聚丙烯酰胺连续驱替岩心实验

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章概述

作为一种重要的能源和化工原料,世界范围内对石油的需求仍将持续增长。尤其在我国,一方面国民经济发展对石油需求量的增长速度比以往任何时候都大;另一方面,我国的各主力油田均已进入高含水或特高含水开采期,开采难度增大,产量递减幅度加大,而且后备储量严重不足,石油的供求矛盾日益突出。据预测,按目前的开采水平,到2005年我国进口原油将高达108吨/年(1亿)。这将对我国国民经济发展造成极其严重的影响[1]。

缓解石油供求之间日益突出的矛盾有两条有效的途径:一是寻找新的原油地质储量;二是提高现有地质储量中的可采储量,即提高采收率。寻找新的油田、补充后备储量是原油增产和稳产最直接、最有效的途径。多年以来,各油田在开发过程中也不断加大勘探力度,找到新的储量。但是,石油是一种不可再生资源,它的总地质储量是一定的,而且我国陆上石油资源的勘探程度已经很高,新增地质储量的难度越来越大,潜力越来越少。近年来,几个大油田新增地质储量多数都是丰度很低、油层物性差、开采难度大的油藏。在有限的原油地质储量中,其可采储量是一个变量。它随着开采技术的发展而增加,而且其潜力一般很大。石油是一种流体矿藏,具有独特的开采方式。在各种矿物中,石油的采收率是比较低的。在目前技术水平下,石油的采收率平均约在30%~60%之间。在非均质油藏中,水驱采收率一般只有30%~40%。也就是说,水驱只能开采出地质储量的一小部分,还有大部分原油残留在地下。如何将油藏中的原油尽可能的、经济有效地开采出来,是一个极有吸引力的问题,也是世界性的难题。从长远来看,只要这个世界需要石油,人们必将越来越多地将注意力集中到提高采收率上。实际上,与勘探新油田不同,提高采收率问题自油田发现到开采结束,自始至终地贯穿于整个开发全过程。可以说,提高采收率是油田开采永恒的主题。(这种说法一点也不过分)。近几年,我国已成为纯石油进口国,预计到2005年将进口1亿吨/年。国民经济急需石油,大庆是我国最大的油田,按现已探明的地质储量计算,采收率每提高一个百分点,就可增油5000万吨。这对国民经济的发展具有极其重要的意义[2]。

从油田开采阶段上划分,通常将利用油层所具有的天然能量,如溶解气、气顶等,将原油采至地面的方法(能量衰竭法)称之为一次采油。在天然能量枯竭后用人工补充油藏能量的开采方法,如注水、注气,称之为二次采油。但是这种开采方式的分类很容易引起混乱。例如,在我国和前苏联一些油田曾采用早期注水保持压力的开采方法,很难说这究竟是一次采油还是二次采油。在稠油油田往往是一投入开发就进行热力采油,很难按上面的原则将其归类。

另一种是按技术特点分类:将传统的注水、注气以外的,不是以保持和补充油藏能量为目的,而是以改变和控制油藏及油藏流体物理化学性质为目的的所有开采方法统称为强化采油(EOR──Enhanced Oil Recovery)。目前,EOR这一术语已获得普遍的认可,并已成为提高采收率的同义词。

现有的主要EOR方法可分成如下几大类:化学驱;气驱;热力采油。在这里,我们重点讨论化学驱[3]。

几乎所有化学驱方法都具有高盐敏性,即对矿化度非常敏感,所以一般对驱油体系的矿化度都有限制。由于化学体系在油层中运移时,易于发生吸附、滞留,甚至絮凝、沉降,影响化学剂的注入。如何保持足够的注入能力,是一个长期研究的课题。减少化学剂在油藏中的损失(吸附、滞留),是直接影响化学驱效果的关键问题。

表1-1 几种化学驱的机理及采收率范围

驱替方法驱油机理典型采收率(%)聚合物驱改善流度比;提高波及效率;提高微观驱油效率5~10碱驱改善岩石润湿性;降低油/水界面张力;通过乳化改善流度比 5 活性剂驱降低油/水界面张力;增大毛管数5~10

胶束/聚合物驱改善流度比;提高波及效率;提高微观驱油效率;降低毛管数15

碱/聚合物驱

改善流度比;提高波及效率;提高微观驱油效率;改善岩石润

湿性;降低油/水界面张力;通过乳化改善流度比

5

泡沫驱改善流度比;提高波及效率;提高微观驱油效率;降低油/水

界面张力;增大毛管数;泡沫调剖效果;气体上浮运移、溶解

气驱

5~10

ASP复合驱改善流度比;提高波及效率;提高微观驱油效率;改善岩石润

湿性;降低油/水界面张力;通过乳化改善流度比;

降低油/水界面张力;增大毛管数;协同效应

15~20

我国的提高采收率技术研究与应用虽然比西方国家起步晚一些,但发展很快。大庆油田自1964年开始采收率的研究,经过近40年的努力,已经在聚合物驱、表面活性剂驱、CO2非混相驱、天然气驱和复合驱方面取得了长足的进展。尤其是聚合物驱技术、三元复合驱技术等化学驱技术的研究与应用的发展更为迅速。我国化学驱技术的迅猛发展的动力来源于国民经济对原油的需求和提高采收率的巨大潜力。

我国的油田主要分布在陆相沉积盆地,油层物性变化和砂体分布均比海相沉积复杂,泥质含量高,油藏非均质性远高于主要为海相沉积的国外油田。而且陆相盆地生油母质为陆生生物,原油含蜡高、粘度高。这样的陆相沉积环境和生油条件,加大了我国油田开发的难度。我国依靠科技的力量,发展了一系列注水开发的配套技术,使注入水不断扩大波及体积,延长了油田的稳产期。应该说我国注

水开发技术和稳产指标,已达到或超过国外同类油田水驱开发的先进水平。尽管如此,由于油层物性差,非均质性严重,原油物性差(粘度高、含蜡高),我国油田的水驱平均采收率只有34.2%,一些油田只有20%~25%,远低于国外海相沉积油田的水驱采收率水平[4]。

大庆油田是陆相沉积油田、其油藏非均质变异系数0.7左右,原油地下粘度为9mPa•s(是美国东德克萨斯油田原油粘度高10倍之多!),综合含水82%,仅采出地质储量的30.1%,最初预测最终水驱采收率仅为34.8%,经过多年的工作,不断改善水驱开发效果,大庆油田预测水驱采收率也仅可提高到40%左右,仍然远远低于国外海相沉积大油田的水驱采收率。

胜利油田也是陆相沉积油田,其原油地下粘度为:上第三系馆陶组油层60~90mPa•s,下第三系沙河街组油层10~20mPa•s。现含水已达89.8%,仅采出地质储量的21.1%。预测水驱采收率也只有27.7%。我国油田总水驱采收率水平较低,主要反映在两个方面:

①由于油层的非均质性,水驱波及系数低;

②驱油效率低。

这两点决定了我国油田采用以扩大波及体积和提高驱油效率为目标的EOR方法具有很大潜力。

我国的提高采收率研究起始于60年代初,其发展高峰是80年代初。1979年,原石油工业部将提高采收率(三次采油)列为我国油田开发十大科学技术之一。开始着手进行EOR技术调研,组织国际合作,引进先进技术,就此揭开我国EOR 技术高速发展的序幕。从经济和产量角度综合考虑,化学驱是我国油田开发提高采收率技术的最佳选择[5]。

我国近年来原油产量约为1.4×108t,全国陆上油田含水已高达82%,进入了高含水期开采阶段。每年年产量综合递减800多万吨。仅仅是为了稳产,每年就需增加近8×108t地质储量。目前我国陆上油田新区勘探难度越来越大,单纯靠新区增加可采储量已无法满足需要。另一方面,我国老油田还剩余近百万吨储量无法依靠二次采油开采出来。大庆油田对其外围新区未动用的低渗透新油田和老油田每采100×104t原油所需总费用进行了对比:老区继续水驱加密井网总费用4.22亿元;老区聚合物驱3.93亿元;外围新区8.3亿元。这说明,在老区提高采收率所投入的经费是较低的。

1982年,在对国外五个主要石油生产国十余种EOR方法综合分析的基础上,对我国23个主力油田进行了EOR方法粗选。1984年开始与日、美、英、法等国在大港、大庆、玉门等油田进行聚合物驱,表面活性济驱油等方面的技术合作。由于我国探明气源不足,油田混相压力较高,不具备广泛实施混相驱的条件,确定了化学驱油作为我国EOR技术的主攻方向,并以首先聚合物驱作为重点。“七五”(1986~1990)、“八五”(1991~1995)、“九五”(1996~2000)连续将EOR 技术研究列为国家重点科技攻关项目。

相关文档
最新文档