第二章课后习题答案
结构化学课后答案第2章习题原子的结构与性质
1. 简要说明原子轨道量子数及它们的取值范围?解:原子轨道有主量子数n ,角量子数l ,磁量子数m 与自旋量子数s ,对类氢原子(单电子原子)来说,原子轨道能级只与主量子数n 相关R n Z E n22-=。
对多电子原子,能级除了与n 相关,还要考虑电子间相互作用。
角量子数l 决定轨道角动量大小,磁量子数m 表示角动量在磁场方向(z 方向)分量的大小,自旋量子数s 则表示轨道自旋角动量大小。
n 取值为1、2、3……;l =0、1、2、……、n -1;m =0、±1、±2、……±l ;s 取值只有21±。
2. 在直角坐标系下,Li 2+ 的Schrödinger 方程为________________ 。
解:由于Li 2+属于单电子原子,在采取“B -O” 近似假定后,体系的动能只包括电子的动能,则体系的动能算符:2228ˆ∇-=mh T π;体系的势能算符:r e r Ze V 0202434ˆπεπε-=-= 故Li 2+ 的Schrödinger 方程为:ψψE r εe mh =⎥⎦⎤⎢⎣⎡π-∇π-20222438 式中:z y x ∂∂+∂∂+∂∂=∇2222222,r = ( x 2+ y 2+ z 2)1/23. 对氢原子,131321122101-++=ψψψψc c c ,其中 131211210,,-ψψψψ和都是归一化的。
那么波函数所描述状态的(1)能量平均值为多少?(2)角动量出现在 π22h 的概率是多少?,角动量 z 分量的平均值为多少?解: 由波函数131321122101-++=ψψψψc c c 得:n 1=2,l 1=1,m 1=0; n 2=2, l 2=1,m 2=1; n 3=3,l 3=1,m 3=-1;(1)由于131211210,,-ψψψψ和都是归一化的,且单电子原子)(6.1322eV nz E -=故(2) 由于 1)l(l M +=||, l 1=1,l 2=1,l 3=1,又131211210,,-ψψψψ和都是归一化的,故()eV c eV c c eV c eV c eV c E c E c E c E cE ii i 232221223222221323222121299.1346.13316.13216.13216.13-+-=⎪⎭⎫ ⎝⎛⨯-+⎪⎭⎫ ⎝⎛⨯-+⎪⎭⎫ ⎝⎛⨯-=++==∑2223232221212h h h M c M c M c M cM ii i ++==∑则角动量为π22h 出现的概率为:1232221=++c c c(3) 由于π2hm M Z ⨯=, m 1=0,m 2=1,m 3=-1; 又131211210,,-ψψψψ和都是归一化的, 故4. 已知类氢离子 He +的某一状态波函数为:()022-023021e 222241a r a r a ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛π (1)此状态的能量为多少?(2)此状态的角动量的平方值为多少? (3)此状态角动量在 z 方向的分量为多少? (4)此状态的 n , l , m 值分别为多少? (5)此状态角度分布的节面数为多少?解:由He +的波函数()002302/1222241a 2r 2-e a r a ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛π=ψ,可以得到:Z=2,则n =2, l =0, m =0 (1) He +为类氢离子,)(6.1322eV n z E -=,则eV eV eV n z E 6.13)(226.13)(6.132222-=⨯-=-=(2) 由l =0,21)l(l M+=2,得0)10(02=+=+=221)l(l M(3) 由|m |=0, m M Z =,得00=== m M Z(4) 此状态下n =2, l =0, m =0(5) 角度分布图中节面数= l ,又l =0 ,故此状态角度分布的节面数为0。
大学物理学(第三版)第二章课后答案
习题22.1选择题(1) 一质点作匀速率圆周运动时,(A)它的动量不变,对圆心的角动量也不变。
(B)它的动量不变,对圆心的角动量不断改变。
(C)它的动量不断改变,对圆心的角动量不变。
(D)它的动量不断改变,对圆心的角动量也不断改变。
[答案:C](2) 质点系的内力可以改变(A)系统的总质量。
(B)系统的总动量。
(C)系统的总动能。
(D)系统的总角动量。
[答案:C](3) 对功的概念有以下几种说法:①保守力作正功时,系统内相应的势能增加。
②质点运动经一闭合路径,保守力对质点作的功为零。
③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
在上述说法中:(A)①、②是正确的。
(B)②、③是正确的。
(C)只有②是正确的。
(D)只有③是正确的。
[答案:C]2.2填空题(1) 某质点在力(SI)的作用下沿x轴作直线运动。
在从x=0移动到x=10m的过程中,力所做功为。
[答案:290J](2) 质量为m的物体在水平面上作直线运动,当速度为v时仅在摩擦力作用下开始作匀减速运动,经过距离s后速度减为零。
则物体加速度的大小为,物体与水平面间的摩擦系数为。
[答案:](3) 在光滑的水平面内有两个物体A和B,已知m A=2m B。
(a)物体A以一定的动能E k与静止的物体B发生完全弹性碰撞,则碰撞后两物体的总动能为;(b)物体A 以一定的动能E k与静止的物体B发生完全非弹性碰撞,则碰撞后两物体的总动能为。
[答案:]2.3 在下列情况下,说明质点所受合力的特点:(1)质点作匀速直线运动;(2)质点作匀减速直线运动;(3)质点作匀速圆周运动;(4)质点作匀加速圆周运动。
解:(1)所受合力为零;(2)所受合力为大小、方向均保持不变的力,其方向与运动方向相反;(3)所受合力为大小保持不变、方向不断改变总是指向圆心的力;(4)所受合力为大小和方向均不断变化的力,其切向力的方向与运动方向相同,大小恒定;法向力方向指向圆心。
材料化学第二章习题参考答案与解析
第二章参考答案1.原子间的结合键共有几种?各自特点如何?2.为什么可将金属单质的结构问题归结为等径圆球的密堆积问题?答:金属晶体中金属原子之间形成的金属键即无饱和性又无方向性, 其离域电子为所有原子共有,自由流动,因此整个金属单质可看成是同种元素金属正离子周期性排列而成,这些正离子的最外层电子结构都是全充满或半充满状态,电子分布基本上是球形对称,由于同种元素的原子半径都相等,因此可看成是等径圆球。
又因金属键无饱和性和方向性, 为使体系能量最低,金属原子在组成晶体时总是趋向形成密堆积结构,其特点是堆积密度大,配位数高,因此金属单质的结构问题归结为等径圆球的密堆积问题.3.计算体心立方结构和六方密堆结构的堆积系数。
(1) 体心立方 a :晶格单位长度 R :原子半径a 34R = 34R a =,n=2, ∴68.0)3/4()3/4(2)3/4(23333===R R a R bccππζ (2)六方密堆 n=64. 试确定简单立方、体心立方和面心立方结构中原子半径和点阵参数之间的关系。
解:简单立方、体心立方和面心立方结构均属立方晶系,点阵参数或晶格参数关系为90,=====γβαc b a ,因此只求出a 值即可。
对于(1)fcc(面心立方)有a R 24=, 24R a =, 90,=====γβαc b a(2) bcc 体心立方有:a 34R = 34R a =; 90,=====γβαc b a(3) 简单立方有:R a 2=, 90,=====γβαc b a74.0)3(3812)3/4(6)2321(6)3/4(633hcp =⋅=⋅R R R R a a c R ππξ=R a a c 238==5. 金属铷为A2型结构,Rb 的原子半径为0.2468 nm ,密度为1.53g·cm-3,试求:晶格参数a 和Rb 的相对原子质量。
解:AabcN nM=ρ 其中, ρ为密度, c b a 、、为晶格常数, 晶胞体积abc V =,N A 为阿伏加德罗常数6.022×1023 mol -1,M 为原子量或分子量,n 为晶胞中分子个数,对于金属则上述公式中的M 为金属原子的原子量,n 为晶胞中原子的个数。
第二章课后作业答案
第二章线性表习题(答案)1.描述以下三个概念的区别:头指针,头结点,首元素结点。
首元结点是指链表中存储线性表中第一个数据元素a1的结点。
为了操作方便,通常在链表的首元结点之前附设一个结点,称为头结点,该结点的数据域中不存储线性表的数据元素,其作用是为了对链表进行操作时,可以对空表、非空表的情况以及对首元结点进行统一处理。
头指针是指向链表中第一个结点(或为头结点或为首元结点)的指针。
若链表中附设头结点,则不管线性表是否为空表,头指针均不为空。
否则表示空表的链表的头指针为空。
2.填空:(1)在顺序表中插入或删除一个元素,需要平均移动一半元素,具体移动的元素个数与插入或删除的位置有关。
(2)在顺序表中,逻辑上相邻的元素,其物理位置也相邻。
在单链表中,逻辑上相邻的元素,其物理位置不一定相邻。
(3)在带头结点的非空单链表中,头结点的存储位置由头指针指示,首元素结点的存储位置由头结点的next域指示,除首元素结点外,其它任一元素结点的存储位置由其直接前趋的next域指示。
3.已知L是无表头结点的单链表,且P结点既不是首元素结点,也不是尾元素结点。
按要求从下列语句中选择合适的语句序列。
a. 在P结点后插入S结点的语句序列是:(4)、(1)。
b. 在P结点前插入S结点的语句序列是:(7)、(11)、(8)、(4)、(1)。
c. 在表首插入S结点的语句序列是:(5)、(12)。
d. 在表尾插入S结点的语句序列是:(11)、(9)、(1)、(6)。
供选择的语句有:(1)P->next=S; (2)P->next= P->next->next; (3)P->next= S->next;(4)S->next= P->next; (5)S->next= L; (6)S->next= NULL;(7)Q= P; (8)while(P->next!=Q) P=P->next;(9)while(P->next!=NULL) P=P->next; (10)P= Q;(11)P= L; (12)L= S; (13)L= P;4.设线性表存于a[n]中且递增有序。
第二章课后习题答案
第二章课后习题答案第二章牛顿定律2-1如图(a)所示,质量为m的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为()(A)ginθ(B)gcoθ(C)gtanθ(D)gcotθ分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mgcotθ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2-2用水平力FN把一个物体压着靠在粗糙的竖直墙面上保持静止.当FN逐渐增大时,物体所受的静摩擦力Ff的大小()(A)不为零,但保持不变(B)随FN成正比地增大(C)开始随FN增大,达到某一最大值后,就保持不变(D)无法确定分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值μFN范围内取值.当FN增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2-3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()μgR(B)必须等于μgR(C)不得大于μgR(D)还应由汽车的质量m决定(A)不得小于分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μFN.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2-4一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则()(A)它的加速度方向永远指向圆心,其速率保持不变(B)它受到的轨道的作用力的大小不断增加(C)它受到的合外力大小变化,方向永远指向圆心(D)它受到的合外力大小不变,其速率不断增加分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(mgcoθ)使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程v2FNmginθm可判断,随θ角的不断增大过程,轨道支持力FN也将不R断增大,由此可见应选(B).2-5图(a)示系统置于以a=1/4g的加速度上升的升降机内,A、B两物体质量相同均为m,A所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为()(A)58mg(B)12mg(C)mg(D)2mg分析与解本题可考虑对A、B两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A、B两物体受力情况如图(b)所示,图中a′为A、B两物体相对电梯的加速度,ma′为惯性力.对A、B两物体应用牛顿第二定律,可解得FT=5/8mg.故选(A).讨论对于习题2-5这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度aA和aB均应对地而言,本题中aA和aB的大小与方向均不相同.其中aA应斜向上.对aA、aB、a和a′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2-6图示一斜面,倾角为α,底边AB长为l=2.1m,质量为m的物体从题2-6图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短?其数值为多少?解取沿斜面为坐标轴O某,原点O位于斜面顶点,则由牛顿第二定律有mginαmgμcoαma(1)又物体在斜面上作匀变速直线运动,故有l11at2ginαμcoαt2coα22则t2l(2)gcoαinαμcoα为使下滑的时间最短,可令dt0,由式(2)有dαinαinαμcoαcoαcoαμinα0则可得tan2α1o,49μ此时t2l0.99gcoαinαμcoα2-7工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m1=2.00某102kg,乙块质量为m2=1.00某102kg.设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1)两物块以10.0m·s-2的加速度上升;(2)两物块以1.0m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a上升时,有FT-(m1+m2)g=(m1+m2)a(1)FN2-m2g=m2a(2)解上述方程,得FT=(m1+m2)(g+a)(3)FN2=m2(g+a)(4)(1)当整个装置以加速度a=10m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94某103N乙对甲的作用力为F′N2=-FN2=-m2(g+a)=-1.98某103N(2)当整个装置以加速度a=1m·s-2上升时,得绳张力的值为FT=3.24某103N此时,乙对甲的作用力则为F′N2=-1.08某103N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2-8如图(a)所示,已知两物体A、B的质量均为m=3.0kg物体A以加速度a=1.0m·s-2运动,求物体B与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B及滑轮列动力学方程,有mAg-FT=mAa(1)F′T1-Ff=mBa′(2)F′T-2FT1=0(3)考虑到mA=mB=m,FT=F′T,FT1=F′T1,a′=2a,可联立解得物体与桌面的摩擦力Ffmgm4ma7.2N2讨论动力学问题的一般解题步骤可分为:(1)分析题意,确定研究对象,分析受力,选定坐标;(2)根据物理的定理和定律列出原始方程组;(3)解方程组,得出文字结果;(4)核对量纲,再代入数据,计算出结果来.2-9质量为m′的长平板A以速度v′在光滑平面上作直线运动,现将质量为m的木块B轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析当木块B平稳地轻轻放至运动着的平板A上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1以地面为参考系,在摩擦力Ff=μmg的作用下,根据牛顿定律分别对木块、平板列出动力学方程Ff=μmg=ma1F′f=-Ff=m′a2a1和a2分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a=a1+a2,木块相对平板以初速度-v′作匀减速运动直至最终停止.由运动学规律有-v′2=2a由上述各式可得木块相对于平板所移动的距离为mv22μgmm解2以木块和平板为系统,它们之间一对摩擦力作的总功为W=Ff(+l)-Ffl=μmg式中l为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m′v′=(m′+m)v″由系统的动能定理,有μmg由上述各式可得11mv2mmv222mv22μgmm2-10如图(a)所示,在一只半径为R的半球形碗内,有一粒质量为m的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?分析维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力FN的分力来提供的,由于支持力FN始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示O某y坐标,列出动力学方程,即可求解钢球距碗底的高度.解取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程FNinθmanmRω2inθ(1)Rh(3)且有coθR由上述各式可解得钢球距碗底的高度为hR可见,h随ω的变化而变化.gω22-11火车转弯时需要较大的向心力,如果两条铁轨都在同一水平面内(内轨、外轨等高),这个向心力只能由外轨提供,也就是说外轨会受到车轮对它很大的向外侧压力,这是很危险的.因此,对应于火车的速率及转弯处的曲率半径,必须使外轨适当地高出内轨,称为外轨超高.现有一质量为m的火车,以速率v沿半径为R的圆弧轨道转弯,已知路面倾角为θ,试求:(1)在此条件下,火车速率v0为多大时,才能使车轮对铁轨内外轨的侧压力均为零?(2)如果火车的速率v≠v0,则车轮对铁轨的侧压力为多少?分析如题所述,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平分量FNinθ提供(式中θ角为路面倾角).从而不会对内外轨产生挤压.与其对应的是火车转弯时必须以规定的速率v0行驶.当火车行驶速率v≠v0时,则会产生两种情况:如图所示,如v>v0时,外轨将会对车轮产生斜向内的侧压力F1,以补偿原向心力的不足,如v<v0时,则内轨对车轮产生斜向外的侧压力F2,以抵消多余的向心力,无论哪种情况火车都将对外轨或内轨产生挤压.由此可知,铁路部门为什么会在每个铁轨的转弯处规定时速,从而确保行车安全.解(1)以火车为研究对象,建立如图所示坐标系.据分析,由牛顿定律有v2FNinθm(1)解(1)(2)两式可得火车转弯时规定速率为v0gRtanθ(2)当v>v0时,根据分析有v2FNinθF1coθm(3)RFNcoθF1inθmg0(4)解(3)(4)两式,可得外轨侧压力为v2F1mcoθginθR当v<v0时,根据分析有v2FNinθF2coθm(5)RFNcoθF2inθmg0(6)解(5)(6)两式,可得内轨侧压力为v2F2mginθcoθR2-12一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为m,圆筒半径为R,演员骑摩托车在直壁上以速率v作匀速圆周螺旋运动,每绕一周上升距离为h,如图所示.求壁对演员和摩托车的作用力.分析杂技演员(连同摩托车)的运动可以看成一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹展开后,相当于如图(b)所示的斜面.把演员的运动速度分解为图示的v1和v2两个分量,显然v1是竖直向上作匀速直线运动的分速度,而v2则是绕圆筒壁作水平圆周运动的分速度,其中向心力由筒壁对演员的支持力FN的水平分量FN2提供,而竖直分量FN1则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向解设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有FN1mg0(1)FN2v2m(2)Rv2vcoθv2πR2πR2h2(3)22FNFN1FN2(4)以式(3)代入式(2),得FN2m4π2R2v24π2Rmv222(5)2222R4πRh4πRh将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为22FNFN1FN224π2Rv22mg4π2R2h2与壁的夹角φ为FN24π2Rv2arctanarctan222FN14πRhg讨论表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.2-13一质点沿某轴运动,其受力如图所示,设t=0时,v0=5m·s-1,某0=2m,质点质量m=1kg,试求该质点7s末的速度和位置坐标.分析首先应由题图求得两个时间段的F(t)函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应.解由题图得0t52t,Ft5t7355t,由牛顿定律可得两时间段质点的加速度分别为a2t,0t5a355t,5t7对0<t<5s时间段,由adv得dtvtv00dvadt积分后得v5t再由v2d某得dtd某vdt某00某t积分后得某25tt将t=5s代入,得v5=30m·s-1和某5=68.7m对5s<t<7s时间段,用同样方法有133dvv0vt5a2dt得v35t2.5t82.5t再由得某=17.5t2-0.83t3-82.5t+147.87将t=7s代入分别得v7=40m·s-1和某7=142m2-14一质量为10kg的质点在力F的作用下沿某轴作直线运动,已知F =120t+40,式中F的单位为N,t的单位的s.在t=0时,质点位于某=5.0m处,其速度v0=6.0m·s-1.求质点在任意时刻的速度和位置.分析这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a=dv/dt,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v(t);由速度的定义v=d某/dt,用积分的方法可求出质点的位置.解因加速度a=dv/dt,在直线运动中,根据牛顿运动定律有2某某5d某vdt5t120t40mdvdt依据质点运动的初始条件,即t0=0时v0=6.0m·s-1,运用分离变量法对上式积分,得vv0dv12.0t4.0dt0tv=6.0+4.0t+6.0t2又因v=d某/dt,并由质点运动的初始条件:t0=0时某0=5.0m,对上式分离变量后积分,有d某6.04.0t6.0tdt某t2某00某=5.0+6.0t+2.0t2+2.0t32-15轻型飞机连同驾驶员总质量为1.0某103kg.飞机以55.0m·s-1的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0某102N·s-1,空气对飞机升力不计,求:(1)10s后飞机的速率;(2)飞机着陆后10s内滑行的距离.分析飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有dvαtdtvtαtdvv00mdtα2t得vv02mFmam因此,飞机着陆10s后的速率为v=30m·s-1又tα2d某vdt某0002mt某故飞机着陆后10s内所滑行的距离某某0v0tα3t467m6m2-16质量为m的跳水运动员,从10.0m高台上由静止跳下落入水中.高台距水面距离为h.把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为bv2,其中b为一常量.若以水面上一点为坐标原点O,竖直向下为Oy轴,求:(1)运动员在水中的速率v与y的函数关系;(2)如b/m=0.40m-1,跳水运动员在水中下沉多少距离才能使其速率v减少到落水速率v0的1/10?(假定跳水运动员在水中的浮力与所受的重力大小恰好相等)分析该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P、浮力F和水的阻力Ff的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解(1)运动员入水前可视为自由落体运动,故入水时的速度为v02gh运动员入水后,由牛顿定律得P-Ff-F=ma由题意P=F、Ff=bv2,而a=dv/dt=v(dv/dy),代入上式后得-bv2=mv(dv/dy)考虑到初始条件y0=0时,v0t2gh,对上式积分,有vdvmdy0v0vbvv0eby/m2gheby/m(2)将已知条件b/m=0.4m-1,v=0.1v0代入上式,则得ymvln5.76mbv0某2-17直升飞机的螺旋桨由两个对称的叶片组成.每一叶片的质量m=136kg,长l=3.66m.求当它的转速n=320r/min 时,两个叶片根部的张力.(设叶片是宽度一定、厚度均匀的薄片)分析螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.解设叶片根部为原点O,沿叶片背离原点O的方向为正向,距原点O为r处的长为dr一小段叶片,其两侧对它的拉力分别为FT(r)与FT(r+dr).叶片转动时,该小段叶片作圆周运动,由牛顿定律有dFTFTrFTrdr由于r=l时外侧FT=0,所以有m2ωrdrltFTrdFTlrmω2rdrlmω2222πmn222FTrlrlr2ll上式中取r=0,即得叶片根部的张力FT0=-2.79某105N负号表示张力方向与坐标方向相反.2-18一质量为m的小球最初位于如图(a)所示的A点,然后沿半径为r 的光滑圆轨道ADCB下滑.试求小球到达点C时的角速度和对圆轨道的作用力.分析该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度at,与其相对应的外力Ft是重力的切向分量mginα,而与法向加速度an相对应的外力是支持力FN和重力的法向分量mgcoα.由此,可分别列出切向和法向的动力学方程Ft=mdv/dt和Fn=man.由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解小球在运动过程中受到重力P和圆轨道对它的支持力FN.取图(b)所示的自然坐标系,由牛顿定律得Ftmginαmdv(1)dtmv2FnFNmgcoαm(2)R由vdrdαrdα,得dt,代入式(1),并根据小球从点A运动到点Cdtdtv的始末条件,进行积分,有vv0vdvα90orginαdα得v则小球在点C的角速度为2rgcoαωv2gcoα/rrmv2mgcoα3mgcoα由式(2)得FNmr由此可得小球对圆轨道的作用力为FN3mgcoαFN负号表示F′N与en反向.2-19光滑的水平桌面上放置一半径为R的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v0,求:(1)t时刻物体的速率;(2)当物体速率从v0减少到12v0时,物体所经历的时间及经过的路程.解(1)设物体质量为m,取图中所示的自然坐标,按牛顿定律,有mv2FNmanRFfmatdvdt由分析中可知,摩擦力的大小Ff=μFN,由上述各式可得v2dvμRdt取初始条件t=0时v=v0,并对上式进行积分,有t0dtRvdvμv0v2vRv0Rv0μt(2)当物体的速率从v0减少到1/2v0时,由上式可得所需的时间为t物体在这段时间内所经过的路程Rμv0vdt0tt0Rv0dtRv0μtRln2μ2-20质量为45.0kg的物体,由地面以初速60.0m·s-1竖直向上发射,物体受到空气的阻力为Fr=kv,且k=0.03N/(m·s-1).(1)求物体发射到最大高度所需的时间.(2)最大高度为多少?分析物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.解(1)物体在空中受重力mg和空气阻力Fr=kv作用而减速.由牛顿定律得mgkvmdv(1)dt某2-25如图(a)所示,电梯相对地面以加速度a竖直向上运动.电梯中有一滑轮固定在电梯顶部,滑轮两侧用轻绳悬挂着质量分别为m1和m2的物体A和B.设滑轮的质量和滑轮与绳索间的摩擦均略去不计.已知m1>m2,如以加速运动的电梯为参考系,求物体相对地面的加速度和绳的张力.分析如以加速运动的电梯为参考系,则为非惯性系.在非惯性系中应用牛顿定律时必须引入惯性力.在通常受力分析的基础上,加以惯性力后,即可列出牛顿运动方程来.解取如图(b)所示的坐标,以电梯为参考系,分别对物体A、B作受力分析,其中F1=m1a,F2=m2a分别为作用在物体A、B上的惯性力.设ar为物体相对电梯的加速度,根据牛顿定律有m1gm1aFT1m1ar(1)m2gm2aFT2m2ar(2)FT2FT2(3)由上述各式可得arm1m2gam1m22m1m2gam1m2FT2FT2由相对加速度的矢量关系,可得物体A、B对地面的加速度值为a1aram1m2g2m2am1m22m1am1m2gm1m2a2araa2的方向向上,a1的方向由ar和a的大小决定.当ar<a,即m1g-m2g-2m2a>0时,a1的方向向下;反之,a1的方向向上.某2-26如图(a)所示,在光滑水平面上,放一质量为m′的三棱柱A,它的斜面的倾角为α.现把一质量为m的滑块B放在三棱柱的光滑斜面上.试求:(1)三棱柱相对于地面的加速度;(2)滑块相对于地面的加速度;(3)滑块与三棱柱之间的正压力.分析这类问题可应用牛顿定律并采用隔离体法求解.在解题的过程中必须注意:(1)参考系的选择.由于牛顿定律只适用于惯性系,可选择地面为参考系(惯性系).因地面和斜面都是光滑的,当滑块在斜面上下滑时,三棱柱受到滑块对它的作用,也将沿地面作加速度为aA的运动,这时,滑块沿斜面的加速度aBA,不再是它相对于地面的加速度aB了.必须注意到它们之间应满足相对加速度的矢量关系,即aB=aA+aBA.若以斜面为参考系(非惯性系),用它求解这类含有相对运动的力学问题是较为方便的.但在非惯性系中,若仍要应用牛顿定律,则必须增添一惯性力F,且有F=maA.(2)坐标系的选择.常取平面直角坐标,并使其中一坐标轴方向与运动方向一致,这样,可使解题简化.(3)在分析滑块与三棱柱之间的正压力时,要考虑运动状态的影响,切勿简单地把它视为滑块重力在垂直于斜面方向的分力mgcoα,事实上只有当aA=0时,正压力才等于mgcoα.解1取地面为参考系,以滑块B和三棱柱A为研究对象,分别作示力图,如图(b)所示.B受重力P1、A施加的支持力FN1;A受重力P2、B施加的压力FN1′、地面支持力FN2.A的运动方向为O某轴的正向,Oy轴的正向垂直地面向上.设aA为A对地的加速度,aB为B对的地加速度.由牛顿定律得FN1inαmaA(1)FN1inαmaB某(2)FN1coαmgmaBy(3)FN1FN1(4)设B相对A的加速度为aBA,则由题意aB、aBA、aA三者的矢量关系如图(c)所示.据此可得aB某aAaBAcoα(5)aByaBAinα(6)解上述方程组可得三棱柱对地面的加速度为aAmginαcoα2mminαmginαcoαmmin2α滑块相对地面的加速度aB在某、y轴上的分量分别为aB某aBymmgin2αmmin2α则滑块相对地面的加速度aB的大小为aBaa2B某2Bym22mmm2in2αginαmmin2α其方向与y轴负向的夹角为amcotαθarctanB某arctanaBymmA与B之间的正压力FN1mmgcoα2mminα解2若以A为参考系,O某轴沿斜面方向[图(d)].在非惯性系中运用牛顿定律,则滑块B的动力学方程分别为mginαmaAcoαmaBA(1)mgcoαFN1maAinα0(2)又因FN1inαmaA0(3)FN1FN1(4)由以上各式可解得aAaBAmginαcoαmmin2αmmginαmmin2α由aB、aBA、aA三者的矢量关系可得m22mmm2in2αaBginαmmin2α以aA代入式(3)可得FN1mmgcoαmmin2α。
第二章课后习题答案
第二章习题(二)判断题1.用户构建单片机应用系统,只能使用芯片提供的信号引脚。
(T)2.程序计数器(PC)不能为用户使用,因此它没有地址。
(T)3.内部RAM的位寻址区,只能提供位寻址使用而不能供字节寻址使用。
(F)4.在程序执行过程中,由PC提供数据存储器的读/写地址。
(F)5.80C51共有21个专用寄存器,它们的位都是可用软件设置的,因此是可以进行位寻址的。
(T)(三)填空题1. MCS-51单片机引脚信号中,信号名称带上划线表示该信号低电平或下跳变有效。
2. MCS-51单片机内部RAM的寄存区共有32 个单元,分为4 组寄存器,每组8 个单元,以R7~R0 作为寄存器名称。
3. 单片机系统复位后,(PSW)=00H,因此内部RAM寄存区的当前寄存器是第0 组,8个寄存器的单元地址为00H ~07H 。
4.通过堆栈操作实现子程序调用,首先要把PC 的内容入栈,以进行断点保护。
调用返回时再进行出栈操作,把保护的断点送回PC 。
5. 为寻址程序状态字的F0位,可使用的地址和符号有D5H 、F0 、PSW.5和D5H.5 。
6. MCS-51单片机的时钟电路包括两部分内容,即芯片内的高增益反相放大器和芯片外跨接的晶体震荡器,微调电容。
7. 在MCS-51中,位处理器的数据位存储空间是由专用寄存器的可寻址位和内部RAM为寻址区的128 个位。
8. MCS-51的4个I/O口中,P0是真正的双向口,而其他口则为准双向口,这一区别在口线电路结构中表现在口的输出缓冲器的不同上。
(四)选择题1.单片机芯片内提供了一定数量的工作寄存器,这样做的好处不应包括(A)提高程序运行的可靠性(B)提高程序运行速度(C)为程序设计提供方便(D)减少程序长度2.内部RAM中的位寻址区定义的位是给(A)位操作准备的(B)移位操作准备的(C)控制转移操作准备的(D)以上都对3.对程序计数器PC的操作(A)是自动进行的(B)是通过传送进行的(C)是通过加“1”指令进行的(D)是通过减“1”指令进行的4.以下运算中对溢于言表标志位OV没有影响或不受OV影响的运算是(A)逻辑运算(B)符号数加减法运算(C)乘法运算(D)除法运算5.单片机程序存储器的寻址范围是由程序计数器PC的位数决定的,MCS-51的PC为16位,因此其寻址范围是(A)4KB (B)64KB (C)8KB (D)128KB6.在算术运算中,与辅助进位位AC有关的是(A)二进制数(B)八进制数(C)十进制数(D)十六进制数7.以下有关PC和DPTR的结论中错误的是(A)DPTR是可以访问的而PC是不能访问的(B)它们都是16位的寄存器(C)它们都具有加“1”的功能(D)DPTR可以分为2个8位的寄存器使用,但PC不能8.PC的值是(A)当前指令前一条指令的地址(B)当前正在执行指令的地址(C)下一条指令的地址(D)控制器中指令寄存器的地址9.假定设置堆栈指针SP的值为37H,在进行子程序调用时把断点地址进栈保护后,SP的值为(A)36H (B)37H (C)38H (D)39H10. 80C51中,可使用的堆栈最大深度为(A)80个单元(B)32个单元(C)128个单元(D)8个单元11. 位处理器是单片机面向控制应用的重要体现,下列中不属于位处理器资源的是(A)位累加器CY (B)通用寄存器的可寻址位(C)专用寄存器的可寻址位(D)位操作指令集12. 在MCS-51单片机的运算电路中,不能为ALU提供数据的是(A)累加器A (B)暂存器(C)寄存器B (D)状态寄存器PSW13. 在MCS-51中(A)具有独立的专用的地址线(B)在P0口和P1口的口线作地址线(C)在P0口和P2口的口线作地址线(D)在P1口和P2口的口线作地址线。
仪器分析课后习题答案第二章
(2)分离极性物质,选用极性固定液,这时试样中各组分主要按极性顺序分离,极 性小的先流出色谱柱,极性大的后流出色谱柱。
(3)分离非极性和极性混合物时,一般选用极性固定液,这时非极性组分先出峰, 极性组分(或易被极化的组分)后出峰。
桥路工作电流、热导池体温度、载气性质和流速、热敏元件阻值及 热导池死体积等均对检测器灵敏度有影响。
15.试述氢焰电离检测器的工作原理。如何考虑其操作条件?
解:对于氢焰检测器离子化的作用机理,至今还不十分清楚。目前认 为火焰中的电离不是热电离而是化学电离,即有机物在火焰中发生自 由基反应而被电离。化学电离产生的正离子( CHO+、H3O+)和电子(e)在 外加150~300v直流电场作用下向两极移动而产生微电流。经放大后, 记录下色谱峰。 氢火焰电离检测器对大多数的有机化合物有很高的灵 敏度,故对痕量有机物的分析很适宜。但对在氢火焰中不电离的元机 化合物例如CO、CO2、SO2、N2、NH3等则不能检测。
(4)对于能形成氢键的试样、如醉、酚、胺和水等的分离。一般选择极性的或是氢 键型的固定液,这时试样中各组分按与固定液分子间形成氢键的能力大小先后流出, 不易形成氢键的先流出,最易形成氢键的最后流出。
(5)对于复杂的难分离的物质可以用两种或两种以上的混合固定液。
以上讨论的仅是对固定液的大致的选择原则,应用时有一定的局限性。事实上在 色谱柱中的作用是较复杂的,因此固定液酌选择应主要靠实践。
担体的表面积越大,固定液的含量可以越高.
12. 试比较红色担体与白色担体的性能,何谓硅烷化担体?它有何优点? 答:
(见P27)
机械制造技术第二章课后答案
第二章加工设备自动化(课后习题)2-1.实现加工设备自动化的意义是什么? (P30)答:加工设备生产率得到有效提高的主要途径之一是采取措施缩短其辅助时 间,加工设备工作过程自动化可以缩短辅助时间,改善公认的劳动条件和减轻工 人的劳动强度。
加工设备自动化是零件整个机械加工工艺过程自动化的基本问题 之一,是机械制造厂实现零件加工自动化的基础。
2-2.为什么说单台加工设备的自动化是实现零件自动化加工的基础? (P30) 答:单台加工设备的自动化能较好地满足零件加工过程中某个或几个工序的加 工半自动化和自动化的需要,为多机床管理创造了条件,是建立自动化生产线和 过渡到全盘自动化的必要前提,是机械制造业更进一步向前发展的基础。
2-3.加工设备自动化包含的主要内容与实现的途径有哪些? (P30)答:加工设备自动化主要是指实现了机床加工循环自动化和实现了辅助工作自 动化的加工设备。
其主要内容如下:匚自动装卸工件实现加工设备自动化的途径主要有以下几种:(1) 对半自动加工设备通过配置自动上下料装置以实现加工设备的完全自动化;(2) 对通用加工设备运用电气控制技、数控技术等进行自动化改造;(3) 根据家公家的特点和工艺要求设计制造专用的自动化加工设备,如组合机床等;(4) 采用数控加工设备,包括数控机床、加工中心等。
2-4.试分析一下生产率与加工设备自动化的关系? (P32)答:生产率Q=K/(1+K*tf ),式中K ——理想的工艺生产率,K=1/tq ,tq —— 切削时间,tf ——空程辅助时间。
可知:tq 和tf 对机床生产的影响是相互制约 相互促进的。
当生产工艺发展到一定水平,即工艺生产率K 提高到一定程度时, 必须提高机床自动化程度,进一步减少空程辅助时间,促使生产率不断提高。
另 一方面,在相对落后的工艺基础上实现机床自动化,生产率的提高是有限的,为 了取得良好的效果,应当在先进的工艺基础上实现机床自动化。
第二章课后习题及答案
第二章心理辅导的理论基础一、理论测试题(一)单项选择题1.()是根据操作性条件反射原理,强调行为的改变是依据行为后果而定的。
A •强化法B •系统脱敏法C.代币法D •来访者中心疗法2•在对学生进行心理辅导时,常使用的“强化法”属于()。
A •行为改变技术B •认知改变法C.运动改变法D •精神分析法3•在心理辅导的行为演练中,系统脱敏法是由()首创。
A .皮亚杰B •沃尔帕C艾利斯D •罗杰斯4•心理辅导老师帮李晓明建立焦虑等级,让他想象引起焦虑的情境,然后逐渐减少焦虑等级,直至完全放松,以缓解其考试焦虑,这种方法是()。
A •强化法B •系统脱敏法C.理性一情绪疗法D •来访者中心疗法5 •行为塑造法是根据()的操作条件反射研究结果而设计的培育和养成新反应或行为模式的一项行为治疗技术,是操作条件作用法强化原则的有力应用之一。
A .皮亚杰B •斯金纳C.艾利斯D .奥苏贝尔6.()就是运用代币并编制一套相应的激励系统来对符合要求的目标行为的表现进行肯定和奖励。
A .强化法B .理性一情绪疗法C.代币法D .来访者中心疗法7.李老师通过奖励小红花来表扬学生的行为,这种心理辅导方法属于()。
A .系统脱敏法B •代币法C.行为塑造法D .来访者中心疗法8.晓红是韩老师班上的学生,她孤僻、羞涩,当她主动与同学交谈或请教老师时,韩老师就给予肯定或激励。
这种心理辅导方法是()。
A .强化法B •系统脱敏法C.来访者中心法D .理性一情绪疗法9.()不是行为改变的基本方法。
A .强化法B .代币法C.自我控制法D .演练法10.小伟过分害怕狗,通过让他看狗的照片,谈论狗,远看狗到近看狗、摸狗、抱狗,消除对狗的惧怕反应,这是行为训练的()。
A .全身松弛训练B .系统脱敏法C.行为塑造法D .肯定性训练11.当一位胆小的学生敢于主动向教师提问时,教师教师耐心解答并给予表扬和鼓励。
的这种做法属于行为改变方法中的()。
有机化学课后习题答案
第二章 饱和烃习题2.1 写出分子式为C 6H 14烷烃和C 6H 12环烷烃的所有构造异构体,用短线式或缩简式表示。
(P26) 解:C 6H 14共有5个构造异构体:C 6H 12的环烷烃共有12个构造异构体:习题2.2 下列化合物哪些是同一化合物?哪些是构造异构体?(P26) (1) CH 3C(CH 3)2CH 2CH 3 2,2-二甲基丁烷 (2) CH 3CH 2CH(CH 3)CH 2CH 3 3-甲基戊烷 (3) CH 3CH(CH 3)(CH 2)2CH 3 2-甲基戊烷 (4) (CH 3)2CHCH 2CH 2CH 3 2-甲基戊烷 (5)CH 3(CH 2)2CHCH 3CH 32-甲基戊烷(6) (CHJ 3CH 2)2CHCH 3 3-甲基戊烷解:(3)、(4)、(5)是同一化合物;(2)和(6)是同一化合物;(1)与(3)、(6)互为构造异构体。
习题2.3将下列化合物用系统命名法命名。
(P29)(1)CH 3CH CHCH CH 2CH 2CH 3CH 3CH CH 3CH 2CH3CH 31234567 2,3,5-三甲基-4-丙基庚烷(2)1234567CH 3CH CHCH CH 2CH 2CH 3CH 3CH CH 3CH 3CH 3 2,3-二甲基-4-异丙基庚烷(3)123456CH 3CH CHCH 2CHCH 3CH 3CH 3CH 32,3,5-三甲基己烷习题2.4 下列化合物的系统命名是否正确?如有错误予以改正。
(P30) (1)CH 3CHCH 2CH 32H 52-乙基丁烷 ╳ 3-甲基戊烷(2) CH 3CH 2CHCHCH 3CH 3CH 32,3-二甲基戊烷 √(3)CH 3CH 2CH 2CHCH 2CH 2CH 3CHCH 334-异丙基庚烷 √(4)CH 3CHCH 2CH CHCH 2CH 3CH 3CH 3CH 2CH 3 4,6-二甲基-乙基庚烷 ╳ 2,4-二甲基-5-乙基庚烷(5)CH 3CH 2CH 2CHCH 2CH 3CHCH 3CH 33-异丙基庚烷 ╳ 2-甲基-3-乙基己烷(6)CH 3CH 2CH 2CHCH 2CHCH 2CH 2CH 32H 52CH 2CH 36-乙基-4-丙基壬烷 ╳ 4-乙基-6-丙基壬烷习题2.5 命名下列化合物:(P30)(1) CH 32CHCH 2CH 3CH 2CH 3CH 2CH 2CH 3123456783-甲基-5-乙基辛烷(2) 12345678CCH 2CH 2CH 2CCH 3CH 3CH 3CH 3CH 3CH 3CH 3 2,3,3,7,7-五甲基辛烷(3)CH 3CH CHCH 2CHCH 2CH 3CH 3CH 3CH 2CHCH 33123456782,3,7-三甲基-5-乙基辛烷(4) CH 3CHCH 2CHCCH 2CH 2CH 2CHCHCH 333CH 333CH 391012345678112,4,5,5,9,10-六甲基十一烷习题2.6 命名下列各化合物:(P31)(1)CH 3C 2H 5CH(CH 3)2123456 (2)CH 3CH 3CH 3CH 31-甲基-2-乙基-3-异丙基环己烷1,1,2,3-四甲基环丁烷(3)(4)正戊基环戊烷2-甲基-3-环丙基庚烷(5) (6)C 2H 5CH 2(CH 2)4CH 31-甲基-3-环丁基环戊烷 1-乙基-4-正己基环辛烷习题2.8 下列化合物中,哪个的张力较大,能量较高,最不稳定?(P 37)习题2.9 已知正丁烷沿C 2与C 3的键旋转可以写出四种典型的构象式,如果C 2和C 3之间不旋转,只沿C 1和C 2之间的σ键旋转时,可以写出几种典型构象式?试以Newman 投影式表示。
第二章 课后习题及答案
第二章心理辅导的理论基础一、理论测试题(一)单项选择题1.()是根据操作性条件反射原理,强调行为的改变是依据行为后果而定的。
A.强化法B.系统脱敏法C.代币法D.来访者中心疗法2.在对学生进行心理辅导时,常使用的“强化法”属于()。
A.行为改变技术B.认知改变法C.运动改变法D.精神分析法3.在心理辅导的行为演练中,系统脱敏法是由()首创。
A.皮亚杰B.沃尔帕C.艾利斯D.罗杰斯4.心理辅导老师帮李晓明建立焦虑等级,让他想象引起焦虑的情境,然后逐渐减少焦虑等级,直至完全放松,以缓解其考试焦虑,这种方法是()。
A.强化法B.系统脱敏法C.理性一情绪疗法D.来访者中心疗法5.行为塑造法是根据()的操作条件反射研究结果而设计的培育和养成新反应或行为模式的一项行为治疗技术,是操作条件作用法强化原则的有力应用之一。
A.皮亚杰B.斯金纳C.艾利斯D.奥苏贝尔6.()就是运用代币并编制一套相应的激励系统来对符合要求的目标行为的表现进行肯定和奖励。
A.强化法B.理性一情绪疗法C.代币法D.来访者中心疗法7.李老师通过奖励小红花来表扬学生的行为,这种心理辅导方法属于()。
A.系统脱敏法B.代币法C.行为塑造法D.来访者中心疗法8.晓红是韩老师班上的学生,她孤僻、羞涩,当她主动与同学交谈或请教老师时,韩老师就给予肯定或激励。
这种心理辅导方法是()。
A.强化法B.系统脱敏法C.来访者中心法D.理性一情绪疗法9.()不是行为改变的基本方法。
A.强化法B.代币法C.自我控制法D.演练法10.小伟过分害怕狗,通过让他看狗的照片,谈论狗,远看狗到近看狗、摸狗、抱狗,消除对狗的惧怕反应,这是行为训练的()。
A.全身松弛训练B.系统脱敏法C.行为塑造法D.肯定性训练11.当一位胆小的学生敢于主动向教师提问时,教师耐心解答并给予表扬和鼓励。
教师的这种做法属于行为改变方法中的()。
A.强化法B.示范法C.消退法D.行为塑造法12.认知疗法于20世纪六七十年代在()产生。
生物化学教程第二章习题答案(详解)
第二章课后习题答案1.计算赖氨酸的ε-NH3+20%被解离时的溶液PH。
解:pH = pKa + lg20% pKa =pH = + lg20% =2. 计算谷氨酸的γ-COOH三分之二被解离时的溶液pH。
解:pH = pKa + lg((2/3)/(1/3))= pKa =3. 计算下列物质L溶液的pH:(a)亮氨酸盐酸盐;(b)亮氨酸钠盐;(c)等电亮氨酸。
解:a:pH=+ lg(C(H+)/)=b: pH=+lgC(OH+))=c:pH=pI=1/2+=4.计算下列氨基酸的pI值:丙氨酸、半胱氨酸、谷氨酸和精氨酸。
解:pI = 1/2(pKa1+ pKa2)pI(Ala) = 1/2(+)=pI(Cys) = 1/2(+)=pI(Glu) = 1/2(+)=pI(Ala) = 1/2(+)=5. 向1L1mol/L的处于等电点的甘氨酸溶液加入,问所得溶液的pH是多少如果加入NaOH以代替HCl时,pH将是多少解:pH1=pKa1+lg(7/3)=pH2=pKa2+lg(3/7)=6. 计算L的组氨酸溶液在时各种离子形式的浓度(mol/L)。
解:由pH=pK1+lg(His+/ His2+)=pKr+lg(His0/His+)=pK2+lg(His-/ His0)得His2+为×10-6,His+为,His0为×10-47. 说明用含一个结晶水的固体组氨酸盐酸盐(相对分子质量=;咪唑基pKa=)和1mol/L KOH配制的L组氨酸盐缓冲液的方法解:取组氨酸盐酸盐41.92g,加入352ml 1mol/L KOH,用水稀释至1L。
8. L-亮氨酸溶液(3.0g/50ml 6mol/L HCl)在20cm旋光管中测得的旋光度为+º。
计算L-亮氨酸在6mol/L HCl中的比旋。
解:c=50=0.06g/ml l=2dm. +=[a]**2 得:[a]= +º9. 甘氨酸在溶剂A中的溶解度为在溶剂B中的4倍,苯丙氨酸在溶剂A中的溶解度为溶剂B中的两倍。
第二章 课后作业参考答案
第二章会计处理方法练习题一(一)目的:掌握会计确认的基本方法(1)根据上表中的资料,判断哪些项目分别属于资产要素、负债要素和所有者权益要素。
练习题一参考答案要点(1)资产要素的有:(2);(4);(5);(7);(9);(11);(12);(13);(14);(15);(16);(17);(18) 负债要素的有:(6);(8);(10);(19)所有者权益要素的有:(1);(3);(20)(2)负债表存货项目中。
严格来说,此处是不对的。
因为“生产成本”是费用类账户。
练习题二(二)目的:掌握权责发生制与收付实现制1.资料绿叶公司2005年10月份发生如下经济业务:(1)支付本月的水电费300元。
(2)预付下个月房屋租金2 000元。
(3)支付上月工商部门罚款500元。
(4)销售商品收入20 000元,款项尚未收到。
(5)支付上月购货款38 000元。
(6)采购员报销差旅费2 500元,退回多余现金500元(出差前预借3 000元)。
(7)收到上月销售货款500 000,存入银行。
2.要求分别根据权责发生制和现金收付制,确认和计算本月收入与费用(将结果填入下表)。
练习题二参考答案要点练习题三(三)目的:掌握会计确认的基本方法1.资料上扬公司2005年12月发生如下经济交易与事项:(1)10日,与甲公司签订购货合同,协议购买A材料50万元,约定合同签订之日起10日内预付购货定金10万元。
(2)12日,有一批产品完工验收入库,这批产品的生产成本为20万元。
(3)18日,根据购货合同预付甲公司购货定金10万元。
(4)20日,公司发生失窃事件,丢失现金5万元。
(5)25日,以银行存款预付下年度财产保险费3万元。
(6)28日,以银行存款支付本季度贷款利息费用9万元,其中前两个月已预提6万元。
(7)31日,计算出本月产品销售应缴纳的税金5万元,但尚未实际缴纳。
(8)31日,计算出本月应负担的工资费用15万元,其中管理人员5万元,生产工人10万元,公司每月的工资在下月上旬发放。
第2章习题参考答案
R12 (Rab // 8 Rbc //12) //(Rac //10) 4
(b) R12 (10 // 14) //(6 // 12 8) 3.92 5. 对图 x2.5 所示电桥电路, 应用 Y 等效变换求: (1) 对角线电压 U ; (2) 电压 U ab 。
。
A 为 0。因为已经被短路掉,没有电流。
2. 电路如图 x2.2 所示,求电压 U 12 以及电流表 A1 和 A2 的读数。
解:如图 x2.2a 所示: R12 20 // 20 10 , R13 4 // 6 2.4
i2
30 0.97 A , i1 i2 0.5 0.48 A 31
解: R12 4 得到 R1
R13 6
R23 10
R2 R12 R23 2 R12 R23 R13
R13 R12 6 R12 R23 R13 5 R23 R13 3 R12 R23 R13
R3
3 2 U 5 3 5 2 5V 5 5
A. U S 40V 的理想电压源 B. I S 4A 的理想电流源 C. U S 0.4V 的理想电压源与 R 10 的电阻相并联的电路 D. U S 40V 的理想电压源与 R 10 的电阻相并联的电路 3.有 3 个电阻相并联,已知 R1 2,R2 3,R3 6 。在 3 个并联电阻的两端 外加电流 I S 18A 的电流源,则对应各电阻中的电流值分别为( A. I R1 3A, I R 2 6A,I R 3 9A C. I R1 6A,I R 2 9A,I R 3 3A B ) 。
U ab (
24 6 24) 5 150V 5 5
机械振动 课后习题和答案 第二章 习题和答案
2.1 弹簧下悬挂一物体,弹簧静伸长为δ。
设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。
解:设物体质量为m ,弹簧刚度为k ,则:mg k δ=,即:n ω==取系统静平衡位置为原点0x =,系统运动方程为: δ⎧+=⎪=⎨⎪=⎩00020mx kx x x (参考教材P14)解得:δω=()2cos n x t t2.2 弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。
设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。
解:由题可知:弹簧的静伸长0.850.650.2()m =-= 所以:9.87(/)0.2n g rad s ω=== 取系统的平衡位置为原点,得到:系统的运动微分方程为:20n x x ω+=其中,初始条件:(0)0.2(0)0x x =-⎧⎨=⎩ (参考教材P14) 所以系统的响应为:()0.2cos ()n x t t m ω=-弹簧力为:()()cos ()k n mg F kx t x t t N ω===-因此:振幅为0.2m 、周期为2()7s π、弹簧力最大值为1N 。
2.3 重物1m 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2m 从高度为h 处自由落到1m 上而无弹跳,如图所示,求其后的运动。
解:取系统的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有: 2121()2T E m m x =+ 212U kx =由()0T d E U +=可知:12()0m m x kx ++= 即:12/()n k m m ω=+系统的初始条件为:⎧=⎪⎨=-⎪+⎩2020122m gx k m x gh m m (能量守恒得:221201()2m gh m m x =+) 因此系统的响应为:01()cos sin n n x t A t A t ωω=+其中:ω⎧==⎪⎨==-⎪+⎩200021122n m g A x k x m g ghk A k m m即:ωω=-2()(cos )n n m g x t t t k2.4 一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆心受到一弹簧k 约束,如图所示,求系统的固有频率。
2劳动经济学(人大三版)第二章课后参考答案(王松峰 刘娇伟)
劳动经济学第二章课后习题答案一、关键词解释劳动力供给:从性质上说:是指劳动力的供给主体(劳动者个人,在某些情况下可以指家庭)在一定劳动条件下自愿对存在于主体中的劳动力使用权的出让;从量的角度说:是指一个经济体(大至一个国家,小至一个企业,一个雇请了保姆的家庭)在某一段时期中,可以获得的劳动者愿意提供的劳动能力的总和。
劳动力参与率:指劳动范围内的人口参与市场性劳动的比率,是反映就业和劳动人口参与劳动程度的重要指标。
劳动力供给曲线:是指在其他条件不变,市场工资率作为影响劳动力供给的唯一因素的条件下,根据劳动力供给量相对于市场工资率的变动程度绘制而成的曲线劳动力供给弹性:指劳动力供给量变动对工资率变动的反映程度效用理论:效用是指消费者在消费商品或劳务时的满足程度,与此相关的理论就叫效用理论,主要包括基数效用理论和序数效用理论收入约束线:表示个人在时间和劳动能力状况约束下所能消费余暇和获得收入的最大组合线余暇-收入无差异曲线:可以带来一定水平的余暇时间与收入的组合点连接所形成的曲线称为余暇-收入无差异曲线主体均衡:所谓主体均衡,就是在资源约束的条件下余暇和收入的组合能使主体获得最大效用的状态收入效应:收入效应指由商品价格的变动所引起的实际收入水平的变动,进而由由实际收入水平的变动所引起的商品需求量的变动替代效应:因该商品名义价格的变动而导致消费者所购买的商品组合中,该商品与其他商品之间的替代个人劳动力供给曲线:揭示劳动者个人劳动力供给意愿随工资率变动而变动的规律,工资率的上升会导致个人劳动力供给时间的增加,而在此工资率水平之上,工资率的上升反而会导致个人劳动力供给时间的减少。
市场劳动力供给曲线:将一个市场中的个人劳动力供给曲线相加即是市场劳动力供给曲线劳动力的流量:把就业、失业等各种各样的劳动力状况在某个时间点的劳动力的存量向某个方向的流入或流出的量称为劳动力的流量劳动力的流量表:把劳动力人口分为就业、失业、非劳动力三种状态,以观察存量劳动力状况的时间点的变化而形成的劳动力流量,由此而绘制成的表格就是劳动力流量表转移率:从流动量和存储量,到流动的概率,换言之对原本的存量也可以计算流动的变化概率二、问答题1.如何理解劳动力供给的含义?劳动力供给是指在某一特定时间内,在一定工资率水平下,劳动者愿意并且能够提供的劳动力数量深入理解劳动力供给概念,需把握以下三点:个体决策:在市场经济体制下,劳动者是寄寓于其身上的劳动力的法定产权所有者劳动者有充分的自由使用权和处置权,并有凭借直接提供劳务或出租劳动力使用权获得收益的权利主体意愿,劳动力市劳动者的私有财产,劳动者是否愿意提供劳动取决于多种因素,如工资率高低、工作时间长短、个人家庭经济状况等,因此劳动力供给的量和质在很大程度上受到劳动力供给者主观愿望的影响时间要素:包括两层含义:劳动者愿意提供的工作时间、劳动力供给分析的时间2.分析劳动力供给通常有哪些假设(1)劳动力供给主体的目标假设,该假设认为劳动者在作出供给决策时,以追求效用最大化为目标(2)市场环境假设:假定市场是完全竞争状态(3)关于劳动力质量的假设:假定劳动力是同质的3、影响劳动力个人供给的主要因素有哪些?答:一般说来,影响劳动力个人供给的因素包括以下几方面:劳动者受教育时间的长短;工资政策及工资关系;工资水平;个人非劳动收入;居民家庭生产率的变化;社会保障制度;宏观经济状况;其它社会文化、风俗习惯、社会心理等。
(完整版)计算机网络(第二章)课后答案
第二章 应用层 (课后习题和问题部分题目和参考答案)复习题:1.列出5种非专用的因特网应用及它们所使用的因特网协议。
答案:Web应用和HTTP协议、电子邮件应用和SMTP(简单邮件传输协议)、因特网的目录服务DNS和DNS协议、P2P应用和P2P协议、远程终端访问和Telnet、文件传输和FTP。
3.对两进程之间的通信会话而言,哪个进程是客户机,哪个进程是服务器?答案:在给定的一对进程之间的通信会话中,发起通信(即在该会话开始时与其他进程联系)的进程被标示为客户机,在会话开始时等待联系的进程是服务器。
6.假定你想尽快的处理从远程客户机到服务器的事务,应使用UDP还是TCP?为什么?答案:UDP,因为TCP是面向连接的可靠数据传输服务,使用TCP 协议时,在应用层数据报文开始流动之前,其客户机程序和服务器程序之间互相交换运输层控制信息,完成握手阶段。
TCP的三次握手,以及拥塞控制机制和分组都有开销。
UDP没有拥塞控制机制,所以发送端可以以任何速率向其下面的层(网络层)注入数据。
7.在日常生活中你或许会使用Web浏览器和邮件阅读器。
你或许还会用到FTP用户代理,Telnet用户代理,音频/视频播放器用户代理(比),即时信息代理,P2P文件共享代理。
如Real Networks player),即时信息代理,答案:无。
8.列出运输协议能够提供的4种宽泛类型的服务。
对于每种服务类型,指出是UDP还是TCP(或这两种协议)提供这样的服务。
答案:1.可靠数据传输,TCP提供了可靠的端到端数据传输服务,而UDP没有。
2.吞吐量,吞吐量,TCP和UDP均为提供此服务。
定时,TCP和UDP均为提供此服务。
3.定时,安全性,TCP在应用层可以很容易地通过SSL来提供安全服 4.安全性,务,而UDP没有。
10.握手协议的作用是什么?答案:提示客户机和服务器做好传输分组的准备。
15.为什么说FTP在“带外”发送控制信息?答案:因为FTP 使用两个并行的TCP连接来传输文件,一个是控制连接,一个是数据连接。
现代控制原理第二章课后答案
第二章被控对象的数学模型第一章自动控制系统基本概念1.简述被控对象、被控变量、操纵变量、扰动(干扰)量、设定(给定)值和偏差的含义?答:自动控制系统中常用的几个术语其含义是:被控对象自动控制系统中,工艺参数需要控制的生产过程、设备或机器等。
被控变量被控对象内要求保持设定数值的工艺参数。
操纵变量受控制器操纵的,用以克服干扰的影响,使被控变量保持设定值的物料量或能量。
扰动量:除操纵变量外,作用于被控对象并引起被控变量变化的因素。
设定值:被控变量的预定值。
偏差:被控变量的设定值与实际值之差。
2.自动控制系统按其基本结构形式可分为几类?其中闭环控制系统中按设定值的不同形式又可分为几种?简述每种形式的基本含义。
答:自动控制系统按其基本结构形式可分为闭环自动控制系统和开环自动控制系统。
闭环自动控制是指控制器与被控对象之间既有倾向控制又有反向联系的自动控制。
如图1—1(a)即是一个闭环自动控制。
图中控制器接受检测元件及变送器送来的测量信号,并与设定值相比较得到偏差信号,再根据偏差的大小和方向,调整蒸汽阀门的开度,改变蒸汽流量,使热物科出口温度回到设定值上。
从图l—1(b)所示的控制系统方块图可以清楚看出,操纵变量(蒸汽流量)通过被控对象去影响被控变量,而被控变量又通过自动控制装置去影响操纵变量。
从信号传递关系上看,构成了一个闭合回路。
在闭环控制系统中,按照没定值的不同形式又可分为:(1)定值控制系统定值控制系统是指设定值恒定不变的控制系统。
定值控制系统的作用是克服扰动对被控变量的影响,使被控变量最终回到设定值或其附近。
以后无特殊说明控制系统均指定值控制系统而言。
(2)随动控制系统随动控制系统的设定值是不断变化的。
随动控制系统的作用是使被控变量能够尽快地、准确无误地跟踪设定值的变化而变化。
(a)(b)图1-1闭环自动控制基本结构(3)程序控制系统程序控制系统的设定值也是变化的,但它是一个已知的时间函数,即设定值按一定的时间程序变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 容斥原理课后习题答案
1、某甲参加一种会议,会上有6位朋友,某甲和其中每人在会上各相遇12次,每二人各相遇6次,每三人各相遇4次,每四人各相遇3次,每五人各相遇2次,每六人各相遇1次,一人也没有遇见的有5次,问某甲共参加了几次会议?
解:设A i 为甲与i 个朋友相遇的会议集合,i =1, 2, …, 6,根据题意,|A 1|=12⨯C (6, 1),|A 2|=6⨯C (6, 2),|A 3|=4⨯C (6, 3),|A 4|=3⨯C (6, 4),|A 5|=2⨯C (6, 5),|A 6|=1⨯C (6, 6),根据容斥原理,甲在会上至少遇见一位朋友的会议次数为||||||||||||12345628A A A A A A -+-+-=。
甲在会上一人也没有遇见的有5次,根据加法法则,甲共参加会议次数为28+5=33。
2、求从1到500的整数中被3和5整除但不被7整除的数的个数。
解:令A 3为1到500的整数中被3整除的数的集合,A 5为1到500的整数中被5整除的数的集合,A 7为1到500的整数中被7整除的数的集合。
根据题意,所求的整数个数为
357353575005003342935357A A A A A A A A ⎢⎥⎢⎥
=-=-=-=⎢⎥⎢⎥⨯⨯⨯⎣⎦⎣⎦
3、A 、B 、C 三种材料用作产品I 、II 、III 的原料,但要求I 禁止用B 、C 作原料,II 不能用B 作原料,III 不允许用A 作原料,问有多少种安排方案?(假定每种材料只做一种产品的原料)
解:按题意可得如下的带禁区的棋盘,其中有阴影的表示禁区。
棋盘多项式为
R
)=
R R =(1+x )(1+3x +x 2)=1+4x +4x 2+x 3
故方案数=3!-4×2!+4×1!-1×0!=1
4、在由a, a, a, b, b, b, c, c, c 组成的排列中,求满足下列条件的排列数。
(a) 不存在相邻3元素相同; (b) 相邻两元素不相同。
解:(a) 设T 为a, a, a, b, b, b, c, c, c 设A 1:出现3个相邻a 的排列的集合 A 2:出现3个相邻b 的排列的集合 A 3:出现3个相邻c 的排列的集合 根据容斥原理,所求的排列数为
||1239!7!5!
333!13143!3!3!3!3!3!
A A A =
-⨯+⨯-= (b) 设T 为重集B ={3*a, 3*b, 3*c}的排列全体集合,则||9!
16803!3!3!
T =
=。
设A 1为重集B 1={a, X , 3*b, 3*c}的排列全体集合,A 2为重集B 2={3*a, b, Y , 3*c}的排列全体集合,A 3为重集B 3={3*a, 3*b, c, Z }的排列全体集合,其中X ='aa',Y ='bb',Z ='cc',则
||||||1238!7!
9803!3!3!3!A A A ===-=
I II
设A 4为重集B 4={a, X , b, Y , 3*c}的排列全体集合,A 5为重集B 5={3*a, b, Y , c, Z }的排列全体集合,A 6为重集B 6={a, X , 3*b, c, Z }的排列全体集合,其中X ='aa',Y ='bb',Z ='cc',则
||||||4567!6!5!
26203!3!3!
A A A ===-⨯+=
设A 7为重集B 7={a, X , b, Y , c, Z }的排列全体集合,其中X ='aa',Y ='bb',Z ='cc',则
||76!5!34!33!426A =-⨯+⨯-=
根据容斥原理,所求的排列数为
1680-3×980+3×620-426=174
5、求从O (0, 0)点到P (8, 4)点的路径数,已知(2, 1)到(4, 1)的线段,(3, 1)到(3, 2)的线段被封锁。
解:设S 为O (0, 0)点到P (8, 4)点的所有路径的集合。
则
()
||844954
S +== 令A 1表示S 中经过线段(2, 1)→(3, 1)的路径
A 2表示S 中经过线段(3, 1)→(4, 1)的路径
A 3表示S 中经过线段(3, 1)→(3, 2)的路径,则
1231221(83)(41)38168
1411331(84)(41)47140
1411331(83)(42)4784
1421221(84)(41)31411A A A A A +-+-⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭
+-+-⎛⎫⎛⎫⎛⎫⎛⎫
=== ⎪⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭+-+-⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭+-+-⎛⎫⎛⎫== ⎪⎪-⎝⎭⎝⎭13231237105321(83)(42)3763
1421200
A A A A A A A ⎛⎫⎛⎫
= ⎪⎪⎝⎭⎝⎭+-+-⎛⎫⎛⎫⎛⎫⎛⎫
=== ⎪⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭==
根据容斥原理,有
123495(16814084)(105630)0271A A A =-+++++-=
6、求满足条件12312320,39,08,717x x x x x x ++=≤≤≤≤≤≤的整数解的数目。
解:作变量代换1122333,,7y x y x y x =-==-
则方程变为12312310,06,08,010y y y y y y ++=≤≤≤≤≤≤ 令P 1为性质17y ≥,P 2为性质29y ≥,P 3为性质311y ≥
并设S 为12310y y y ++=的非负整数解集合,A i 为S 中满足性质Pi (i =1, 2, 3)的集合, 则所求问题变成在S 中计算123A A A 。
8, 4)
112312311223312310(7,0,0)7,,331||10
3131||3||0
1A y y y y y y z y z y z y A A A ++=≥≥≥=-==+-⎛⎫
== ⎪⎝⎭
+-⎛⎫
=== ⎪⎝⎭
是方程 的整数解集合,通过作代换,可得 同理可得, 121323123123||||||||0103110366135310A A A A A A A A A A A A ====+-⎛⎫
=-
+=-= ⎪⎝⎭
根据容斥原理,有
()
7、n 个单位各派两名代表去出席一会议。
2n 位代表围一圆桌坐下。
试问:
(a) 各单位代表并排坐着的方案是多少?
(b) 各单位的两人互不相邻的方案数又是多少?
解:(a) 首先把n 个单位的两名代表分别看作一个整体,进行圆排列, 然后各单位的两名代表可分别进行换位, 根据乘法法则,方案是方案数为(n -1)!2n 。
(b) 设第i 单位代表相邻的方案集合为A i (i =1, 2, …, n ), 根据容斥原理,所求方案数为
01(1)(21)!2n
n
k k
i
k i n A n k k ==⎛⎫=--- ⎪⎝⎭∑ 8、一书架有m 层,分别放置m 类不同种类的书,每层n 册。
先将书架上的图书全部取出
清理。
清理过程要求不打乱所有的类别。
试问: (1) m 类书全不在各自原来层次上的方案数有多少?
(2) 每层的n 本书都不在原来位置上的方案数等于多少?
(3) m 层书都不在原来层次,每层n 本书也不在原来位置上的方案数又有多少? 解:令错排数1111!1...(1)1!2!3!!n n D n n ⎛
⎫=-+-++- ⎪⎝
⎭
(1) 方案数为(!)m m D n ⨯
(2) 方案数为0(!)m
k m k
k n k m D n D k -=⎛⎫⨯ ⎪⎝⎭
∑
(3) 方案数为m
m n D D ⨯。