金属学及其热处理知识点

合集下载

金属学及热处理

金属学及热处理

时效处理工艺
总结词
时效处理是一种通过长时间放置或加热使金属内部发生沉淀 或析出反应的过程,主要用于提高金属的强度和稳定性。
详细描述
时效处理工艺通常将金属加热至较低的温度,并保持一定时 间,使金属内部的原子或分子的分布发生变化,形成更加稳 定的结构。通过时效处理,金属的强度和稳定性可以得到提 高。
表面热处理工艺
总结词
表面热处理是一种仅对金属表面进行 加热和冷却的过程,主要用于改善金 属表面的耐磨性、耐腐蚀性和抗氧化 性等。
详细描述
表面热处理工艺通常仅对金属表面进行加热 和冷却,而内部保持不变。通过表面热处理 ,可以改变金属表面的晶格结构、化学成分 和组织结构等,从而改善其表面的性能。
04 热处理设备与工具
热处理炉应定期进行维护和保养,确保设备的正常运行 和使用寿命。
在操作过程中,应定期检查炉温和炉压是否正常,防止 超温或超压。
在使用过程中,应保持炉膛的清洁,防止杂物和积炭对 加热元件和金属材料的影响。
热处理工具的选择与使用
01
02
03
04
根据不同的热处理工艺和金属 材料,选择合适的热处理工具

在使用过程中,应注意工具的 材质和尺寸是否符合要求,防 止工具损坏或金属材料表面损
金属学及热处理
contents
目录
• 金属学基础 • 热处理原理 • 热处理工艺技术 • 热处理设备与工具 • 热处理的应用与发展趋势
01 金属学基础
金属材料的分类与特性
钢铁材料
根据碳含量和用途,钢铁材料可分为生铁、铸铁和钢 材。其特性包括高强度、耐磨性和耐腐蚀性。
有色金属
如铜、铝、锌等,具有良好的导电性、导热性和延展 性。

金属学及热处理要点总结

金属学及热处理要点总结

第一章金属的晶体结构决定材料性能的三个因素:化学成分、内部结构、组织状态金属:具有正的电阻温度系数的物质。

金属与非金属的主要区别是金属具有正的电阻温度系数和良好的导电能力。

金属键:处以聚集状态的金属原子,全部或大部分贡献出他们的价电子成为自由电子,为整个原子集体所共有,这些自由电子与所有自由电子一起在所有原子核周围按量子力学规律运动着,贡献出价电子的原子则变为正离子,沉浸在电子云中,依靠运动于其间的公有化的自由电子的静电作用结合起来,这种结合方式叫做金属键。

双原子模型:晶体:原子在三维空间做有规则周期性重复排列的物质叫做晶体。

晶体的特性:1、各向异性2、具有一定的熔点。

空间点阵:为了清晰地描述原子在三维空间排列的规律性,常将构成晶体的实际质点忽略,而将其抽象为纯粹的几何点,称为阵点或节点,这些阵点可以是原子或分子的中心,也可以是彼此等同的原子团或分子团的中心,各个阵点的周围环境都相同。

做许多平行的直线将这些阵点连接起来形成一个三维空间格架,叫做空间点阵。

晶胞:从点阵中选取的一个能够完全反映晶格特征的最小几何单元。

晶格常数:晶胞的棱边长度称为晶格常数,在X、Y、Z轴上分别以a、b、c表示。

致密度:表示晶胞中原子排列的紧密程度,可用原子所占体积与晶胞体积之比K表示。

三种典型的晶体结构:体心立方晶格、面心立方晶格、密排六方晶格。

体心立方晶格:α-Fe、Cr、W、V、Nb、Mo 配位数8 致密度0.68 滑移系:{110}*<111> 共12 个堆垛顺序ABAB 面心立方晶格:γ-Fe、Cu、Ni、Al、Au、Ag 配位数12 致密度0.74 滑移系:{111}*<110> 共12 个堆垛顺序ABCABC 密排六方晶格:Zn、Mg、Be、Cd 配位数12 致密度0.74 滑移系:{0001}*<1121> 堆垛顺序ABAB晶向族指数包含的晶向指数:一、写出<u v w>的排列二、给其中每个晶向加一个负号,分三次加三、给其中每个晶向加两个负号,分三次加四、给每个晶向加三个负号晶面族指数包含的晶面指数:(如果h k l 中有一个是零就写出排列各加一个负号,如果有两个零就只写出排列就行。

金属学及热处理基本知识

金属学及热处理基本知识

金属学及热处理基本知识一、金属晶体结构的一般知识众所周知,世界上的物质都是由化学元素组成的,这些化学元素按性质可分成两大类:第一大类是金属,化学元素中有83种是金属元素。

固态金属具有不透明、有光泽、有延展性、有良好的导电性和导热性等特性,并且随着温度的升高,金属的导电性降低,电阻率增大,这是金属独具的一个特点。

常见的金属元素有铁、铝、铜、铬、镍、钨等。

第二大类是非金属,化学元素中有22种,非金属元素不具备金属元素的特征。

而且与金属相反,随着温度的升高,非金属的电阻率减小,导电性提高。

常见的非金属元素有碳、氧、氢、氮、硫、磷等。

我们所焊接的材料主要是金属,尤其是钢材,钢材的性能不仅取决于钢材的化学成分,而且取决于钢材的组织,为了了解钢材的组织及对性能的影响,我们必须先从晶体结构讲起。

(一)晶体的特点对于晶体,大家并不生疏。

食盐、水结成的冰,都是晶体。

一般的固态金属及合金也都是晶体。

并非所有固态物质都是晶体。

如玻璃、松香之类就不是晶体,而属于非晶体。

晶体与非晶体的区别不在外形,而在内部的原子排列。

在晶体中,原子按一定规律排列得很整齐。

而在非晶体中,原子则是散乱分布着,至多有些局部的短程规则排列。

由于晶体与非晶体中原子排列不同,因此性能也不相同。

(二)典型的金属晶体结构金属的原子按一定方式有规则地排列成一定空间几何形状的结晶格子,称为晶格。

金属的晶格常见的有体心立方晶格和面心立方晶格,如图1—4所示。

体心立方晶格的立方体的中心和八个顶点各有一个铁原子,而面心立方晶格的立方体的八个顶点和六个面的中心各有一个铁原子。

图1—4 典型的金属晶体结构(a)体心立方晶格 (b)面心立方晶格铁属于立方晶格,随着温度的变化,铁可以由一种晶格转变为另一种晶格。

这种晶格的转变,称为同素异晶转变。

纯铁在常温下是体心立方晶格(称为α-Fe);当温度升高到910℃时,纯铁的晶格由体心立方晶格转变为面心立方晶格(称为γ-Fe);再升温到1390℃时,面心立方晶格又重新转变为体心立方晶格(称为δ-Fe),然后一直保持到纯铁的熔化温度。

金属材料及热处理基础知识.ppt

金属材料及热处理基础知识.ppt
硬质合金 HBW 450- 600 用于测量淬火钢
2 .洛氏硬度
以顶角为120度的金刚石圆锥体或直径1.588mm的淬火 钢球作为压头,以一定的压力使其压入材料表面,测量压痕 深度来确定其硬度,即为洛氏硬度。被测材料硬度,可直接 在硬度计刻盘读出。
洛氏硬度常用的有三种,分别以HRA、HRB、HRC来表示。 洛氏硬度符号、试验条件和应用表
下贝氏体:无方向性的针状铁素体上弥散分布着细小颗粒的 渗碳体
7、魏氏组织
魏氏组织是在比较大的过冷度下形成的。奥氏体过冷到这 一温度区内,便会形成魏氏组织。魏氏组织铁索体是以切变机 理形成的其生长往往都是由晶界网状铁索体分枝,许多铁赢体 片平行地向晶粒内部长大。铁素体片之间的奥氏体随后变成珠 光体。魏氏组织会降低钢的塑性和韧性,尤其是冲击韧性。
3.维氏硬度 测定维氏硬度的原理基本上和布氏硬度相同,区别在于压头
采用锥面夹角为136度的金刚石正四棱锥体,压痕是四方锥形。 维氏硬度值用HV表示。
压痕面
4. 里氏硬度
原理:当材料被一个冲击体撞击时,较硬材料使冲击体产生 的反弹速度大于较软者。
5. 硬度与强度值的对应关系 由于硬度值综合反映了材料在局部范围内对塑性变形等 的抵抗能力,故它与强度值也有一定关系。 工程上:
冷却速度对晶粒大小的影响
快速冷却,形核点多,晶粒细小 冷却速度慢,均匀长大,晶粒粗大
1.2.2 铁碳合金的基本组织 铁 碳含量>2%--弱而脆
铁碳合金
铁素体—碳熔于α铁或δ铁中的固溶体 F
钢 奥氏体—碳熔于γ铁中的固溶体 A 强而韧 碳含量 0.02%-2%
渗碳体—铁碳金属化合物含碳6.67% Fe3C
许用应力 o
n
安全系数

金属学与热处理复习资料(本)

金属学与热处理复习资料(本)

金属学与热处理复习资料一、名词解释1、晶体:原子在三维空间做有规则的周期性重复排列的物质。

2、非晶体:指原子呈不规则排列的固态物质。

3、晶格:一个能反映原子排列规律的空间格架。

4、晶胞:构成晶格的最基本单元。

5、晶界:晶粒和晶粒之间的界面。

6、单晶体:只有一个晶粒组成的晶体。

7、合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。

8、组元:组成合金最基本的、独立的物质称为组元。

9、相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。

10、固熔体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。

11、结晶:纯金属或合金由液体转变为固态的过程。

12、重结晶:金属从一种固体晶态改变了晶体结构转变为另一种固体晶态的过程。

13、过冷度:理论结晶温度(T0)和实际结晶温度(T1)之间存在的温度差。

14、铁素体:碳溶解于α-Fe中形成的间隙固溶体。

15、渗碳体:是铁与碳形成的质量分数为6.69%的金属化合物。

16、奥氏体:碳溶解于γ-Fe中形成的间隙固溶体。

17、珠光体:是由铁素体与渗碳体组成的机械化合物。

18、莱氏体:奥氏体与渗碳体的混合物为莱氏体。

19、同素异构转变:一些金属,在固态下随温度或压力的改变,还会发生晶体结构变化,即由一种晶格转变为另一种晶格的变化,称为同素异构转变。

20、实际晶粒度:某一具体热处理或热加工条件下的奥氏体的晶粒度叫实际晶粒度,它决定钢冷却后的组织和性能。

21、马氏体:碳在α-Fe 中的过饱和间隙固溶体,具有很大的晶格畸变,强度很高。

22、贝氏体:渗碳体分布在含碳过饱和的铁素体基体上或的两相混合物。

根据形貌不同又可分为上贝氏体和下贝氏体。

23、淬透性:淬透性是指在规定条件下,钢在淬火冷却时获得马氏体组织的能力。

24、淬硬性:淬硬性是指钢在理想的淬火条件下,获得马氏体所能达到的最高硬度。

25、调质处理:淬火后高温回火的热处理工艺组合。

《金属学与热处理》课件

《金属学与热处理》课件
金属学与热处理
本课程将介绍金属学基础、金属热力学、金属相变、金属缺陷与强化、金属 热处理以及金属表面处理,让您掌握金属材料与加工的基本知识。
第一章 金属学基础
1
金属的组成
金属是由原子或离子通过共用自由电子结合而成,是导热、导电、延展、可塑性 极强的物质。
2
金属的晶体结构
金属是具有整齐排列、具有规律性的晶体结构。晶格是六面体密排结构。
3
金属的晶界和位错
晶界是晶体内部不同晶粒相交界面。位错是晶粒中原子或离子排列存在的缺陷。
第二章 金属热力学
热力学第一定律
能量可以从一种形式转换成 另一种形式,但能量总量不 变。
热力学第二定律
热量不会自己从低温转移到 高温物体,只有在做功或吸 收外界热量的情况下才可以。
热力学第三定律
在温度绝对零度的情况下, 能量变为零。
2 热处理设备
有固体加热炉、电阻炉、气体加热炉、水加热炉等。
3 热处理工艺控制
包括加热速度、加热温度、保温时间、冷却速度等控制参数。
第六章 金属表面处理
金属表面处理方法
包括化学处理、机械加工、电 化学处理、热处理、电镀等多 种方法。
金属表面处理工艺流程
表面清洁、表面活化、表面处 理、表面涂装等环节组成。
产生于晶体生长、切割、变形等过程中。
包括薄亚晶带、位错、蠕变加工硬化带。
3
面缺陷
是金属晶体的缺陷,其形状是哑铃、孔
强化机理
4
等。表现为晶界、裂纹等。
金属材料经过不同的加工或处理过程, 可以获得不同的强度、硬度、延展性等
性能。
第五章 金属的热处理
1 热处理工艺
是在一定的加热、保温和冷却条件下,对金属材料进行组织和性能控制的工艺。

金属学与热处理期末复习总结

金属学与热处理期末复习总结

一、名词解释:1热强性:在室温下,钢的力学性能与加载时间无关,但在高温下钢的强度及变形量不但与时间有关,而且与温度有关,这就是耐热钢所谓的热强性;2形变热处理:是将塑性变形同热处理有机结合在一起,获得形变强化和相变强化综合效果的工艺方法;3热硬性:热硬性是指钢在较高温度下,仍能保持较高硬度的性能;4固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到的热处理工艺;5回火脆性:是指回火后出现韧性下降的;6二次硬化:某些铁碳合金如高速钢须经多次回火后,才进一步提高其硬度;7回火稳定性:在时,抵抗强度、硬度下降的能力称为回火稳定性;8淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示;9水韧处理:将钢加热至奥氏体区温度1050-1100℃,视钢中碳化物的细小或粗大而定并保温一段时间每25mm壁厚保温1h,使铸态组织中的碳化物基本上都固溶到奥氏体中,然后在水中进行淬火,从而得到单一的奥氏体组织;10分级淬火:将奥氏体状态的工件首先淬入温度略高于钢的Ms点的盐浴或碱浴炉中保温,当工件内外温度均匀后,再从浴炉中取出空冷至室温,完成马氏体转变;11临界淬火冷却速度:是过冷奥氏体不发生分解直接得到全部马氏体含残留奥氏体的最低冷却速度;12季裂:它指的是经冷变形后的金属内有拉伸应力存在又处于特定环境中所发生的断裂; 13奥氏体化:将钢加热至临界点以上使形成奥氏体的金属热处理过程;14本质晶粒度:本质晶粒度用于表征钢加热时晶粒长大的倾向;二、简答:1 何为奥氏体化简述共析钢的奥氏体化过程;答:1、将钢加热至临界点以上使形成奥氏体的金属热处理过程;2、它是一种扩散性相变,转变过程分为四个阶段;1形核;将珠光体加热到Ac1以上,在铁素体和渗碳体的相界面上奥氏体优先形核;珠光体群边界也可形核;在快速加热时,由于过热度大,铁素体亚边界也能形核;2长大;奥氏体晶粒长大是通过渗碳体的溶解、碳在奥氏体和铁素体中的扩散和铁素体向奥氏体转变;为了相平衡,奥氏体的两个相界面自然地向铁素体和渗碳体两个方向推移,奥氏体便不断长大;3残余渗碳体的溶解;铁素体消失后,随着保温时间的延长,通过碳原子扩散,残余渗碳体逐渐溶入奥氏体;4奥氏体的均匀化;残余渗碳体完全溶解后,奥氏体中碳浓度仍是不均匀的;只有经长时间的保温或继续加热,让碳原子进行充分地扩散才能得到成分均匀的奥氏体;2 奥氏体晶粒大小对冷却转变后钢的组织和性能有何影响简述影响奥氏体晶粒大小的因素;答:1、奥氏体晶粒度大小对钢冷却后的组织和性能有很大影响;奥氏体晶粒度越细小,冷却后的组织转变产物也越细小,其强度也越高,此外塑性,韧性也较好;但奥氏体化温度过高或在高温下保持时间过长会显着降低钢的冲击韧度、减少裂纹扩展功和提高脆性转变温度;2、奥氏体晶粒大小是影响使用性能的重要指标,主要有下列因素影响奥氏体晶粒大小;1加热温度和保温时间的影响加热温度越高,保温时间越长,奥氏体晶粒越粗大;2加热速度的影响加热速度越快,奥氏体的实际形成温度越高,形核率和长大速度越大,则奥氏体的起始晶粒越细小,但快速加热时,保温时间不能过长,否则晶粒反而更加粗大;3钢的化学成分的影响在一定含碳量范围内,随着奥氏体中含碳量的增加,碳在奥氏体中的扩散速度及铁的自扩散速度增大,晶粒长大倾向增加,但当含碳量超过一定限度后,碳能以未溶碳化物的形式存在,阻碍奥氏体晶粒长大,使奥氏体晶粒长大倾向减小;4钢的原始组织的影响钢的原始组织越细,碳化物弥散速度越大,奥氏体的起始晶粒越细小,相同的加热条件下奥氏体晶粒越细小;3 简述影响过冷奥氏体等温转变的因素;答:奥氏体成分含碳量、合金元素、奥氏体状态钢的原始组织、奥氏体化的温度和保温时间及应力和塑性变形;1、含碳量的影响亚共析钢随奥氏体含碳量增加,使C曲线右移,Ms和Mf点降低;过共析钢随含碳量的增加,使C曲线向左移,Ms和Mf点降低;2、合金元素的影响除Co、AlWAl>%外,所有合金元素的溶解到奥氏体中后,都增大过冷奥氏体的稳定性,使C曲线右移,Ms和Mf点降低;3、奥氏体状态的影响奥氏体化温度越低,保温时间越短,奥氏体晶粒越细小,C曲线左移;4、应力和塑性变形的影响在奥氏体状态下承受拉应力会加速奥氏体的等温转变,承受压应力则会阻碍这种转变;对奥氏体进行塑性变形有加速奥氏体转变的作用,C曲线左移;4简述片状珠光体和粒状珠光体的组织和性能;答:1、片状珠光体组织:WC=%的奥氏体在近于平衡的缓慢冷却条件下形成的珠光体是由铁素体和渗碳体组成的片层相间的组织;性能:主要决定于片间距;片间距越小,钢的断裂强度和硬度均随片间距的缩小而增大;随片间距减小,钢的塑性显着增加;片间距减小,塑性变形抗力增大,故强度;硬度提高;2、粒状珠光体组织:渗碳体呈颗粒状分布在连续的铁素体基体中的组织性能:主要取决于渗碳体颗粒的大小,形态与分布;钢的成分一定时,渗碳体颗粒越细,相界面越多,则刚的硬度和强度越高;碳化物越接近等轴状、分布越均匀,则钢的韧性越好;粒状珠光体的硬度和强度较低,塑性和韧性较好,冷变形性能,可加工性能以及淬火工艺性能都比珠光体好;5何为马氏体简述马氏体的晶体结构、组织形态、性能及转变特点;答:是碳在α-Fe中过饱和的间隙固溶体;2、马氏体的晶体结构在钢中有两种:体心正方结构WC<%,c/a=1;体心正方结构WC>%,c/a>1;组织形态:板条马氏体、片状马氏体200℃以上,WC<%,完全形成板条马氏体,因其体内含有大量位错又称位错马氏体;特点强而韧%<WC<1%,为板条马氏体和片状马氏体的混合物;200℃以下,WC>%,完全形成片状马氏体,因其亚结构主要为孪晶又称孪晶马氏体;特点硬而脆4、1马氏体的显着特点是高硬度和高强度,原因包括固溶强化、相变强化、时效强化、原始奥氏体晶粒大小及板条马氏体束大小;马氏体的硬度主要取决于马氏体的含碳量;合金元素对马氏体的硬度影响不大,但可以提高其强度;2马氏体的塑性和韧性主要取决于马氏体的亚结构;5、1无扩散性;奥氏体成分保留在马氏体中2马氏体转变的切变共格性3马氏体转变具有特定的惯习面和位向关系4马氏体转变是在一定温度范围内进行的6 简述淬火钢的回火转变、组织及淬火钢在回火时的性能变化;答:1、钢的回火转变包括五个方面180℃-100℃以下温度回火,马氏体中碳的偏聚,组织是马氏体马氏体:碳溶于α-Fe的过饱和的固溶体280℃-100℃回火,马氏体开始分解,组织是回火马氏体回火马氏体:低碳马氏体和ε碳化物组成的混合物,称为回火马氏体;3200℃-300℃回火,残余奥氏体开始转变,组织是回火马氏体4200℃-400℃回火,碳化物的转变为Fe3C,组织是回火托氏体回火托氏体:由针状α相和无共格联系的细粒状渗碳体组成的机械混合物;5500℃-650℃渗碳体的聚集长大和α相回复或再结晶,组织是回火索氏体回火索氏体:回复或再结晶的铁素体和粗粒状渗碳体的机械混合物;2、回火时力学性能变化总的趋势是随回火温度提高,钢的抗拉强度、屈服强度和硬度下降,塑性、韧性提高;7 简述回火脆性的分类、特点及如何消除;答:1分类:第一类回火脆性低温回火脆性250℃-400℃和第二类回火脆性高温回火脆性450℃-650℃2特点第一类回火脆性:1具有不可逆性第二类回火脆性:1具有可逆性;2与后的有关3与组织状态无关,但以M的脆化倾向3如何消除第一类回火脆性:无法消除,合金元素会提高脆化温度;第二类回火脆性:1选择含杂质元素极少的优质钢材以及采用形变热处理;2加入适量的Mo、W等合金元素阻碍杂质元素在晶界上便聚;3对亚共析钢在A1~A3临界区可采用4采用高温回火后快冷的方法可抑制回火脆性,但不适用于对回火脆性敏感的较大工件;8 叙述淬透性和淬硬性及淬透性和实际条件下淬透层深度的区别;答:1、淬透性:是指奥氏体化后的钢在淬火时获得马氏体的能力,它反映过冷奥氏体的稳定性,与钢的临界冷却速度有关;临界冷却速度越慢,淬透性越大;其大小以钢在一定条件下淬火获得的淬透层深度和硬度分布来表示;2、淬硬性:是指奥氏体化后的钢在淬火时硬化的能力,主要取决于马氏体中的含碳量,含碳量越高,淬硬性越大;用淬火马氏体可能达到的最高硬度来表示;3、实际条件下的淬透层深度:是指具体条件下测定的半马氏体区至表面的深度;4、区别:1同一材料的淬透层深度与工件尺寸、冷却介质有关.工件尺寸小、介质冷却能力强,淬透层深;2淬透性与工件尺寸、冷却介质无关,它是钢的一种属性;相同奥氏体化温度下的同一钢种,其淬透性是确定不不变的;9 何谓淬火热应力、组织应力影响因素都是什么简述热应力和组织应力造成的变形规律;答:1、淬火热应力:工件在加热或冷却时由于内外的温度差异导致热涨或冷缩的不一致所引起的内应力;2、组织应力:工件在冷却过程中,由于内外温差造成组织转变不同时,引起内外比体积的不同变化而引起的内应力;3、影响因素:1含碳量的影响:随着含碳量的增加热应力作用逐渐减弱组织应力逐渐增强;2合金元素的影响:加入合金元素热应力和组织应力增加;3工件尺寸的影响:a.在完全淬透的情况下随着工件直径的增大淬火后残余应力将由组织应力性逐渐变成热应力性;b.在未完全淬透的情况下所产生的应力特性是与热应力相似的,工件直径越大淬硬层越薄,热应力特性越明显;4淬火介质和冷却方法的影响:如果在高于Ms点以上的温度区域冷却速度快而在温度低于Ms点区域冷却速度慢则为热应力性,反之则为组织应力型;4、变形规律:1热应力引起的变形①沿最大尺寸方向收缩,沿最小尺寸方向伸长;②平面凸起,直角变钝,趋于球形;③外径胀大,内径缩小;2组织应力引起变形与热应力相反;10 何谓回火叙述回火工艺的分类,得到的组织,性能特点及应用;答:1、回火:回火是指将淬火钢加热到A1以下的某温度保温后冷却的工艺;2、分类: 低温回火:1得到回火马氏体;2在保留高硬度、高强度及良好的耐磨性的同时又适当提高了韧性,降低内应力;3适用于刀具、量具、滚动轴承、渗碳件及高频表面淬火件;中温回火:1得到回火托氏体;2基本消除了淬火应力,具有高的弹性极限,较高的强度和硬度,良好的塑性和韧性;3适用于弹簧热处理及热锻模具;高温回火:1得到回火索氏体;2获得良好的综合力学性能,即在保持较高的强度同时,具有良好的塑性和韧性;3广泛用于各种结构件如轴、齿轮等热处理;也可作为要求较高精密件、量具等预备热处理;11 简述化学热处理的一般过程;渗碳的工艺、渗层深度、渗碳后表层含碳量、用钢、热处理、组织和应用;答:1、过程:1介质渗剂的分解2工件表面的吸收3原子向内部扩散;2、渗碳工艺:气体渗碳法,固体渗碳,离子渗碳3、渗碳层厚度由表面到过度层一半处的厚度:一般为-2mm;4、渗碳层表面含碳量:以%%为最好;5、用刚:为含的低碳钢和低碳合金钢;碳高则心部韧性降低;6、热处理:常用方法是渗碳缓冷后,重新加热到Ac1+30-50℃淬火分三类:遇冷直接淬火、一次淬火、二次淬火+低温回火;7、组织:表层:高碳M回+颗粒状碳化物+A少量心部:低碳M回+铁素体淬透时、铁素体+索氏体8、应用:拖拉机履带板,坦克履带板。

金属学与热处理重点整理

金属学与热处理重点整理

金属学与热处理重点整理第1章1.1金属原子的结构特点:最外层的电子数很少,一般为1~2个,不超过3个。

金属键的特点:没有饱和性和方向性结合力:当原子靠近到一定程度时,原子间会产生较强的作用力。

结合力=吸引力+排斥力结合能=吸引能+排斥能(课本图1.2)吸引力:正离子与负离子(电子云)间静电引力,长程力排斥力:正离子间,电子间的作用力,短程力固态金属原子趋于规则排列的原因:当大量金属原子结合成固体时,为使固态金属具有最低的能量,以保持其稳定状态,原子间也必须保持一定的平衡距离。

1.2晶体:基元在三维空间呈规律性排列。

晶体结构:晶体中原子的具体排列情况,也就是晶体中的这些质点在三维空间有规律的周期性的重复排列方式。

晶格:将阵点用直线连接起来形成空间格子。

晶胞:保持点阵几何特征的基本单元三种典型的金属晶体结构(要会画晶项指数,晶面指数)共带面:平行或相交于同一直线的一组晶面组成一个晶带,这一组晶面叫做共带面晶带轴:同一晶带中所有晶面的交线互相平行,其中通过坐标原点的那条直线。

多晶型转变或同素异构转变:当外部的温度和压强改变时,有些金属会由一种晶体结构向另一种晶体结构转变。

1.3合金:两种或两种以上金属元素,或金属元素与非金属元素,经熔炼、烧结或其它方法组合而成并具有金属特性的物质。

组元:组成合金最基本的独立的物质,通常组元就是组成合金的元素。

相:是合金中具有同一聚集状态、相同晶体结构,成分和性能均一,并以界面相互分开的组成部分。

固溶体:合金的组元通过溶解形成一种成分及性能均匀的、且结构与组元之一相同的固相,称为固溶体。

与固溶体结构相同的组元为溶剂,另一组元为溶质。

固溶体的分类:按溶质原子在溶剂晶格中的位置分为:置换固溶体与间隙固溶体。

按溶质原子在固体中的溶解度:分为有限固溶体和无限固溶体。

按溶质原子在固溶体内分布规则:分为有序固溶体和无序固溶体。

固溶强化:在固体溶液中,随着溶质浓度的增加,固溶体的强度、硬度提高,塑性韧性下降。

金属热处理基础入门必须了解的二十个知识点

金属热处理基础入门必须了解的二十个知识点

金属热处理基础入门必须了解的二十个知识点1、什么是热处理将固态金属或合金采取适当方式进行加热,保温一定的时间,以一定的冷却速度冷却以改变其组织,从而获得所需性能的一种工艺方法。

2、热处理的目的是什么通过适当的热处理工艺改变钢的内部组织结构,来控制相变过程中组织转变的程度和转变产物的形态,从而改善钢的性能。

3、热处理的条件是什么必须有固态相变转变的合金才可以进行热处理。

4、热处理的工艺过程是什么(1)加热:临界点+△T值(2)保温(3)冷却:临界点- △T值一定冷却速度5、主要参数有哪些(1)加热温度T(2)保温时间 t(3)冷却速度V,冷却介质决定冷却速度,如:水、盐水、碱水、空气6、按处理阶段及目的可分为哪几种(1)预处理目的是消除偏析、内应力,为最终热处理或后续的加工获得平衡组织。

(2)最终处理作为工件处理的最后工序,获得最终组织。

7、按热处理工艺参数可分为哪几种(1)普通热处理这是生产中最常用的热处理工艺,如退火、正火、淬火、回火等。

这类的热处理一般不会额外的加入其他元素,主要是通过自身组织转变来得到所需要的性能。

(2)化学热处理这类在热处理在齿轮、轴等耐磨件上会经常用到。

工件进行化学热处理时,会在表面一层渗入其他的元素,而对心部的成分不会产生什么影响。

一般渗入什么元素,我们就称为渗×处理,如表面渗C、渗N,C、N共渗等。

(3)表面热处理综合了上述两类热处理的特点,即热处理时不加入其他元素,而且只是针对表面进行的热处理,不影响心部的组织,如表面淬火,但其要求工件的含碳量较高。

8、什么是退火退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。

退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。

总之退火组织是接近平衡状态的组织。

9、退火的目的是什么(1)降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。

(2)细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。

金属学及热处理基础知识

金属学及热处理基础知识

第一章金属学及热处理基础知识一、金属的基本结构金属材料的化学成分不同,其性能也不同。

但是对于同一种成分的金属材料,通过不同的加工处理工艺,改变材料内部的组织结构,也可以使其性能发生极大的变化,可见,金属的内部结构和组织状态也是决定金属材料性能的重要因素。

金属和合金在固态下通常都是晶体,因此首先要了解其晶体结构。

1、金属的原子结构及原子的结合方式(1)金属原子的结构特点最外层的电子数很少,一般为1~2个,最多不超过4个,这些外层电子与原子核的结合力很弱,很容易脱离原子核的束缚而变成自由电子,此时的原子即变为正离子,而对于过渡族金属元素来说,除具有以上金属原子的特点外,还有一个特点,即在次外层尚未填满电子的情况下,最外层就先填充了电子。

因此,过渡族金属的原子不仅容易丢失最外层电子,而且还容易丢失次外层的1~2个电子,这就出现了过渡族金属化合价可变的现象。

当过渡族金属的原子彼此相互结合时,不仅最外层电子参与结合,而且次外层电子也参与结合。

因此,过渡族金属的原子间结合力特别强,宏观表现为熔点高。

强度高。

由此可见,原子外层参与结合的电子数目,不仅决定着原子间结合键的本质,而且对其化学性能和强度等特性也具有重要影响。

(2)金属键处以集聚状态的金属原子,全部或大部将它们的价电子贡献出来,为其整个原子集体所公有,称之为电子云或电子气。

这些价电子或自由电子,已不再只围绕自己的原子核转动,而是与所有的价电子一起在所有原子核周围按量子力学规律运动着。

贡献出价电子的原子,则变为正离子,沉浸在电子云中,它们依靠运动于其间的公有化的自由电子的静电作用而结合起来,这种结合方式叫做金属键,它没有饱和性和方向性。

(3)结合力与结合能固态金属中两原子之间的相互作用力包括:正离子与周围自由电子间的吸引力,正离子与正离子以及电子与电子间的排斥力。

结合能是吸引能与排斥能的代数和,当形成原子集团比分散孤立的原子更稳定,即势能更低时,在吸引力的作用下把远处的原子移近所做的功是使原子的势能降低,所以吸引能是负值,相反,排斥能作用下把远处的原子移近平衡距离d 0时,其结合能最低,原子最稳定。

金属学与热处理基本知识

金属学与热处理基本知识
图—表示在平衡状态下不 同含碳量的铁碳合金在不同温度下所处的状态、 晶体结构和显微组织特征的图。 ⑵、图中的主要特征线 ①、ACD线—液相线。此线以上全部为液体。 钢加热到此线全部转化为液体,冷却到此线开 始结晶。 ②、AECF线—固相线。钢冷却到到此线以 下全部结晶为固体,加热到此线开始出现液体。 ⑶、两点(E、S)、三线(GS、ES、PSK) ①.PSK线(A1线)—表示钢在缓慢冷却时, 奥氏体开始转变为珠光体或钢在缓慢加热时珠 光体转变为奥氏体的温度线(7230C)。
• 而位错的 存在则使 金属容易 塑性变形, 强度降低。 • (图 1-14)
• 高温的液态金属冷却转变为固态金属的过程是一 个结晶过程,即原子由不规则状态(液态)过渡到 规则状态(固态)的过程。 • 过冷是金属结晶的必要条件。 • 每一种金属都有一定的结晶温度,例如铁的结晶 温度为 1538℃ ,铜的结晶温度为 1 083 ℃ ,这 种结晶温度称为理论结晶温度或平均结晶温度, 用有To表示。 • 但实际上,液态金属只有冷却到低于 To 的某一 温度时才开始结晶。也就是说,实际结晶温度 Tn 总是低于理治结晶温度 To。 • 两者之差称为过冷度,用 Δ T 表示, • 即 Δ T= To –Tn。
金属学与热处理基本知识
一. 金属的晶体结构
• 物质是由原子构成的。根据原子在物质内 部的排列方式不同,可将物质分为晶体和 非晶体两大类。凡内部原子呈规则排列的 物质称为晶体,凡内部原子呈不规则排列 的物质称为非晶体,所有固态金属都是晶 体。 • 晶体内部原子的排列方式称为晶体结构。 常见的晶体结构有:
晶格类型会发生转变,
称为同素异构转变
图1-29 纯铁的冷却曲线及晶体结构变化
三、金属的结构及铁碳合金
1、铁碳合金的基本组织 ⑴、钢和铁 ①、含碳量小于2.06的铁碳合金叫钢。 ②、含碳量大于2.06的铁碳合金叫铁(铸 铁或生铁)。 ⑵、钢材的性能不仅取决于钢材的化学成份, 而且与钢材组织有关。 ⑶、纯铁的晶体结构 ①.15380C~13940C—α-Fe(体心立方晶体) ②.13940C~9120C—γ-Fe(面心立方晶体

金属材料及其热处理

金属材料及其热处理
㈡ 合金的晶体结构 合金:由两种或两种以上元素组成的具有金属特性的物质。如碳钢、合金钢、铸铁、有色合金。 相:金属或合金中凡成分相同、结构相同,并与其他部分有界面分开的均匀组成部分。 1、固溶体:与组成元素之一的晶体结构相同的固相. ⑴ 置换固溶体:溶质原子占据溶剂晶格结点位置形成的固溶体。多为金属元素之间形成的固溶体。
㈡ 热处理工艺
工艺
目的
加热温度
组织
退火
1.调整硬度,便于切削加工。 2.细化晶粒,为最终热处理作组织准备。
亚共析钢Ac3+30~50℃ 共析钢 Ac1+30~50℃ 过共析钢Ac1+30~50℃
F+P P P球
正火
1.低中碳钢同退火。 2.过工析钢:消除网状二次渗碳体。 3.普通件最终热处理
三、组织
㈠ 纯金属的组织 1、结晶:金属由液态转变为晶体的过程 ⑴ 结晶的条件——过冷:在理论结晶温度以下发生结晶的现象。 过冷度:理论结晶温度与实际结晶温度的差。 ⑵ 结晶的基本过程——晶核形成与晶核长大 形核——自发形核与非自发形核 长大——均匀长大与树枝状长大
⑶ 结晶晶粒度控制方法:①增加过冷度;②变质处理;③机械振动、搅拌 2、纯金属中的固态转变 同素异构转变:物质在固态下晶体结构随温度而发生变化的现象。 固态转变的特点:①形核部位特殊;②过冷倾向大;③伴随着体积变化。
2、冷却时的转变
⑴ 等温转变曲线及产物
650℃
600℃
550℃
350℃
A1
MS
Mf
时间
P
S
T
B上
B下
M
M+A’
A→P
A→S
A→T
A→B上
A→B下

金属学和热处理知识大全

金属学和热处理知识大全

⾦属学和热处理知识⼤全⾦属的晶体结构(物质是由原⼦组成的)根据原⼦在物质内部的排列⽅式不同,可将物质分为晶体和⾮晶体两⼤类。

凡内部原⼦呈规则排列的物质称为晶体。

所有固态⾦属都是晶体。

凡内部原⼦呈不规则排列的物质称为⾮晶体。

如:玻璃,松⾹,沥青等。

电⼦显微镜观察到晶体内部原⼦各种规则排列,称为⾦属的晶体结构。

晶体内部原⼦的排列⽅式称为晶体结构。

⾦属原⼦是通过正离⼦与⾃由电⼦的相互作⽤⽽结合的,称为⾦属键。

常见纯⾦属的晶体结构有:体⼼⽴⽅晶格、⾯⼼⽴⽅晶格、密排六⽅晶格。

什么是晶格?晶格:⽤假想的直线将原⼦中⼼连接起来所形成的三维空间格架。

直线的交点(原⼦中⼼)称结点。

晶胞:能够完整地反映晶格特征的最⼩⼏何单元。

体⼼⽴⽅晶胞Body Centered Cubic Lattice(BCC)体⼼⽴⽅晶胞中的原⼦数为1/8x8+1=2个,致密度为0.68。

体⼼⽴⽅:Cr铬、W钨、V钒、Cb铌、Ta钽、Mo钼、钢铁(α-Fe、δ-Fe)。

⾯⼼⽴⽅晶胞Face Centered Cubic Lattice(FCC)⾯⼼⽴⽅晶胞中的原⼦数为1/8x8+1/2x6=4个,致密度为0.74。

⾯⼼⽴⽅:Al铝、Cu铜、Au⾦、Pb铅、Ni镍、Pt铂、Ag银、钢铁(γ-Fe)。

密排六⽅晶胞Hexagonal Close Packed Lattice(HCP)密排六⽅晶胞中的原⼦数为1/6x12+1/2x2+3=6个,致密度为0.74。

密排六⽅:Zn锌、Mg镁、Zr锆、Ca钙、Co钴、Mn锰、Ti钛。

冲击韧度是指材料在外加冲击载荷作⽤下断裂时消耗能量⼤⼩的特性。

体⼼⽴⽅晶格的冲击韧性值会急剧降低,具有脆韧转变温度。

实际使⽤的⾦属是由许多晶粒组成的,⼜叫多晶体。

每⼀晶粒相当于⼀个单晶体,晶粒内的原⼦的排列是相同的,但不同晶粒的原⼦排列的位向是不同的。

晶粒之间的界⾯称为晶界。

⾼温的液态⾦属冷却转变为固态⾦属的过程,是⼀个结晶过程态,即原⼦由不规则态(液态)过渡到规则状态(固态)的过程。

6、金属学及热处理一般知识

6、金属学及热处理一般知识
金属学及热处理一般知识
1、金属晶体结构一般知识 2、合金的组织结构及铁碳合金的基本组织 3、常用热处理的方法、目的及应用 4、铸铁的热处理方法
金属晶体结构一般知识
一、晶体结构 1、晶体与非晶体:凡是原子呈无序堆积的状况称为非晶体,反之为晶体。凡晶 体都有固定的熔点,其性能呈各向异性。 2、晶格与晶胞: 晶格:原子在晶体中排列规律的空间格架。 晶胞:能够完整地反映晶格特征的最小几何单元。 3、常见的三种金属晶格类型 体心立方晶格、面心立方晶格、密排六方晶格。 4、金属的结晶及晶粒对力学性能的影响 结晶:金属由液态转变为固态的过程。 金属的结晶过程由晶核产生和长大两个过程组成。 晶粒越细,金属的力学性能越高。 晶粒大小与过冷度有关,过冷度越大,结晶后获得的晶粒就越细。 过冷度:理论结晶温度和实际结晶温度之差。
常见热处理Байду номын сангаас法、目的及实际应用
1、热处理:钢在固态下加热到一定温度,在这个温度下保持一定时间,然后以一 定冷却速度冷却到室温,以获得所希望的组织结构和工艺性能的加工方法。 2、根据加热、冷却方法的不同分为:退火、正火、淬火、回火。 1)、退火:将钢加热到适当温度并保持一定时间,然后缓慢冷却(炉 冷)的热处 理工艺。 目的:a、降低硬度、提高塑性;b、细化晶粒,均匀组织和成分,改善性能或为以 后的热处理做准备;c、消除残余应力,防止变形和开裂。 常用的退火方法有:完全退火、球化退火、去应力退火。 2)、正火:将钢材或钢件加热到Ac3或Accm以上30℃~ 50℃,保温适当时间后,在 禁止的空气中冷却的热处理工艺。 目的:与退火基本相同,但正火的冷却速度比退火的稍快,因此正火钢的组织较细, 它的强度、硬度比退火钢的高。 3)、淬火:将钢材或钢件加热到Ac3或Ac1以上某一温度,保持一定时间,然后以 适当速度冷却(达到或大于临界冷却速度),以获得马氏体或贝氏体组织的热 处理工艺。 目的:把奥式体化的钢件淬火成马氏体,提高硬度、强度和耐磨性。 4)、回火:钢件淬火后,再加热到Ac1点以下的某一温度,保温一定时间,然后冷 却到室温的热处理工艺。 目的:a、减小或消除淬火时产生的内应力,防止在使用过程中的变形和开裂。 b、提高韧性,适当调整钢的强度和硬度,使其达到要求的力学性能。 c、稳定组织,保证工件在使用过程中不发生组织转变,保证形状和尺寸, 保证精度。

金属学与热处理知识点总结

金属学与热处理知识点总结

金属学与热处理知识点总结金属学是研究金属材料的物理特性、化学特性和力学特性,以及金属原材料的加工工艺的学科。

热处理是指将金属材料通过加热、保温和冷却等工艺过程来改变金属材料的性能,改善金属材料的加工性能。

本文结合实例,从金属学和热处理两个方面对相关知识点进行总结。

一、金属学1、金属的性质金属的性质是由元素的原子结构和组成决定的,因此,金属的物理性质、化学性质和力学性质均受它的原子结构和组成的影响。

金属的主要性质有导电性、导热性、耐腐蚀性等。

它们的性质决定了金属在工业生活中的重要作用。

2、金属的加工工艺金属加工是指采用机械、热处理、电子和化学等不同类型的加工方法,改变金属原材料的形状、性能和结构,以达到使用和生产需要的加工工艺。

常见的金属加工工艺有冲压、锻造、焊接、切削等。

二、热处理1、热处理的种类热处理是指通过加热、保温和冷却等技术,改变金属材料的组织结构,以改善材料性能的一种技术手段。

热处理的分类很多,其中包括:硬化、回火、淬火、正火、调质等。

2、热处理的作用热处理的主要作用是改变金属材料的组织结构,从而改善金属材料的性能。

热处理可以增加材料的强度、耐磨性、耐腐蚀性,同时热处理还可以改变材料的尺寸、形状和外观等。

热处理是衡量金属材料质量的关键性步骤之一,因此,热处理技术的发展有助于提高金属材料的使用性能。

综上所述,金属学是研究金属材料的物理特性、化学特性和力学特性,及其原材料加工工艺的学科,金属加工工艺可以改变金属原材料的形状、性能和结构,以达到使用和生产需要。

热处理是通过加热、保温、冷却等技术,改变金属材料的组织结构,以改善材料性能的技术手段,可以改变材料的性能、尺寸、形状和外观等。

正确运用金属学和热处理知识,可以有效提高金属材料的使用性能。

金属学与热处理-期末复习重点

金属学与热处理-期末复习重点

第一章金属的晶体结构第一节金属1度系数为负值。

第二节金属的晶体结构1、晶体的特征:1、具有一定的熔点2、各向异性非晶体为各向同性23、为了清楚地表明原子在空间排列的规律性,常常将构成晶体的原子抽象为纯粹的几何点,称之为点阵。

这些点阵有规则地周期性重复排列所形成的三维空间阵列称为空间点阵。

常人4567、常见的三种晶体结构主要是指体心立方、面心立方和密排六方结构,其中体心立方结构(BCC)每个晶胞含有2原子,其原子配位数为8,致密度是68%面心立方结构(FCC)每个晶胞含有4原子,其原子配位数为12;致密度是74%密排六方结构(HCP)每个晶胞含有6原子,其原子配位数为12,致密度是74% 。

8、密排面的堆垛顺序是AB AB AB……,构成密排六方结构ABCABCABC……,构成面心立方结构9、通常以[uvw]表示晶向指数的普遍形式原子排列相同但空间位向不同的所有晶向成为晶向族,<uvw>表示晶面指数的一般表示形式为(hkl)晶面族用大括号{hkl}表示10、在立方结构的晶体中,当一晶向[uvw]位于或平行于某一晶面(hkl)时,必须满足以下关系:hu+kv+lw=0当某一晶向与某一晶面垂直时,则其晶向指数和晶面指数必须完全相等,即u=b、v=k、w=l。

12、由于多晶体中的晶粒位向是任意的,晶粒的各向异性被互相抵消,因此在一般情况下整个晶体不显示各向异性,称之为伪等向性。

一般金属都是多晶体第三节实际金属的晶体结构1、晶体中的线缺陷就是各种类型的位错,它是在晶体中某处有一列或若干列原子发生了有规律的错排现象。

2、刃型位错的重要特征:1、刃型位错有一额外半原子面;2、位错线是一个具有一定宽度的管道3、位错线与晶体的滑移方向相垂直,位错线运动的方向垂直于位错线螺型位错的重要特征:1、螺型位错没有额外半原子面;2、螺型位错线是一个具有一定宽度的管道,其中只有切应变,而无正应变3、位错线与晶体的滑移方向平行,位错线运动的方向与位错线垂直4、位错线与柏氏矢量垂直就是刃型位错,位错线与柏氏矢量平行,就是螺型位错。

金属材料及热处理基础知识

金属材料及热处理基础知识
金属材料及热处理基础知识
目录
• 金属材料概述 • 金属材料的热处理 • 金属材料的力学性能 • 金属材料的腐蚀与防护 • 金属材料的选择与应用
01
金属材料概述
金属材料的定义与分类
金属材料的定义
金属材料是指以金属 元素或以金属元素为 主要成分,具有金属 特性的材料统称为金 属材料。
金属材料的分类
区域受到腐蚀的现象。
金属腐蚀的原理与影响因素
总结词
金属腐蚀的原理是金属原子失去电子成为正离子,而环境中的阴离子获得电子成为原子或负离子。影响因素包括 环境因素和金属本身的因素。
详细描述
金属腐蚀的原理是金属原子失去电子成为正离子,而环境中的阴离子获得电子成为原子或负离子。这个过程通常 涉及到电化学反应。影响因素包括环境因素和金属本身的因素。环境因素如湿度、温度、氧气、二氧化碳、污染 物等,而金属本身的因素包括合金成分、微观结构、表面状态等。
详细描述
热处理是金属材料加工过程中的一个重要环节,主要通过控制温度和时间来改变 金属材料的内部结构,从而改善其物理、化学和机械性能。根据不同的加热温度 和冷却方式,热处理可以分为多种类型,如退火、正火、淬火和回火等。
热处理的基本原理
总结词
热处理的基本原理是利用金属在加热和冷却过程中的相变现象,通过控制相变 过程来改变材料的内部组织结构,从而达到改善其性能的目的。
• 详细描述:退火是将金属加热到适当温度后保温一段时间,然后缓慢冷却至室温的过程,主要用于消除内应力、降低硬 度、提高塑性和韧性等。正火是将金属加热到适当温度后保温一段时间,然后空冷至室温的过程,主要用于细化晶粒、 提高强度和韧性等。淬火是将金属加热到适当温度后迅速冷却至室温的过程,主要用于提高金属的硬度和耐磨性等。回 火则是将淬火后的金属加热到适当温度后保温一段时间,然后冷却至室温的过程,主要用于消除淬火产生的内应力、稳 定组织结构和提高韧性等。

金属学及其热处理知识点

金属学及其热处理知识点

⾦属学及其热处理知识点第⼀章⾦属与合⾦的晶体结构1、晶体:原⼦在三维空间中有规律的周期性重复排列的物质2、晶体与⾮晶体的区别:①晶体中原⼦等质点是规则排列的,⾮晶体中质点是⽆规则堆积在⼀起的;②晶体具有明显、固定的熔点,伴有体积与性能的突变;③晶体有各向异性,⾮晶体则各向同性;(各向异性:不同⽅向上的性能有差异)。

3、空间点阵:⼏何点(原⼦)在空间排列的阵列。

晶格:⼏何点(原⼦)排列的空间格架。

4、晶胞:晶格中体积最⼩,对称性最⾼的平⾏六⾯体,是能代表原⼦排列形式特征的最⼩⼏何单元。

5、晶系与布拉菲点阵:7种晶系(⽴⽅、正⽅、斜⽅、菱⽅、六⽅、单斜、三斜),14种布拉菲点阵。

6、晶胞的结点数(原⼦数)计算:N=Ni+Nf/2+Nc/8。

(Ni,Nf,Nc为晶胞内,晶胞⾯上,晶胞⾓上的结点数)7、晶向:晶体点阵中,由阵点组成的任⼀直线,代表晶体空间内的⼀个⽅向,称为晶向。

晶向指数表⽰,最⼩正整数化[uvw]8、晶⾯:晶体点阵中,由阵点所组成的任⼀平⾯,代表晶体的原⼦平⾯,称为晶⾯。

晶⾯不能通过原点,⽤最⼩整数化(ukl)表⽰,ukl代表晶⾯在各轴的截距的倒数。

与那个轴平⾏,截距就为∞。

9、晶向族:晶体中原⼦密度相同(即原⼦列中两个原⼦间距相同)⽽空间位向不同的各组晶向。

⽤表⽰,例<100>的晶向族有:[100]、[010]、[001]、[ī00]、[0ī0]、[00ī]。

10、晶⾯族:晶体中原⼦排列分布相同⽽空间位向不同的各组等同晶⾯。

⽤{uvw}表⽰,例{100}的晶⾯族有:(100)、(010)、(001)、(ī00)、(0ī0)、(00ī)。

11、晶带:晶体中两个或者两个以上的晶⾯形成的集合。

12、晶带⾯:在晶体结构和空间点阵中平⾏于某⼀轴向的所有晶⾯均属于同⼀个晶带,这些晶⾯叫做晶带⾯。

13、晶带轴:与晶带⾯的交线相互平⾏,通过坐标原点的那条平⾏直线成为晶带轴。

晶带轴的晶向指数即为该晶带的指数。

金属学与热处理基础知识

金属学与热处理基础知识

金属学与热处理基础知识目录1. 金属学与热处理基础知识概述 (3)1.1 金属材料的分类 (4)1.2 金属材料的性能及其影响因素 (4)1.3 热处理的基本概念 (6)2. 金属的热处理原理 (7)2.1 金属在加热过程中的变化 (8)2.2 金属在冷却过程中的变化 (8)2.3 热处理的目的和工艺选择 (9)3. 固态相变原理 (11)3.1 晶体结构与滑移机制 (12)3.2 固态相变的微观机制 (13)3.3 铁碳合金的相图分析 (15)4. 加热和冷却原理 (16)4.1 热传导原理 (17)4.2 热处理过程中的温度控制 (19)4.3 冷却速度对金属性能的影响 (21)5. 热处理基本工艺 (22)5.1 退火工艺 (22)5.2 正火工艺 (24)5.3 淬火与回火工艺 (25)5.4 表面热处理工艺 (27)6. 特殊热处理 (28)6.1 渗碳、渗氮工艺 (29)6.2 高温回火、低温回火工艺 (31)6.3 电子束熔炼和热等静压处理 (32)7. 金属学与热处理的应用 (33)7.1 机械制造业中的应用 (35)7.2 航空航天材料的热处理 (37)7.3 能源和交通运输领域中的应用 (38)8. 热处理设备与材料 (40)8.1 热处理炉及其类型 (41)8.2 热处理材料的选择与加工 (43)8.3 热处理过程中的环境保护措施 (44)9. 金属学与热处理的实验与检测 (45)9.1 金属材料的力学和物理性能测试 (48)9.2 热处理后的金属材料分析 (49)9.3 质量控制和检验方法 (50)10. 金属学与热处理的未来发展趋势 (51)10.1 先进材料的热处理工程化 (53)10.2 智能制造在热处理中的应用 (54)10.3 绿色热处理技术的发展 (55)1. 金属学与热处理基础知识概述金属学与热处理是金属材料科学与工程领域中的核心课程,它们为理解和应用金属材料提供了基础理论和技术支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章金属与合金的晶体结构1、晶体:原子在三维空间中有规律的周期性重复排列的物质2、晶体与非晶体的区别:①晶体中原子等质点是规则排列的,非晶体中质点是无规则堆积在一起的;②晶体具有明显、固定的熔点,伴有体积与性能的突变;③晶体有各向异性,非晶体则各向同性;(各向异性:不同方向上的性能有差异)。

3、空间点阵:几何点(原子)在空间排列的阵列。

晶格:几何点(原子)排列的空间格架。

4、晶胞:晶格中体积最小,对称性最高的平行六面体,是能代表原子排列形式特征的最小几何单元。

5、晶系与布拉菲点阵:7种晶系(立方、正方、斜方、菱方、六方、单斜、三斜),14种布拉菲点阵。

6、晶胞的结点数(原子数)计算:N=Ni+Nf/2+Nc/8。

(Ni,Nf,Nc为晶胞内,晶胞面上,晶胞角上的结点数)7、晶向:晶体点阵中,由阵点组成的任一直线,代表晶体空间内的一个方向,称为晶向。

晶向指数表示,最小正整数化[uvw]8、晶面:晶体点阵中,由阵点所组成的任一平面,代表晶体的原子平面,称为晶面。

晶面不能通过原点,用最小整数化(ukl)表示,ukl代表晶面在各轴的截距的倒数。

与那个轴平行,截距就为∞。

9、晶向族:晶体中原子密度相同(即原子列中两个原子间距相同)而空间位向不同的各组晶向。

用<uvw>表示,例<100>的晶向族有:[100]、[010]、[001]、[ī00]、[0ī0]、[00ī]。

10、晶面族:晶体中原子排列分布相同而空间位向不同的各组等同晶面。

用{uvw}表示,例{100}的晶面族有:(100)、(010)、(001)、(ī00)、(0ī0)、(00ī)。

11、晶带:晶体中两个或者两个以上的晶面形成的集合。

12、晶带面:在晶体结构和空间点阵中平行于某一轴向的所有晶面均属于同一个晶带,这些晶面叫做晶带面。

13、晶带轴:与晶带面的交线相互平行,通过坐标原点的那条平行直线成为晶带轴。

晶带轴的晶向指数即为该晶带的指数。

(晶带指数)14、晶带定律:①同一晶带所有晶面的法线都与晶带轴垂直。

所以属于[uvw]晶带的晶面,他们的指数(hkl)符合:hu+kv+lw=0;②立方晶系中指数相同的晶面与晶向互相垂直:[100]⊥(100);[121]⊥(121);15、已知两晶面指数(h1k1l1)、(h2k2l2),求两晶面的晶面轴[uvw]。

解:u=k1l2 - k2l1;v=l1h2 - l2h1 ;w=h1k2 - h2k116、已知某个晶面(hkl)同时属于两个晶带[u1v1w1]、[u2v2w2],求hkl。

h = v1w2-v2w1 ;k = w1u2- w2u1 ;l = u1v2-u2v117、晶面间距的计算:①立方晶系的面间距公式:d=a/(h2+k2+l2)1/2;面间距大的晶面,其指数较低;面间距小的晶面,其指数较高;晶体外表面通常为低指数晶面,面间距大的晶面——密排面17、最典型最常见的晶体结构有三种类型:体心立方结构、面心立方结构、密排六方结构,前两种属于立方晶体系,后一种属于六方晶系。

18、晶向指数的标定:将三个坐标值按比例化为最小简单整数依次写入方括号[]中,平行时截距为无穷。

晶面指数的标定:取各截距的倒数,并化为最小简单整数,放在()内,平行时截距为无穷。

晶体的各向异性(单晶体):产生原因:不同晶向上的原子紧密程度不同所致。

多晶体具有各向同性19、致密度:晶胞中原子所占的体积与晶胞体积之比。

K为晶体的致密度;n为一个晶胞实际包含的原子数;v为一个原子的体积;V为晶胞的体积。

K=(n v)/ V20、配位数:指晶体结构中,与任一原子最近邻、等距离的原子数目,也可以理解为和任一原子接触的原子数目。

b.c.c 中为8 ——配位数越大,原子排列越紧密;(描述原子排列紧密程度:致密度、配位数)23、同素异构转变:当外部条件改变时,金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变。

——随温度、压力而变化;例如:C由石墨结构转变为金刚石结构。

24、晶体缺陷的几何特征将它们分为:点缺陷、面缺陷、线缺陷。

25、点缺陷:空位、间隙原子、置换原子。

特征:三个方向上的尺寸都很小,相当于原子的尺寸。

(零维缺陷)结构上:造成晶格畸变。

性能上:强度↑,电阻↑;影响扩散过程26、线缺陷:位错,位错分为刃型位错和螺型位错。

特征:两个方向上的尺寸很小,另一个方向尺寸相对很大。

(一维缺陷);刃型位错:(1)有一额外半原子面;(2)位错线是一个具有一定宽度的细长晶格畸变管道。

螺型位错:①没有额外半原子面;②是一个具有一定宽度的细长的晶格畸变管道,其中只有切应变,而无正应变;③位错线与晶体滑行方向平行,位错线运动的方向与位错线垂直27、柏氏矢量:表示位错的性质,还可表示晶格畸变的大小和方向,人们在研究位错时能够摆脱位错区域内原子排列具体细节的约束,这就是柏氏矢量。

意义:①可判定位错性质;位错线⊥柏氏矢量——刃型,位错线∥柏氏矢量——螺型;②描述了晶格畸变的大小与方向,指出了滑移后晶体上下部相对位移的方向与大小——柏氏矢量方向代表滑移方向。

③位错只能终止于晶体表面,内部成封闭环28、位错发生的条件:①几何条件:∑b前= ∑b后;②能量条件:∑b2前> ∑b2后;(U= αGb^2 )29、位错密度:单位体积包含的位错总长度: ρ= L / V (m/m3)或穿越单位截面积的位错线的数目: 退火软化金属中ρ=1010 ~1012m - 2;冷变形金属中ρ= 1015 ~1016 m - 2。

30、金属强度和位错的关系:(1) 理论上:位错的存在是材料具有良好塑性变形的前提;——低密度位错利于强度的提高;(2)实际中:位错密度较低时,↑ρ(位错密度)则σ(强度)↓,晶须,——无工业实际意义;位错密度较高时,↑ρ则σ↑;工业意义:形变强化、马氏体相变强化。

31、位错的产生:金属结晶、塑性变形、相变过程中;位错的观察:透射电镜等面缺陷:特征在一个方向上尺寸很小,;另外两个方向上的尺寸相对很大,例如:晶界、亚晶界等。

面缺陷包括晶体外表面和内表面两类,外表面包括晶体表面,内表面包括晶界、亚晶界、孪晶界、堆垛层错、相界等;32、晶界特性:(1)晶界有界面能,晶粒越细晶界越多,能量越高,越不稳定。

为降低能量、减少晶界长度,晶粒有长大的趋势。

(在一定的温度下);(2)相变时新相晶核往往优先在界面上形成。

(3) 晶界对材料的塑性变形起阻碍作用,晶粒越细,界面积越大,材料的强度越高。

——晶界强化或细晶强化(4)晶界由于有界面能,且低熔点杂质含量较高,故熔点低于晶内;(5)表面容易被腐蚀和氧化。

第二章纯金属的结晶1、结晶概念:物质由液态转变为具有晶体结构的固相的过程称为结晶。

结晶和凝固的区别:金属由液态转变为固态的过程称为凝固,由于凝固后的固态金属通常是晶体,所以又将这一转变过程称为结晶。

金属结晶的宏观现象:(1) 过冷现象:金属在低于熔点的温度结晶的现象;(2) 结晶过程伴随潜热释放结晶潜热:液相结晶为固相时释放的热量。

2、过冷度:金属的实际结晶温度与理论结晶温度之差。

3、金属结晶的微观过程:(1)形核:从液体中形成具有一定临界尺寸的小晶体(晶核)的过程(2)长大:晶核由小变大长成晶粒的过程——实际金属最终形成多晶体;注:单个晶粒由形核→长大。

多个晶粒形核与长大交错重叠当只有一个晶核时→单晶体;晶核越多,最终晶粒越细4、金属结晶的条件:热力学条件:ΔG = G(转变后) -G(转变前) < 0(存在过冷度是结晶的必要条件)结构条件:液态金属结构特点:(1) 原子间距等与固态相近, 与气态迥异;(2) 短距离的小范围内存在近似于固态结构的规则排列——短程有序晶体:长程有序;(液体中存在足够大的稳定晶坯即“晶核”——结晶的结构条件)结晶的实质:由近程有序状态转变为长程有序状态的过程。

5、相起伏特点:1) 瞬时出现,瞬时消失,此起彼伏;(2)相起伏或大或小,不同尺寸相起伏出现的几率不同,过大或过小的相起伏出现几率均小;(3)过冷度越大,最大相起伏尺寸越大。

——过冷液体中的相起伏称为晶胚6、形核方式分为:①均匀形核(自发形核、均质形核):依靠稳定的原子集团——相起伏②非均匀形核(非自发形核、异质形核):晶核依附于液态金属中现成的微小固相杂质质点的表面形成。

7、结晶时形核要点:①必须要有过冷度ΔT,晶胚尺寸r>rK。

②rK与ΔT成反比。

ΔT↑rK↓。

③均匀形核既需结构起伏,又需能量起伏——液体中的自然现象。

④结晶必须在一定温度下进行(扩散条件)⑤在工业生产中,液态金属凝固总是以非均匀形核进行。

均匀形核ΔT=0.2Tm;非均匀形核ΔT=0.02Tm8、晶核长大的机制:光滑界面有两种机制:(1) 二维晶核长大机制——速度很慢(2) 晶体缺陷长大机制——结构上存在台阶时,如螺型位错,速度较(1) 快;粗糙界面主要有一种机制:(3) 垂直长大机制(连续长大)界面上所有位置均为生长点:——垂直界面连续长大;——长大速度远较(1)(2)快;——金属晶体长大的主方式9、晶粒大小及控制(1)晶粒大小对材料性能的影响:常温下,金属的晶粒越细小,强度和硬度越高,塑性和韧性也越好。

但高温下晶界为弱区,晶粒细小强度反而下降,但晶粒过于粗大会降低塑性。

此时须采用适当粗晶粒度。

(2)铸造中晶粒大小的控制:形核率越大,长大速度越小,则单位体积中的晶粒数目越多,晶粒越细小。

单位体积中的晶粒数目为:ZV=0.9(N / G)3 / 4;细化晶粒:提高形核率N,降低晶核长大速度G;控制晶粒大小方法:①增加过冷度:过冷度增大,N、G均增大,但N提高的幅度远高于G——增加过冷度——加大冷却速度②变质处理:添加固相微粒或表面——非均匀形核;变质处理定义:在浇注前往液体中加入变质剂(孕育剂),促进形成大量的非均匀晶核,该工艺称为~。

孕育剂选择原则:Ⅰ点阵匹配:即结构相似、尺寸相当。

Ⅱ孕育剂熔点远高于金属本身;③振动、搅拌:机械方法、电磁波搅拌、超声波搅拌等。

3、过冷度越大,则实际结晶温度越低。

反之,冷却速度越慢,则过冷度越小。

4、纯金属结晶过程是恒温过程。

5、相起伏:这种不断变化着的近程的有序原子集团称为结构起伏或称为相起伏。

6、晶核的形成分为均匀形核、非均匀形核。

非均匀形核是最常见的。

7、晶体以树枝状形式长大,过冷度越大,形核率、长大速度越大。

8、控制晶粒大小有三种方法(1)控制过冷度过冷度越大,晶粒越细小(2)变质处理(3)振动、搅动9、铸锭中的缺陷:缩孔、气孔、偏析等(1)缩孔分为:集中缩孔、分散缩孔。

(2)气孔(气泡)(3)偏析分为:显微偏析、区域偏析10、铸锭三晶区(1)表层细晶区(2)柱状晶区(3)中心等轴区第三章二元合金相图和合金的凝固1、合金:由两种或两种以上的金属,或金属与非金属,经熔炼、烧结或其他方法组合而成并具有金属特性的物质。

相关文档
最新文档