,机组投产7~8年甚至3~4年就暴露出了问题,大面积管子过热爆漏,被迫大批量换管。
我们建议制造厂要优化设计,并向用户提出书面保证,电厂对锅炉设计细节要注意审查,多厂招标,优质优价。
六、不均匀积灰结渣引起超温有些锅炉,炉膛、屏式过热器、高温过热器、高温再热器不均匀积灰结渣,致使烟温烟速严重偏斜,处于积灰少结渣轻的管子,出现超温,有一台300MW国产锅炉正是这样,加上这台炉炉膛及对流受热面吹灰器质量不过关,没有投入运行,在锅炉的一侧高温过热器多条管过热爆漏,被迫更换了约一半的管子。
因此,建议电厂重视吹灰器的维修和正常吹扫工作。
七、汽包减水引起超温有个别电厂汽泵跳闸,电泵跟踪迟缓,轻者引起给水压力波动,严重者造成汽包水位波动,甚至造成锅炉严重缺水。
已发生多起超温停炉事故,至今仍未解决,严重威胁机炉安全运行。
我们认为:该厂锅炉给水泵是100%汽泵加50%电泵,当汽泵跳闸,出现RB工况,此时电泵应启动,机炉相应减负荷,这些环节配合不好,则造成水压波动,锅炉减水。
应由机、炉、热工专业联合攻关解决。
当然如果采用2X50%汽泵加1X50电泵匹配方式,问题可能就不会出现,至少比较容易解决。
八、调温手段不足引起超温(1)有几台锅炉喷水减温器调门已全开或者某一组减温器调门已全开,降温幅度受到限制。
建议首先从设备系统上查找原因,降低受热面吸热量,进而也解决了超温的危险,其次可以考虑把喷水调节阀改大,管路也要相应改进。
(2)有不少电厂配备有摆动燃烧器,并作为调节再热汽温的主要手段,据了解,有些燃烧器已不能摆动,个别厂已将燃烧器摆动执行机构拆除,失掉了一个调温手段。
但也有不少厂摆动燃烧器用得很好,坚持每班做摆动试验,建议电厂作调研,完善摆动装置并投入使用。
(3)有些锅炉装有烟气挡板调温装置。
据了解有的出现卡涩开关木动情况。
建议在大小修时进行检查维修,机组运行时,定期做开关试验,确保装置完好,能全开全关,灵活好用。
九、超温管理有待提高据了解目前许多电厂主蒸汽再热汽、受热面管壁超温,虽然也配备了一定的记录打印装置,但主要还是靠人工监视、人工记录、人工统计、人工分析。