(完整版)高一数学集合练习题及答案
高一数学集合试题及答案
![高一数学集合试题及答案](https://img.taocdn.com/s3/m/a20161041fb91a37f111f18583d049649b660efa.png)
高一数学集合试题及答案一、选择题(每题4分,共40分)1. 已知集合A={x|x^2-3x+2=0},B={x|x^2-x-2=0},则A∩B等于()。
A. {1}B. {2}C. {1,2}D. {-1,2}答案:C2. 已知集合A={x|x^2-5x+6=0},B={x|x^2-7x+12=0},则A∪B 等于()。
A. {2,3}B. {3,4}C. {2,3,4}D. {1,2,3,4}答案:C3. 已知集合A={x|x^2-4x+3=0},B={x|x^2-6x+8=0},则A∩B 等于()。
A. {1}B. {2}C. {1,2}D. {1,2,4}答案:B4. 已知集合A={x|x^2-6x+8=0},B={x|x^2-5x+4=0},则A∪B 等于()。
A. {2,4}B. {1,2,4}C. {1,2,3,4}D. {1,2,3,4,5}答案:B5. 已知集合A={x|x^2-4x+3=0},B={x|x^2-6x+8=0},则A∩B 等于()。
A. {1}B. {2}C. {1,2}D. {1,2,4}答案:B6. 已知集合A={x|x^2-5x+6=0},B={x|x^2-7x+12=0},则A∩B 等于()。
A. {2}B. {3}C. {2,3}D. {1,2,3}答案:C7. 已知集合A={x|x^2-6x+8=0},B={x|x^2-5x+4=0},则A∩B 等于()。
A. {2}B. {4}C. {2,4}D. {1,2,4}答案:C8. 已知集合A={x|x^2-4x+3=0},B={x|x^2-6x+8=0},则A∪B 等于()。
A. {1,2}B. {1,2,4}C. {1,2,3,4}D. {1,2,3,4,5}答案:C9. 已知集合A={x|x^2-5x+6=0},B={x|x^2-7x+12=0},则A∪B 等于()。
A. {2,3}B. {3,4}C. {2,3,4}D. {1,2,3,4}答案:C10. 已知集合A={x|x^2-6x+8=0},B={x|x^2-5x+4=0},则A∪B 等于()。
高一集合测试题及答案
![高一集合测试题及答案](https://img.taocdn.com/s3/m/cb8d3b8f29ea81c758f5f61fb7360b4c2e3f2a32.png)
高一集合测试题及答案一、选择题(每题3分,共30分)1. 集合A={1,2,3},集合B={3,4,5},求A∪B。
A. {1,2,3,4,5}B. {1,2,3,4}C. {3,4,5}D. {1,2,3}2. 若集合M={x|x<0},N={x|x>0},则M∩N等于:A. {x|x<0}B. {x|x>0}C. 空集D. {0}3. 集合P={y|y=x^2, x∈R},求P的元素范围。
A. y≥0B. y>0C. y≤0D. y<04. 设集合Q={x|x^2-4=0},求Q的元素个数。
A. 1B. 2C. 3D. 45. 集合R={x|-1≤x≤1},S={x|x>0},求R∩S。
A. {x|0<x≤1}B. {x|-1≤x≤0}C. {x|-1<x≤1}D. {x|-1≤x<0}6. 集合T={y|y=2x, x∈Z},求T的元素性质。
A. 所有元素都是偶数B. 所有元素都是奇数C. 元素既有偶数也有奇数D. 元素不能确定7. 若集合U={x|x^2-4x+3=0},求U的元素。
A. {1,3}B. {-1,3}C. {1,-3}D. {-1,1}8. 设集合V={x|x^2+2x+1=0},求V的元素。
A. {-1}B. {1}C. {-1,1}D. 空集9. 集合W={x|-3≤x≤3},X={x|x>0},求W∩X。
A. {x|0<x≤3}B. {x|-3≤x≤0}C. {x|-3<x≤3}D. {x|-3≤x<0}10. 集合Y={y|y=x^2, x∈N},求Y的元素范围。
A. y≥0B. y>0C. y≤0D. y<0二、填空题(每题2分,共20分)11. 集合A={1,2,3},B={2,3,4},A∩B=______。
12. 若集合C={x|x是偶数},D={x|x是奇数},则C∪D=______。
高一数学集合练习题及答案
![高一数学集合练习题及答案](https://img.taocdn.com/s3/m/a8beddfad4bbfd0a79563c1ec5da50e2524dd1e0.png)
高一数学集合练习题及答案高一数学集合练题及答案1.设全集 $U=\{1,2,3,4\}$,$A=\{1,3\}$,$B=\{4\}$,则$(U-A) \cap B=$ ()A。
$\{2,4\}$ B。
$\{4\}$ C。
$\varnothing$ D。
$\{1,3,4\}$2.已知集合 $A=\{x|y=x-1\}$,$B=\{x|x<2\}$,则 $A \cap B=$ ()A。
$\varnothing$ B。
$\{1\}$ C。
$[1,2)$ D。
$(1,2)$3.已知集合 $M=\{(x,y)|y=x^2-x,x\in R\}$,$N=\{y|x^2-x,y\in R\}$,则 $M \cap N=$ ()___{(0,0),(2,2)\}$ C。
$(0,2]$ D。
$[-1,+\infty)$4.已知全集 $U=\{1,2,3,4,5\}$,集合 $A=\{1,2\}$,$B=\{2,3\}$,则 $(A \cup B)=$ ()A。
$\{4,5\}$ B。
$\{1,2\}$ C。
$\{2,3\}$ D。
$\{1,2,3,4\}$5.设 $U=R$,$A=\{x|2x1\}$,则 $B \cap (U-A)=$ ()A。
$\{x|x1\}$ C。
$\{x|0<x<1\}$ D。
$\{x|0\leq x\leq 1\}$6.已知集合 $A=\{-1,0,1\}$,$B=\{x|x(x-2)\leq 0\}$,则 $A \cap B=$ ()A。
$\{-1\}$ B。
$\{0,1\}$ C。
$\{0,1,2\}$ D。
$\{x|-1\leqx\leq 1\}$7.已知集合 $A=\{x|1\leq x\leq 5,x\in N\}$,$B=\{x|x<5,x\in N\}$,则 $A \cup B=$ ()A。
$\{2,3,4\}$ B。
$\{1,2,3,4,5\}$ C。
高一数学集合练习题及答案(5篇)
![高一数学集合练习题及答案(5篇)](https://img.taocdn.com/s3/m/9f69041aeef9aef8941ea76e58fafab069dc442a.png)
高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。
高一数学集合测试题(含答案)
![高一数学集合测试题(含答案)](https://img.taocdn.com/s3/m/851afa1a0622192e453610661ed9ad51f01d541b.png)
高一数学集合测试题(含答案)一、单选题:1.设全集I={0, 1, 2, 3, 4}, 集合 A={0, 1, 2, 3},集合B={2,3,4}, 则 C(I-A)UC(I-B)= {0}2.方程组 {2x-3y=1,x-y=3 } 的解的集合是 {8,5}3.有下列四个命题:①ø是空集;②若a∈Z, 则-a∉N;③集合A= {x∈R|x∧2−2x+1=0}}是有两个元素;④集合B={x∈Q|x∈N}是有限集。
其中正确命题的个数是24.如果集合.A={x|ax∧2+2x+1=0}中只有一个元素,则a的值是15.已知M={y|x∧2−4≤y≤x≤2},P={x|−2≤x≤2},则M∩P={-2,-1,0,1,2}6.已知全集I=N, 集合A={x|x=2n, n∈N}, B={x|x=4n,n∈N},则I=AUB7.设集合M={x|x=kl/k2,k∈Z},N={x|x=k1/k2+1/2,k∈Z}, 则McN8.设集合A={x|1<x<2}, B={x|x<a}满足 A ⊂B, 则实数 a 的取值范围是(2,+∞)9.满足{1,2, 3}⊂M ⊂{1, 2, 3, 4, 5, 6}的集合M 的个数是810.如右图所示, Ⅰ为全集,M 、P 、 S 为Ⅰ的子集。
则阴影部分所表示的集合为(M∩P)US二、 填空题:12.已知 M={a,b}, N={b,c,d}, 若集合P 满足 P ⊆N, M∩P=∅, 则P={c,d}13.设全集 U={a,b,c,d,e},A={a,c,d}, B={b,d,e}, 则 C(A∩CB)={b,e}14.已知 Sx|x ∧2+2013\cdot (a +2)x +a ∧2−4|=|x −a −2||x +a +2|S,则$a=-2$。
15.已知集合SA =\{x|−1<x <3}S,SA\capB =\varmotℎingS, SA\cupB =mathbb {R }S,,求集合$B=\{x|x\leq-1\text{或 }x\geq 3\}$。
完整版)高一数学集合试题及答案
![完整版)高一数学集合试题及答案](https://img.taocdn.com/s3/m/39123fdfe109581b6bd97f19227916888486b9da.png)
完整版)高一数学集合试题及答案1.已知集合M={-1,1,-2,2},N={y|y=x,x∈M},则M∩N是{1,-1}。
2.设全集U=R,集合A={x|x^2≠1},则C U A={-1,1}。
3.已知集合U={x|x>0},C U A={x|0<x<2},那么集合A={x|x≤0或x≥2}。
4.设全集I={0,-1,-2,-3,-4},集合M={0,-1,-2},N={0,-3,-4},则(I-M)∩N={-3,-4}。
5.已知集合M={x∈N|4-x∈N},则集合M中元素个数是3.6.已知集合A={-1,1},则如下关系式正确的是AA∈,AB∈,AC{}∈,AD∅。
7.集合A={-2<x<2},B={-1≤x<3},那么A∪B={-2<x<3}。
8.已知集合A={x|x^2-1=0},则下列式子表示正确的有①1∈A,②{-1}∈A,③∅⊆A,④{1,-1}⊆A。
9.已知U={1,2,a^2+2a-3},A={|a-2|,2},C U A={0},则a的值为-3或1.10.若集合A={6,7,8},则满足A∪B=A的集合B的个数是7.11.已知集合M={x≤-1},N={x>a},若MN≠∅,则有a<-1.12.已知全集U={0,1,2,4,6,8,10},A={2,4,6},B={1},则(C U A)∪B={0,1,8,10}。
13.设U={三角形},A={锐角三角形},则C U A={直角三角形,钝角三角形}。
14.已知A={0,2,4},C U A={-1,1},C U B={-1,2},则B={1,2}。
15.已知全集U={2,4,a^2-a+1},A={a+1,2},C U A={7},则a=3.16.集合{}是空集。
1.集合B= {-1,0,2}2.已知全集U=R,集合A={x|1≤2x+1<9},则C UA={x|x<1或x≥5}3.实数a的取值范围为a≥419.因为AB=A,所以5∈B,即5²+5m+n=0,代入A={3,5}得到两个方程:9+15m+n=0,25+25m+n=0,解得m=-2,n=-39或m=-2,n=-23.因此,m=-2,n=-39或m=-2,n=-23.20.A={1,2},因此,B的两个根都必须是1或2,即(m-1)²-2(m-1)+m-2=0,解得m=2或m=4.因此,实数m的取值范围为m=2或m=4.21.A∩B={x|a-1<x<1},因此,若AB=∅,则A与B的交集为空集,即a-1≥1或2a+1≤-1,解得a≤0或a≤-1.因此,实数a的取值范围为a≤-1.22.A={a。
高一数学集合练习题及答案-百度文库
![高一数学集合练习题及答案-百度文库](https://img.taocdn.com/s3/m/11bdd23c657d27284b73f242336c1eb91a37331c.png)
高一数学集合练习题及答案-百度文库一、单选题1.设集合104x A x x ⎧⎫+=≤⎨⎬-⎩⎭,{}1e ,R x B y y x ==-∈,R 为实数集,则()R A B ⋃=( )A .{1x x <-或}1x ≥B .{1x x ≤-或}1x >C .{}4x x ≥D .{}4x x >2.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( )A .{}6x e x <<B .{}1,2,3e e e +++C .{}3,4,5D .{}2,3,4,53.若全集为R ,集合{2x A x =≤∣,{ln(2)0}B x x =-<∣,则()A B =R ( ) A .3,2⎛⎤-∞ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦ C .3,22⎛⎫ ⎪⎝⎭ D .()2,+∞4.已知集合A 是集合B 的真子集,下列关于非空集合A 、B 的四个命题:①若任取x A ∈,则x B ∈是必然事件.②若任取x A ∉,则x B ∈是不可能事件. ③若任取x B ∈,则x A ∈是随机事件.④若任取x B ∉,则x A ∉是必然事件. 其中正确的命题有( ).A .0个;B .1个;C .2个;D .3个. 5.已知集合{}1,2M =,{}2,3N =,那么M N ⋂等于( ) A .∅B .{}1,2,3C .{}2D .{}36.已知集合112A x x ⎧⎫=≥⎨⎬-⎩⎭,{B y y =,则A B =( ) A .∅ B .(]2,3 C .[]2,3 D .(]2,4 7.已知集合{}20A x x =-≤≤,{}21B x x =>,则A B ⋃=( ) A .[)2,1--B .[]()2,01,-⋃+∞C .(](),01,-∞⋃+∞D .[)2,1-8.已知集合,P Q 均为R 的子集,且()R Q P R ⋃=,则( )A .P Q R ⋂=B .P Q ⊆C .Q P ⊆D .P Q R =9.设集合{}{}13,33A xx B x x =≤≤=-≤≤∣∣,则A B =( ) A .[]1,3 B .[]3,3- C .(]1,3 D .[]3,1- 10.已知集合{}1,2,3,4,5U =,{}1,2A =,{}2,3,4B =,则集合()U AB =( ) A .{}1B .{}2C .{}1,2,5D .{}1,2,3,4 11.已知集合{1,2,3,4,5}A =,{|3}B x x =<,则A B =( )A .{1,2}B .{1,2,3}C .{4,5}D .{3,4,5}12.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<13.设集合{}123A =,,,{}2|0B x R x x =∈-=,则A B ⋃=( ) A .{}1 B .{}01,C .{}123,,D .{}0123,,, 14.已知不等式231x x m->+的解集为M ,若1M ∈,则实数m 的取值范围为( ) A .(),3-∞- B .(),1-∞- C .()3,-+∞ D .()3,1-- 15.①{}00∈,②{}0∅⊆,③{}(){}0,10,1=,④(){}(){}(),,a b b a a b =≠,其中正确的个数为( )A .1B .2C .3D .4二、填空题16.已知集合{}|04A x x =<≤,集合{}|B x x a =<,若A B ⊆,则实数a 的取值范围是_____.17.已知集合[)[)2,6,1,4A B ==-,则A B ⋃=__________.18.集合{}14A x x =-<≤,{}1,1,3B =-,则A B 等于_________.19.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.20.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______. 21.已知函数()94sin 3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.22.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 23.给出下列关系:①1R 2;Q ;③3N ∈;④0Z ∈.其中正确的序号是______.24.设{}|11A x x =-<<,{}|0B x x a =->若A B ⊆,则a 的取值范围是_____. 25.若集合{}|21A x x =-<≤,{}|13B x x =<≤,{}|2C x x =>,则()A B C =______.三、解答题26.已知幂函数2242()(1)m m f x m x -+=-在(0,)+∞上单调递增,函数()2x g x k =-.(1)求实数m 的值;(2)当(]1,2x ∈时,记(),()f x g x 的值域分别为集合,A B ,若A B A ⋃=,求实数k 的取值范围.27.已知集合{}211A x m x m =-<<+,{}24B x x =<. (1)当2m =时,求,A B A B ⋃⋂;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.28.请从下面三个条件中任选一个,补充在下面的横线上,并解答. ①A B B =;②A B A ⋃=;③()A B =∅R ;若集合A ={x |2x -2x -3>0},B ={x |a -1<x <2a +3}设全集为R .(1)若a =-1,求()A B ⋂R ;(2)若 ,求实数a 的取值范围.注:如果选择多个条作分别解答,则按第一个解答计29.已知集合{}A x x =是平行四边形,{}B x x =是矩形,{}C x x =是正方形,{}D x x =是菱形,求集合A ,B ,C ,D 之间的关系.30.设{}24,21,A a a =--,{}5,1,9B a a =--,已知{}9A B ⋂=,求a 的值.【参考答案】一、单选题1.C【解析】【分析】先求出集合A ,B ,再求两集合的并集,然后再求其补集【详解】 由104x x +≤-,得(1)(4)040x x x +-≤⎧⎨-≠⎩,解得14x -≤<, 所以{}14A x x =-≤<,因为当R x ∈时,e 0x >,所以1e 1x -<, 所以{}1B y y =<, 所以{}4A B x x ⋃=<,所以(){}R 4A B x x ⋃=≥,故选:C2.C【解析】【分析】先化简出结合,A B ,然后再求交集.【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞所以{}3,4,5A B =故选:C3.C【解析】【分析】先求出集合A ,B ,再根据补集交集的定义即可求出.【详解】 因为32A x x ⎧⎫=≤⎨⎬⎩⎭∣,{}12B x x =<<,所以()322R A B x x ⎧⎫⋂=<<⎨⎬⎩⎭∣. 故选:C .4.D【解析】【分析】由随机事件、不可能事件、必然事件的定义逐一判断即可得出答案.【详解】因集合A 是集合B 的真子集,故A 中的任意一个元素都是B 中的元素,而B 中至少有一个元素不在A 中,因此①正确,②错误,③正确,④正确.故选:D .5.C【解析】【分析】由交集的定义直接求解即可【详解】因为{}1,2M =,{}2,3N =所以{}2MN =,故选:C6.B【解析】【分析】首先解分式不等式求出集合A ,再求出集合B ,最后根据交集的定义计算可得;【详解】 解:由112x ≥-,即1102x -≥-,即1202x x -+≥-, 等价于()()23020x x x ⎧--≤⎨-≠⎩,解得23x <≤,即{}11232A x x x x ⎧⎫=≥=<≤⎨⎬-⎩⎭,因为20x ≥,所以21616x -≤,所以04≤,所以{{}04B y y y y ==≤≤,所以{}|23A B x x ⋂=<≤. 故选:B.7.C【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()21,110x x x >+->,解得1x <-或1x >,所以()(),11,B =-∞-⋃+∞,所以(](),01,A B ⋃=-∞⋃+∞.故选:C8.C【解析】【分析】利用韦恩图,结合集合的交集、并集和补集的运算,即可求解.如图所示,集合,P Q 均为R 的子集,且满足()R Q P R ⋃=,所以Q P ⊆.故选:C.9.A【解析】【分析】利用集合交集定义计算即可【详解】[1,3],[3,3],[1,3]A B A B ==-⋂=故选 :A10.A【解析】【分析】求出U B ,计算求解即可.【详解】根据题意得,{}1,5U B =,所以(){}1U AB =.故选:A.11.A【解析】【分析】根据集合的交集运算,即可求得答案.【详解】集合{1,2,3,4,5}A =,{|3}B x x =<,则{1,2}A B =,故选:A12.B【解析】【分析】根据集合的并集计算即可.【详解】 {}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤,13.D【解析】【分析】先求出集合B ,再由并集运算得出答案.【详解】由{}2|0B x R x x =∈-=可得{}0,1B =则{}0,1,2,3A B ⋃=故选:D14.D【解析】【分析】利用1M ∈可构造关于m 的不等式,解不等式可得结果.【详解】1M ∈,21311m-∴>+,即301m m +<+,解得:3<1m -<-, 即实数m 的取值范围为()3,1--.故选:D.15.B【解析】【分析】根据元素与集合的关系、集合与集合的关系即可判断.【详解】{}00∈正确;{}0∅⊆正确;{}(){}0,10,1=不正确,左边是数集,右边是点集;(){}(){}(),,a b b a a b =≠不正确,左边是点集,右边是点集,但点不相同.故正确的有①②,共2个.故选:B.二、填空题16.4a >【解析】【分析】结合数轴图与集合包含关系,观察即可得到参数的范围.【详解】在数轴上表示出集合A ,B ,由于A B ⊆,如图所示,则4a >.17.[1-,6)【解析】【分析】直接利用并集运算得答案.【详解】[2A =,6),[1B =-,4),[2A B ∴=,6)[1-,4)[1=-,6).故答案为:[1-,6).18.{}1,3【解析】【分析】由交集定义直接得到结果.【详解】由交集定义知:{}1,3A B =.故答案为:{}1,319.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.20. 2a =-或23a =或0 30k -<≤ 【解析】【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可. 【详解】 已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-= 当0,a B ==∅,满足B A ⊆;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭, 因为B A ⊆,故得到21a =-或23a = 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立, 当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<<综上结果为:30k -<≤.故答案为:2a =-或23a =或0;30k -<≤ 21.35,88⎡⎤⎢⎥⎣⎦ 【解析】【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围.【详解】因为()()294sin 32311644x x x f x π-⋅+-+==,又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦. 因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --. 依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤. 故答案为:35,88⎡⎤⎢⎥⎣⎦ 22.{}|10x x -<≤【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.23.①③④【解析】【分析】根据数的分类直接判断. 【详解】由题可得1R 2,2Q ∉,3N ∈,0Z ∈,故①③④正确. 故答案为:①③④.24.(],1-∞-【解析】【分析】由数轴法可得到A B ⊆,则只要1a ≤-即可.【详解】根据题意作图:由图可知,A B ⊆,则只要1a ≤-即可,即a 的取值范围是(],1-∞-. 故答案为:(],1-∞-.25.{}|23x x <≤【解析】【分析】先求得A B ,然后求得()A B C .【详解】{}23A B x x =|-<≤,()A B C ={}|23x x <≤.故答案为:{}|23x x <≤三、解答题26.(1)0m =(2)[]0,1【解析】【分析】(1)由幂函数定义列出方程,求出m 的值,检验函数单调性,舍去不合题意的m 的值;(2)在第一问的基础上,由函数单调性得到集合,A B ,由并集结果得到B A ⊆,从而得到不等式组,求出k 的取值范围.(1)依题意得:2(1)1m -=,∴0m =或2m =.当2m =时,2()f x x -=在(0,)+∞上单调递减,与题设矛盾,舍去.当0m =时,2()f x x =在(0,)+∞上单调递增,符合要求,故0m =.(2)由(1)可知2()f x x =,当(]1,2x ∈时,函数()f x 和()g x 均单调递增.∴集合(](]1,4,2,4A B k k ==--,.又∵A B A ⋃=,∴B A ⊆,∴2144k k -≥⎧⎨-≤⎩, ∴01k ≤≤,∴实数k 的取值范围是[]0,1.27.(1){}{}25,12A B x x A B x x ⋃=-<<⋂=<<, (2){}11m m -<≤【解析】【分析】(1)根据交集和并集的定义即可求出;(2)由x A ∈是x B ∈成立的充分不必要条件,可得A B ,进而得出实数m 的取值范围.(1)(1)当m =2时,{}15A x x =<<,{}22b x x =-<< , ∴{}{}25,12A B x x A B x x ⋃=-<<⋂=<<;(2)由x A ∈是x B ∈成立的充分不必要条件,得A B ,当A =∅时,即211m m -≥+时,此时m 无解,∴A ≠∅,∴212,12m m -≥-⎧⎨+≤⎩解得11m -≤≤, 当1m =-时,()2,2A B ==-,不成立.故实数m 的取值范围为{}11m m -<≤.28.(1){}|11x x -≤<(2){4a a ≥或2}a ≤-【解析】【分析】(1)由集合的交集和补集运算求解即可;(2)①②③均等价于B A ⊆,讨论B =∅,B ≠∅两种情况,结合集合的包含关系得出实数a 的取值范围.(1){3A x x =>∣或1}x <-当1a =-时,{21}B x x =-<<∣,{13}A x x =-≤≤R ∣所以(){11}A B x x ⋂=-≤<R ∣ (2)①②③均等价于B A ⊆当B =∅时,123a a -≥+,解得4a ≤-;当B ≠∅时,有12313a a a -<+⎧⎨-≥⎩或123231a a a -<+⎧⎨+≤-⎩ 解得4a ≥或42a -<≤-综上,实数a 的取值范围{4a a ≥或2}a ≤-.29.答案见解析【解析】【分析】直接利用四边形的关系,判断即可.【详解】解:因为矩形、正方形、菱形都是特殊的平行四边形,所以B A ,C A ,D A ; 又正方形是特殊的矩形、特殊的菱形,所以C B ,C D ;30.-3【解析】【分析】根据{}9A B ⋂=,分219a -=和29a =,讨论求解.【详解】解:因为{}24,21,A a a =--,{}5,1,9B a a =--,且{}9A B ⋂=,所以当219a -=时,解得5a =,此时{}{}4,9,25,0,4,9A B =-=-,不符合题意; 当29a =时,解得3a =或3a =-,若3a =,则{}{}4,52,9,9,,2B A =--=-,不成立;若3a =-,则{}{}4,7,9,8,4,9A B =--=-,成立;所以a 的值为-3.。
完整版)高一数学必修一集合练习题及单元测试(含答案及解析)
![完整版)高一数学必修一集合练习题及单元测试(含答案及解析)](https://img.taocdn.com/s3/m/76dc8a673d1ec5da50e2524de518964bce84d259.png)
完整版)高一数学必修一集合练习题及单元测试(含答案及解析)1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()A。
{x|x≥3} B。
{x|x≥2} C。
{x|2≤x<3} D。
{x|x≥4}2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A。
{3,5} B。
{3,6} C。
{3,7} D。
{3,9}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A。
{x|x≥-1} B。
{x|x≤2} C。
{x|0<x≤2} D。
{x|-1≤x≤2}4.满足M⊆{1,2,3,4},且M∩{3,4}={3}的集合M的个数是()A。
1 B。
2 C。
3 D。
45.集合A={0,2,a},B={1,4},若A∪B={0,1,2,4,16},则a 的值为()A。
4 B。
1 C。
2 D。
06.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=()A。
Ø B。
{x|x5/3} D。
{x|-1/2<x<5/3}7.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为15.8.满足{1,3}∪A={1,3,5}的所有集合A的个数是2.9.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是(-∞,1]。
10.已知集合A={-4,2a-1,a},B={a-5,1-a,9},若A∩B={9},则a的值为5.11.已知集合A={1,3,5},B={1,2,-1},若A∪B={1,2,3,5},则x=2,A∩B={1}。
12.已知A={x|2a≤x≤a+3},B={x|x5},若A∩B=Ø,则a的取值范围为(-∞,-1)∪(5,∞)。
13.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组。
高一数学集合练习题一及答案3篇
![高一数学集合练习题一及答案3篇](https://img.taocdn.com/s3/m/fb1f9c28a200a6c30c22590102020740be1ecdfd.png)
高一数学集合练习题一及答案第一篇:集合初步概念及运算1. 下列说法中正确的是:()A.空集是任何集合的子集B.空集是任何集合的真子集C.单集是有限集D.全集的子集个数是1答案:A2. 若集合A={1,2,4},B={1,2,3},C={2,3},则A∩B∪C的结果为()A. {1,3}B. {1,2}C. {2,3,4}D. {1,2,3,4}答案:D3. 若A∪B={-2,-1,0,3,4},则A∩B的结果为()A. {-2,-1}B. {0,3,4}C. {-2,-1,0,3,4}D. 无法确定答案:D4. 已知A={x|0≤x<5},B={x|x²-4x+3<0},则A∪B 的结果为()A. {1,2,3,4,5}B. {x|x²-4x+3≥0}C. [3,5)D. [1,5)答案:A5. 下列说法中正确的是:()A. A={0,1,2},|A|=2B. A={0,x,2},x为实数,|A|=2C. A={0,1,2},P(A)的元素个数是3D. A={0},P(A)的元素个数是2答案:D6. 下列说法中正确的是:()A. A∩B=∅,则A=BB. A∩B=A,则A包含于BC. A∪B=B,则A包含于BD. 若A=B,则A∩B=A答案:B7. 下列说法中正确的是:()A. A×B的元素个数是|A||B|B. A×∅=∅C. |P(A)|=2^|A|D. A∩B=A∪B答案:C8. 下列说法中正确的是:()A. 不交集的交集是空集B. 空集和任何集合的并集是空集C. 任何集合和全集的交集是原集合D. 全集和空集的交集是全集9. 集合A、B的笛卡尔积为{(x,y)|x∈A,y∈B},则A×B 的结果为()A. {AB}B. A+BC. {(x,y)|x∈A,y∈B}D. AB答案:C10. 下列说法中正确的是:()A. A⊂B,B⊂C,则A⊂CB. A⊂B,B∩C=∅,则A⊂CC. A∩B=A,A⊂C,则B⊂CD. A∩B=A,A⊂C,则B包含于C答案:D第二篇:复合函数与反函数1. 函数f(x)=x²,g(x)=3-x,则复合函数(f∘g)(x)的结果为()A. x²-3x+9B. 3x²-x+9C. 9-6x+x²D. x²-6x+9答案:D2. 已知函数f(x)=x³,则函数f的反函数为()A. f⁻¹(x)=x³B. f⁻¹(x)=∛xC. f⁻¹(x)=x²D. f⁻¹(x)=x³/33. 函数y=2x-1,它的反函数为()A. y=2x+1B. y=(x+1)/2C. y=(x-1)/2D. y=2(x+1)答案:C4. 函数f(x)=log₃(x+2),则它的反函数为()A. f⁻¹(x)=3ⁿ-2B. f⁻¹(x)=log₃(x)-2C. f⁻¹(x)=3ⁿ+2D. f⁻¹(x)=log₃(x+2)-2答案:B5. 已知函数f(x)=2x+1,g(x)是f(x)的反函数,则g(-2)的值为()A. -1/2B. -3/2C. 0D. 3答案:B6. 设函数f(x)=x³,g(x)是函数f(x)在[0,+∞)上的反函数,则g(8)的值为()A. 0B. 2C. 3D. 4答案:B7. 函数f(x)=(x-1)/(x+2),则f(f(x))的分母为()A. x²B. (x-1)²C. (x+2)²D. (x²+1)答案:C8. 函数f(x)=log₃x,则它的反函数f⁻¹(x)为()A. f⁻¹(x)=3ⁿB. f⁻¹(x)=3/xC. f⁻¹(x)=3log(x)D. f⁻¹(x)=log₃(x)答案:D9. 函数f(x)=log₃x,g(x)=x-2,则(f∘g)(x)的结果为()A. log₃(x-2)B. log₃(x-2)/3C. log₃x-2D. log₃(x+2)答案:C10. 已知函数f(x)=3x²-4,函数g(x)为f(x)的反函数,则g(5)的值为()A. 1B. 2C. 3D. 4答案:C第三篇:不等式和函数的性质1. 若a>b,则a²≤3a+b+2的条件是()A. b≤a-2B. b≥a-2C. b≤-a-2D. b≥-a-2答案:B2. 若x>0,x+1/x≥2,则x的取值范围为()A. [0,1)B. [1,∞)C. (0,1)D. (1,∞)答案:B3. 已知函数f(x)的值域为[1,2],则方程f(x)=1/2的解集为()A. {1}B. (0,1)C. ∅D. (1,2)答案:C4. 已知函数f(x)=3x-1,g(x)=2x-3,则fg(x)和gf(x)的符号相反,x的取值范围是()A. (-∞,1)B. (1,∞)C. [1,3/5]D. (3/5,1)答案:A5. 若函数f(x)在区间[a,b]上单调递减,则f(x)在区间[a,b]上的最大值出现在()A. x=aB. x=bC. x=(a+b)/2D. x未知答案:A6. 若函数f(x)=3x+c的解析式是f(x)的导函数,则常数c为()A. -2B. -1C. 0D. 1答案:B7. 函数f(x)=x/(5-x),则函数f(x)在[0,5)上的值域是()A. (-∞,1/5)B. (-∞,-1/5)C. (1/5,∞)D. (-∞,∞)答案:C8. 若函数f(x)的值域为[1,2),则函数g(x)为f(x)的反函数的值域为()A. [1,2)B. (-∞,2)C. (1,∞)D. ∅答案:B9. 函数f(x)=2x(1-x)的最大值为()A. 1B. 1/4C. 1/2D. 1/8答案:B10. 若函数f(x)满足f(x)+f(1-x)=x,则f(1/2)的值为()A. 1/2B. 1/4C. -1/4D. -1/2答案:B。
高一课本集合练习题答案
![高一课本集合练习题答案](https://img.taocdn.com/s3/m/1bdbe1003d1ec5da50e2524de518964bce84d279.png)
高一课本集合练习题答案高一数学课本集合练习题答案一、选择题1. 集合A={x|x<5},B={x|x>3},求A∪B。
答案:A∪B={x|x<5或x>3}。
2. 若A={1,2,3},B={2,3,4},求A∩B。
答案:A∩B={2,3}。
3. 已知集合A={x|0≤x≤10},判断x=11是否属于A。
答案:x=11不属于A。
4. 若集合M={x|x^2-4=0},求M的元素。
答案:M={-2,2}。
5. 对于集合N={y|y=x^2, x∈R},判断y=-1是否属于N。
答案:y=-1不属于N。
二、填空题1. 集合P={1,2,3},Q={3,4,5},P∩Q=______。
答案:{3}2. 若集合R={x|x^2-9=0},求R的补集。
答案:补集为{x|x≠-3且x≠3}3. 集合S={x|x>0},T={x|x<0},S∪T=______。
答案:R(实数集)4. 若集合U={x|x是自然数},求U中最小的元素。
答案:最小的元素是1。
5. 集合V={y|y=2x, x∈N},求V中的元素。
答案:V中的元素为所有偶数。
三、解答题1. 已知集合W={x|x^2-4x+3=0},求W的元素,并判断x=1是否属于W。
答案:W的元素为{1,3},x=1属于W。
2. 集合X={y|y=x^2, x∈Z},求X中的元素,并判断y=3.5是否属于X。
答案:X中的元素为所有非负整数的平方,y=3.5不属于X。
3. 集合Y={x|x是奇数},Z={x|x是偶数},求Y∩Z。
答案:Y∩Z为空集。
4. 集合K={x|x是小于10的质数},求K的元素。
答案:K的元素为{2,3,5,7}。
5. 集合L={x|x^2+2x+1=0},求L的元素。
答案:L的元素为{-1},因为方程x^2+2x+1=0的判别式Δ=2^2-4<0,无实数解,但根据代数解法,x=-1是方程的根。
四、应用题1. 在一次数学竞赛中,共有10名学生参加,其中5名学生获得了一等奖,3名学生获得了二等奖,2名学生同时获得了一等奖和二等奖。
高一数学集合练习题含答案
![高一数学集合练习题含答案](https://img.taocdn.com/s3/m/13e34a1f78563c1ec5da50e2524de518964bd33f.png)
高一数学集合练习题含答案一、单选题1.设集合{}2|60A x x x x =--<∈Z ,,(){}2|ln 1B y y x x A ==+∈,,则集合B 中元素个数为( ) A .2B .3C .4D .无数个2.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅3.设I 为全集,1S 、2S 、3S 是I 的三个非空子集且123S S S I ⋃⋃=.则下面论断正确的是( )A .()123I S S S ⋂⋃=∅B .()123I I S S S ⊆⋂C .123I I I S S S ⋂⋂=∅D .()123I I S S S ⊆⋃4.已知集合{}42A x x =-<<,{}29B x x =≤,则A B ⋃=( )A .(]4,3-B .[)3,2-C .()4,2-D .[]3,3-5.设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是( )A .3B .6C .7D .86.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,27.设集合{}2,1,0,1,2,3A =--,{|B x y ==,则AB =( )A .{}2B .{}0,1C .{}2,3D .{}2,1,0,1,2--8.设全集U =R ,集合{}{}13,0,1,2,3,4,5A x x B =≤≤=,则()U A B =( ) A .{0,4,5}B .{0,1,3,4,5}C .{4,5}D .{0}9.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1B .[)1,2C .()0,1D .()0,210.已知全集{}U 1,0,1,3,6=-,{}0,6A =,则UA =( )A .{}1,3-B .{}1,1,3-C .{}0,1,3D .{}0,3,611.已知集合{}{}|1|Z 3,0A x x B x x =∈-≤≤=≥,则A B =( ) A .[]1,2B .{}1,2,3C .[]0,3D .{}0,1,2,312.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2 B .{}2,3C .{}0,3D .{}313.已知集合{|03}A x x =<<,集合2{|0log 1}B x x =<<,则A ∩B =( )A .{|13}x x <<B .{|12}x x <<C .{|23}x x <<D .{|02}x x <<14.已知集合{}{}21,,3A x x n n Z B ==+∈=,则A B =( ) A .{1,3}B .{1,3,5,7,9}C .{3,5,7}D .{1,3,5,7}15.等可能地从集合{}1,2,3的所有子集中任选一个,选到非空真子集的概率为( ) A .78B .34C .1516 D .14二、填空题16.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.17.已知集合{}21A x x =-<<,{}0B x x =<,则A B ⋃= ____________. 18.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.19.集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________.20.已知集合{}{}35,10A x Zx B y y =∈-<<=+>∣∣,则A B 的元素个数为___________. 21.已知集合{}2280A x x x =--<,非空集合{}23B x x m =-<<+,若x B ∈是x A ∈成立的一个充分而不必要条件,则实数m 的取值范围是___________.22.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个. 23.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.24.若{}231,13a a ∈--,则=a ______.25.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.三、解答题26.设A 为非空集合,令(){},,A A x y x y A ⨯=∈,则A A ⨯的任意子集R 都叫做从A 到A 的一个关系(Relation ),简称A 上的关系.例如{}0,1,2A =时,(){}10,2R =,2R A A =⨯,3R =∅,()(){}40,0,2,1R =等都是A 上的关系.设R 为非空集合A 上的关系.如果R 满足:①(自反性)若x A ∀∈,有(),x x R ∈,则称R 在A 上是自反的; ②(对称性)若(),x y R ∀∈,有(),y x R ∈,则称R 在A 上是对称的; ③(传递性)若(),x y ∀,(),y z R ∈,有(),x z R ∈,则称R 在A 上是传递的;称R 为A 上的等价关系.(1)已知{}0,1,2A =.用列举法写出A A ⨯,然后写出A 上的关系有多少个,最后写出A 上的所有等价关系.(只需写出结果)(2)设1R 和2R 是某个非空集合A 上的关系,证明: (ⅰ)若1R ,2R 是自反的和对称的,则12R R 也是自反的和对称的;(ⅱ)若1R ,2R 是传递的,则12R R 也是传递的.(3)若给定的集合A 有n 个元素()4n ≥,()12,,,2m A A A m n ⋅⋅⋅≤≤为A 的非空子集,满足12m A A A A ⋅⋅⋅=且两两交集为空集.求证:()()()1122m m R A A A A A A =⨯⨯⋅⋅⋅⨯为A上的等价关系.27.已知集合{|28}x a A x -=>,2{|20}B x x x =+-<,再从条件① ,条件② ,条件③这三个条件中选择一个作为已知,求实数a 的取值范围. 条件①:A B =∅;条件②:A B A =;条件③:RA B ⊆.28.已知M 由0,2,4,6,8组成的集合,{|33}Z N x x =∈-≤. (1)用列举法表示集合N ,用描述法表示集合M (书写格式要规范)(2)若∃x ∈B 而x ∉ A ,则称B 不是A 的子集.结合集合M ,N 写出5个含M 中3个元素但不是M 的子集的集合.29.已知集合{}|33A x a x a =-≤≤+,{}2|40B x x x =-≥.(1)当2a =时,求A B ,A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.30.已知集合(){}2log 31A x x =->,22112y y B y -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭. (1)分别求出集合A 、B ; (2)设全集为R ,求()RA B ⋂.【参考答案】一、单选题 1.B 【解析】 【分析】先解出集合A ,再按照对数的运算求出集合B ,即可求解. 【详解】由260x x --<,解得23x -<<,故{}1,0,1,2A =-,()2222ln (1)1ln(11)ln 2,ln 010,ln(21)ln5⎡⎤-+=+=+=+=⎣⎦,故{}ln 2,0,ln5B =,集合B 中元素个数为3. 故选:B. 2.A 【解析】 【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂. 【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-, 所以{|14}M N x x ⋂=-≤<. 故选:A 3.C 【解析】 【分析】画出关于123S S S I ⋃⋃=且含7个不同区域的韦恩图,根据韦恩图结合集合的交并补运算确定各选项中对应集合所包含的区域,并判断包含关系. 【详解】将123S S S I ⋃⋃=分为7个部分(各部分可能为空或非空),如下图示:所以1A B D E S =⋃⋃⋃、2A B C F S =⋃⋃⋃、3S A C D G =⋃⋃⋃, 则1I S C F G =⋃⋃,2I S D E G =⋃⋃,3I S B E F =⋃⋃,所以23S S A B C D F G ⋃=⋃⋃⋃⋃⋃,故()123I S S S F G ⋂⋃=⋃,A 错误;23I I S S E ⋂=,故231I I S S S ⋂⊆,B 错误; 123I I I S S S ⋂⋂=∅,C 正确;23II S S B D E F G ⋃=⋃⋃⋃⋃,显然1S 与23I I S S ⋃没有包含关系,D 错误.故选:C 4.A 【解析】 【分析】先求B ,再求并集即可 【详解】易得{}3|3B x x =-≤≤,故(]4,3A B ⋃=- 故选:A 5.D 【解析】 【分析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案. 【详解】2222x x ≤⇒-≤,所以2,2A ⎡=-⎣,所以{}1,0,1A ⋂=-Z , 所以A ⋂Z 子集的个数是328=. 故选:D 6.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B 7.C 【解析】 【分析】根据偶次根式有意义及一元二次不等式的解法,再结合集合的交集的定义即可求解. 【详解】由y =()()250x x --≥,解得25x ≤≤,所以{}|25B x x =≤≤,A B ={}{}{}2,1,0,1,2,3|252,3x x --≤≤=,故选:C. 8.A 【解析】 【分析】由集合的补集和交集的运算可得. 【详解】 由题可得{1UA x x =<或3}x >,所以(){0,4,5}=UA B .故选:A .9.A 【解析】 【分析】根据集合的交集概念即可计算. 【详解】∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 10.B 【解析】 【分析】根据集合补集的概念及运算,即可求解. 【详解】由题意,全集{}U 1,0,1,3,6=-,且{}0,6A =,根据集合补集的概念及运算,可得{}U1,1,3A =-.故选:B. 11.D 【解析】 【分析】直接利用集合的交集运算求解. 【详解】∵集合{}{}{}Z 131,0,1,2|,0|3,A x x B x x =∈-≤≤-=≥=, 所以{}0,1,2,3A B =. 故选:D. 12.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 13.B 【解析】 【分析】化简集合B ,再求集合A,B 的交集即可. 【详解】∵集合{|03}A x x =<<,集合2{|0lo {|}g 121}B x x x x =<<<<=, ∴A B ={|12}x x <<. 故选:B. 14.B 【解析】 【分析】先求出集合[)1,10B =,再根据集合的交集运算求得答案. 【详解】由题意得[){3}1,10B x =<=,其中奇数有1,3,5,7,9 又{}21,Z A x x n n ==+∈,则{}1,3,5,7,9A B ⋂=, 故选:B . 15.B 【解析】 【分析】写出集合{}1,2,3的所有子集,再利用古典概率公式计算作答.【详解】集合{}1,2,3的所有子集有:{}{}{}{}{}{}{},1,2,3,1,2,1,3,2,3,1,2,3∅,共8个,它们等可能,选到非空真子集的事件A 有:{}{}{}{}{}{}1,2,3,1,2,1,3,2,3,共6个, 所以选到非空真子集的概率为63()84P A ==. 故选:B二、填空题16.710##0.7 【解析】 【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果. 【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 17.{}1x x <【解析】 【分析】利用并集概念及运算法则进行计算. 【详解】在数轴上画出两集合,如图:{}{}{}2101A B x x x x x x ⋃=-<<⋃<=<.故答案为:{}1x x <18.[1,1]-【解析】 【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合, 所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根 当0a =时,符合题意, 当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<, 综上,实数a 的取值范围是[1,1]-, 故答案为:[1,1]-19.8 【解析】 【分析】先求得A B ,然后求得A B 的子集的个数. 【详解】{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=.故答案为:8 20.5 【解析】 【分析】直接求出集合A 、B ,再求出A B ,即可得到答案. 【详解】因为集合{}{}352,1,0,1,2,3,4A x Z x =∈-<<=--∣,集合{}{}101B y y y y =+>=>-∣∣, 所以{}0,1,2,3,4A B =, 所以A B 的元素个数为5. 故答案为:5.21.()5,1-【解析】 【分析】根据逻辑条件关系与集合间的关系、一元二次不等式的解法即可求解. 【详解】由题意得,{}{}228024A x x x x x =--<=-<<,由x B ∈是x A ∈成立的一个充分而不必要条件,得B A ,即2334m m -<+⎧⎨+<⎩解得,51m -<<, 故答案为:()5,1-. 22.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:7 23.35,88⎡⎤⎢⎥⎣⎦【解析】 【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】因为()()294sin32311644x x x f x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦.因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --. 依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤. 故答案为:35,88⎡⎤⎢⎥⎣⎦24.4-【解析】 【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-. 故答案为:4-.25.[)2020,∞+【解析】 【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围. 【详解】由2202120200x x -+<,解得:12020x <<, ∴()1,2020A =,又A B ⊆,且{}|B x x a =<, ∴2020a ≥,故a 的取值范围为[)2020,∞+. 故答案为:[)2020,∞+三、解答题26.(1)答案见解析(2)(ⅰ)证明见解析;(ⅱ)证明见解析 (3)证明见解析 【解析】 【分析】(1)由A A ⨯的定义可直接得到结果;根据A A ⨯中元素个数可得其子集个数,即为A 上的关系个数;根据等价关系定义列举出所有满足的R 即可;(2)(ⅰ)由()1,x x R ∈,()2,y y R ∈可知()(){}()12,,,x x y y R R ⊆,自反性得证;由()1,x y R ∀∈,有()1,y x R ∈;()2,s t R ∀∈,有()2,t s R ∈,根据并集定义可知()()()(){}()12,,,,,,,x y y x s t t s RR ⊆,对称性得证;(ⅱ)采用反证法,可知1R 或2R 不是传递的,假设错误,传递性得证;(3)采用假设的方式,分别假设s s a A ∈,可知(){}(),s s s s a a A A R ⊆⨯⊆,自反性得证;假设,s t t a a A ∈,可知()(){}(),,,s t t s t t a a a a A A R ⊆⨯⊆,对称性得证;假设(),,1s t q q a a a A q m n ∈≤≤≤,可知()()(){}(),,,,,s t t s s q q q a a a a a a A A R ⊆⨯⊆,传递性得证;由此可得结论. (1)由题意得:()()()()()()()()(){}0,0,0,1,0,2,1,0,1,1,1,2,2,0,2,1,2,2A A ⨯=;A A ⨯共有9个元素,A A ∴⨯共有92个子集,即A 上的关系有72512=个;所有等价关系有:()()(){}10,0,1,1,2,2R =,()()()()(){}20,0,1,1,2,2,0,1,1,0R =,()()()()(){}30,0,1,1,2,2,0,2,2,0R =,()()()()(){}40,0,1,1,2,2,1,2,2,1R =, ()()()()()()()()(){}50,0,1,1,2,2,1,2,2,1,0,2,2,0,0,1,1,0R =. (2)(ⅰ)若任意,x y A ∈,12,R R 在A 上是自反的,令()1,x x R ∈,()2,y y R ∈,()(){}()12,,,x x y y R R ∴⊆,则12R R 是自反的;若12,R R 在A 上是对称的,则()1,x y R ∀∈,有()1,y x R ∈;()2,s t R ∀∈,有()2,t s R ∈,()()()(){}()12,,,,,,,x y y x s t t s R R ∴⊆,则12R R 是对称的;综上所述:若1R ,2R 是自反的和对称的,则12R R 也是自反的和对称的.(ⅱ)假设12R R 不是传递的,则()()12,x y R R ∃∈,()()12,y z R R ∈,()()12,x z R R ∉,即()1,x z R ∉或()2,x z R ∉,此时1R 或2R 不是传递的,与已知矛盾, ∴若1R ,2R 是传递的,则12R R 也是传递的.(3)令{}123,,,,n A a a a a =⋅⋅⋅, 12m A A A A ⋅⋅⋅=且两两交集为空集,设s s a A ∈()1s m n ≤≤≤,则除s A 外,其余集合不包含元素s a ; 则(){}(),s s s s a a A A ⊆⨯,又()()()()1122s s m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s s a a R ∴∈,则R 在A 上是自反的;设,s t t a a A ∈()1t m n ≤≤≤,则除t A 外,其余集合不包含元素,s t a a ; 则()(){}(),,,s t t s t t a a a a A A ⊆⨯, 又()()()()1122t t m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s t a a R ∴∈,(),t s a a R ∈,则R 在A 上是对称的;设(),,1s t q q a a a A q m n ∈≤≤≤,则除q A 外,其余集合不包含元素,,s t q a a a ; 则()()(){}(),,,,,s t t s s q q q a a a a a a A A ⊆⨯, 又()()()()1122q q m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s t a a R ∴∈,(),t s a a R ∈,(),s q a a R ∈,则R 在A 上是传递的; 综上所述:()()()1122m m R A A A A A A =⨯⨯⋅⋅⋅⨯为A 上的等价关系.【点睛】关键点点睛:本题考查集合的自反性、对称性和传递性的证明,解决此问题的关键是能够充分理解已知中所说的性质的含义;解题基本思路是采用假设的方式和反证的方式,通过说明元素与集合、集合与集合之间关系证得结论. 27.若选① ,[2-,)∞+. 若选② ,(-∞,5]-. 若选③ ,[2-,)∞+. 【解析】 【分析】先将集合A,B 中的不等式求解,根据集合运算的最后结果分析参数a 需要满足的范围即可求解. 【详解】{|28}{|3}{|3}x a A x x x a x x a -=>=->=>+,2{|20}{|(2)(1)0}{|21}B x x x x x x x x =+-<=+-<=-<<,若选择条件①:A B =∅,则需31a +,即2a -, 所求实数a 的取值范围为[2-,)∞+.若选择条件②:A B A =,即B A ⊆,则需32a +-,即5a -, 所求实数a 的取值范围为(-∞,5]-. 若选择条件③:RA B ⊆,因为{|2R B x x =-或1}x ,所以要使RA B ⊆,则需31a +,即2a -,所求实数a 的取值范围为[2-,)∞+.28.(1){}0,1,2,3,4,5,6N =;{2,4M x x k k ==≤且}N k ∈(答案不唯一); (2){}0,1,2,3,4,{}{}{}{}0,1,2,4,5,0,1,3,4,6,1,2,3,4,6,1,2,4,5,6(答案不唯一). 【解析】 【分析】(1)利用集合的列举法,描述法即得; (2)结合条件及子集的概念即得. (1)∵{|33}Z N x x =∈-≤,∴{}0,1,2,3,4,5,6N =,∵M 由0,2,4,6,8组成的集合,∴{2,4M x x k k ==≤且}N k ∈(答案不唯一); (2)由题可得含M 中3个元素但不是M 的子集的集合为:{}0,1,2,3,4,{}{}{}{}0,1,2,4,5,0,1,3,4,6,1,2,3,4,6,1,2,4,5,629.(1){|45}A B x x ⋂=,{|0A B x x ⋃=或1}x ; (2)(0,1). 【解析】 【分析】(1)当2a =时,求出集合A ,B ,由此能求出A B ,A B ;(2)推导出0a >,R A B 是的真子集,求出{|04}R B x x =<<,A ≠∅,列出不等式组,能求出实数a 的取值范围. (1)2{|40}{|0B x x x x x =-=或4}x ,当2a =时,{|15}A x x =,{|45}A B x x ∴⋂=, {|0A B x x ⋃=或1}x ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,0a ∴>,R A B 是的真子集,{|04}RB x x =<<,A ≠∅,∴3034a a ->⎧⎨+<⎩,解得01a <<. ∴实数a 的取值范围是(0,1).30.(1){}5A x x =>,{0B y y =<或}2y > (2)(){}R5A B x x ⋂=≤【解析】 【分析】(1)利用对数函数和指数函数的单调性可分别求得集合A 、B ; (2)求出A B ,利用补集的定义可求得集合()RA B ⋂.(1)解:(){}{}{}2log 31325A x x x x x x =->=->=>,{}{222112002y y B y y y y y y -⎧⎫⎪⎪⎛⎫=<=->=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭或}2y >.(2)解:由(1)可得{}5A B x x ⋂=>,因此,(){}R5A B x x ⋂=≤.。
(完整版)高一数学集合练习题及答案(人教版)
![(完整版)高一数学集合练习题及答案(人教版)](https://img.taocdn.com/s3/m/5151ef07b42acfc789eb172ded630b1c59ee9bcf.png)
一、选择题(每题 4 分,共 40 分)1、以下四组对象,能组成会合的是()A 某班全部高个子的学生B有名的艺术家C全部很大的书D倒数等于它自己的实数2、会合 {a , b,c } 的真子集共有个()A 7B 8C9D103、若 {1 , 2}A{1 , 2, 3,4, 5} 则知足条件的会合 A 的个数是()A. 6B. 7C.8D. 94、若 U={1, 2, 3, 4} ,M={1, 2} , N={2,3} ,则 C U( M∪ N) =()A. {1,2, 3}B. {2}C. {1, 3, 4}D. {4}x y15、方程组x y 1 的解集是( )A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1}6、以下六个关系式:0 0 ,0,0.3Q ,0 N ,a, b b, a,x | x2 2 0, x Z 是空集中,错误的个数是()A4 B 3 C 2 D 17、点的会合M={ (x,y)|xy≥0}是指( )A. 第一象限内的点集B.第三象限内的点集C. 第一、第三象限内的点集D.不在第二、第四象限内的点集8、设会合 A=B= x x a A B1 x 2,则 a 的取值范围是,,若()A a a 2B a a 1C a a 1D a a29、知足条件 M1 = 1,2,3的会合 M的个数是()UA 1B 2C 3D 410、会合P x | x2k, k Z, Q x | x 2k 1, k Z ,R x | x4k1, k Z ,且a P, b Q ,则有()A a b PB a b QC a b RD a b 不属于P、Q、R中的随意一个二、填空题(每题 3 分,共 18 分)11、若A { 2,2,3,4},B {x|x t2,t}BA ,用列举法表示12、会合 A={x| x 2+x-6=0}, B={x| ax+1=0},若 B A,则 a=__________13、设全集 U= 2,3, a22a3, A= 2,b, C U A= 5,则a =, b =。
完整版)高一数学集合练习题及答案-经典
![完整版)高一数学集合练习题及答案-经典](https://img.taocdn.com/s3/m/44a6628364ce0508763231126edb6f1afe007142.png)
完整版)高一数学集合练习题及答案-经典升腾教育高一数学满分150分姓名一、选择题(每题4分,共40分)1、下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数答案:D解析:只有倒数等于它自身的实数可以构成集合。
2、集合{a,b,c }的真子集共有个()A。
7.B。
8.C。
9.D。
10答案:D解析:真子集不包含原集合,所以共有2^3-1=7个真子集。
3、若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是()A。
6.B。
7.C。
8.D。
9答案:A解析:集合A中的元素可以是1,2,也可以是1,2,3,或者1,2,3,4,或者1,2,3,4,5,共有6种情况。
4、若U={1,2,3,4},M={1,2},N={2,3},则CUM∪N)=()A。
{1,2,3}。
B。
{2}。
C。
{1,3,4}。
D。
{4}答案:A解析:M∪N={1,2,3},所以CUM∪N)={1,2,3}∪{4}={1,2,3,4}。
5、方程组x y1的解集是(。
)A。
{x=0,y=1}。
B。
{0,1}。
C。
{(0,1)}。
D。
{(x,y)|x=0或y=1}答案:C解析:将方程组化简得到y=x+1,所以解集为{(x,y)|y=x+1}={(x,x+1)}。
6、以下六个关系式:3Q,N。
a,b b,ax|x220,x Z是空集中,错误的个数是()A。
4.B。
3.C。
2.D。
1答案:B解析:第一个关系式中,应该是∈而不是;第二个关系式中,应该是∉而不是。
第三个关系式中,应该是={a,b}而不是;第四个关系式中,应该是x∈Z而不是x Z,所以错误的个数为3个。
8、设集合A=x1x2,B=xx a,若A B,则a的取值范围是()Aaa2Baa1Caa1Daa 2答案:D解析:由题意可得x1<a<x2,即1<a<2,所以a的取值范围是a<2.9、满足条件M11,2,3的集合M的个数是()A。
(完整word版)高一数学集合练习题
![(完整word版)高一数学集合练习题](https://img.taocdn.com/s3/m/7c585f1e102de2bd9705885a.png)
高一数学集合的练习题及答案一、、知识点:本周主要学习集合的初步知识,包括集合的有关概念、集合的表示、集合之间的关系及集合的运算等。
在进行集合间的运算时要注意使用Venn图。
本章知识结构1、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。
理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。
对象――即集合中的元素。
集合是由它的元素唯一确定的。
整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。
确定的――集合元素的确定性――元素与集合的“从属”关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意义有限集和无限集是针对非空集合来说的。
我们理解起来并不困难。
我们把不含有任何元素的集合叫做空集,记做Φ。
理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。
几个常用数集N、N*、N+、Z、Q、R要记牢。
3、集合的表示方法(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素较多但呈现一定的规律的有限集,如{1,2,3, (100)③呈现一定规律的无限集,如{1,2,3,…,n,…}●注意a与{a}的区别●注意用列举法表示集合时,集合元素的“无序性”。
(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。
但关键点也是难点。
学习时多加练习就可以了。
另外,弄清“代表元素”也是非常重要的。
如{x|y =x 2}, {y|y =x 2}, {(x ,y )|y =x 2}是三个不同的集合。
4、集合之间的关系●注意区分“从属”关系与“包含”关系 “从属”关系是元素与集合之间的关系。
“包含”关系是集合与集合之间的关系。
掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn 图描述集合之间的关系是基本要求。
(完整版)高一数学集合测试题及答案
![(完整版)高一数学集合测试题及答案](https://img.taocdn.com/s3/m/c5c8e6c2580216fc710afd44.png)
高一数学集合测试题一、选择题(每小题 5分,共60分) 1 .下列八个关系式① {0}= ② =0③{ }④ 0⑦{0} ⑧{ }其中正确的个数()(A) 4 (B) 5(C) 6(D) 72 .集合{1 , 2, 3}的真子集共有()(A) 5 个(B) 6 个(C) 7 个(D)8 个3 .集合 A={x x 2k, k Z } B={ xx 2k 1, k Z } C={ a A,b B,则有()(A) (a+b)A (B) (a+b)B (C)(a+b)C (D) (a+b)4 .设A 、B 是全集U 的两个子集,且 A B,则下列式子成立的是( (C) A C U B= (D) C U A B=_ _ 2_ 一 一一 _2 0} B={ xx 4x3 0}则 A B =((A) R(C) { xx 1或x 2}(D) { xx 2或x 3}(E) U={0, 1, 2, 3, 4} , A={0, 1, 2, 3}, B={2, 3, 4},则(C U A)(A) {0} (B) {0,1}(A) C U A C U B (B) C U A C J B=U 6.设 f(n) = 2n + 1(nC N), P = {1 , 2, 3, 4, 5} , Q = {3 , 4, 5, 6, 7},记 P ={nC N|f(n)CP}, Q={n€ N|f(n)C Q},则(P n 5 Q)U(Q n 5 P )=() (A) {0 , 3} (B){1 , 2} (C) (3, 4, 5} (D){1 , 2, 6, 7} 7.已知 A={1, 2, a 2-3a-1},B={1,3},A B {3,1}则a 等于() (A) -4 或 1 (B) -1 或 4 (Q -1 (D) 4{ } ⑤{0}⑥xx 4k 1,k Z }又A 、B 、C 任一个 )5.已知集合A={ x x2(CUB)=()(C) {0,1, 4} (D) {0, 1, 2, 3, 4} 10.设 A={x Zx 2px 15 0},B={x一 2 一 一 ,一 …Zx 5x q 0},若 A B={2,3,5},A 、B 分别为()(A) {3, 5}、{2, 3}(C) {2, 5}、{3, 5}(B) {2, 3}、{3, 5} (D) {3, 5}、{2, 5}11 .设一元二次方程ax 2+bx+c=0(a<0)的根的判别式 一 2b 4ac 0 ,则不等式ax 2+bx+c 0的解集为()14.已知集合乂=6|口-1)(盅-#)>0},集合目二小||工+ 1| + |工-2 531,且(q02£・兄则实数a的取值范围是(A.S"[-1,2]「一 LA-F L 二 1则X O 的取值范围是((A) R (B)(C) { xxb2a }(D) { —}2a12 .已知 P={ m 4 0}, Q={m|mx 2 mx 1 0 ,对于一切x R 成立},则下列关系式中成立的是( (A) (B)(C) P=Q(D)Q 二13 .若 M={xn Z }, N={xnx 1…, …一——n Z},则M N 等于( (A) (B) { (Q {0}(D) ZB.C. D. 15.设 U={1 , 2, 3, 4, 5}, A, B 为 U 的子集, 若 A B={2} , (C U A) B={4} , (C U A) ( C U B)={1, (A) (C) 5},则下列结论正确的是(3 A,3 3 A,3(B) (D))A,3 A,316. 设集合A,r2,1 ,函数1,x A 四 2 ,右 X O x ,x BA,且 f f x 0 A ,A.10,- 4B.D- o,817. 在R 上定义运算 e : ae b ab 2a b ,则满足xe x 2 0的实数x 的取值范围为A. (0,2)B. (-1,2)C. 2 U 1,D. (-2,1).18.集合P={x|x 2=1} , Q={x|mx=1},若值P,则m等于( )A . 1B . -1C . 1 或-1 D , 0,1 或-119.设全集 U={(x,y) x, y R},集合 M={(x,y) -_2 1}, N={(x,y) I y x 4},x 2那么(QM) (CND等于( )(A) { (2,-2) } (B) { (-2, 2) }(C) (D) (C U N)20.不等式x2 5x 6 <x2-4的解集是( )(A) {x x 2,或x 2} (B) {x x 2}(C) { x x 3} (D) { x 2 x 3,且x 2}二、填空题1.在直角坐标系中,坐标轴上的点的集合可表示为2,若 A={1,4,x},B={1,x 2}且 A B=B,则 x=3.若人=仅x2 3x 10 0} B={x I |x 3 },全集 U=R 则 A (C U B)=4.如果集合T = {大卜=/ +上l+ I = 0}中只有一个元素,则 a的值是5.集合{a,b,c}的所有子集是真子集是;非空真子集是6.方程x2-5x+6=0的解集可表示为2x 3y 13方程组2x 3y的解集可表示为3x 2y 07.设集合A={x 3 x 2},B={x 2k 1 x 2k 1},且A B,则实数k的取值范围是__________________ o8.设全集 U={x x 为小于 20 的正奇数},若 A (C U B) ={3, 7, 15}, (CA) B={13, 17,19},又(GA) (QB)=,贝U A B=9.已知集合 A= {xC R | x2+2ax+2a2-4a+4 = 0},若5A,则实数a的取值是10.设全集为U,用集合A、日C的交、并、补集符号表图中的阴影部分。
(完整版)高一数学必修一集合练习题及单元测试(含答案及解析)
![(完整版)高一数学必修一集合练习题及单元测试(含答案及解析)](https://img.taocdn.com/s3/m/13355acfbe1e650e52ea99c3.png)
集合练习题1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()A.{x|x≥3}B.{x|x≥2} C.{x|2≤x<3} D.{x|x≥4}2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5} B.{3,6} C.{3,7} D.{3,9}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A.{x|x≥-1} B.{x|x≤2 } C.{x|0<x≤2}D.{x|-1≤x≤2} 4. 满足M⊆{,,,},且M∩{,,}={,}的集合M的个数是() A.1 B.2 C.3 D.45.集合A={0,2,a},B={1,}.若A∪B={0,1,2,4,16},则a的值为()A.0 B.1 C.2 D.46.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=()A.ØB.{x|x<-1/2} C.{x|x>5/3} D.{x|-1/2<x<5/3} 7.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.8.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.9.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.10.已知集合A={-4,2a-1,},B={a-5,1-a,9},若A∩B={9},求a的值.11.已知集合A={1,3,5},B={1,2,-1},若A∪B={1,2,3,5},求x及A∩B. 12.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a的取值范围.13.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?集合测试一、选择题:本大题共10小题,每小题5分,共50分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学集合的练习题及答案1、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。
理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。
对象――即集合中的元素。
集合是由它的元素唯一确定的。
整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。
确定的――集合元素的确定性――元素与集合的“从属”关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意义有限集和无限集是针对非空集合来说的。
我们理解起来并不困难。
我们把不含有任何元素的集合叫做空集,记做Φ。
理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。
几个常用数集N 、N*、N +、Z 、Q 、R 要记牢。
3、集合的表示方法(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素较多但呈现一定的规律的有限集,如{1,2,3,…,100} ③呈现一定规律的无限集,如 {1,2,3,…,n ,…} ●注意a 与{a}的区别●注意用列举法表示集合时,集合元素的“无序性”。
(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。
但关键点也是难点。
学习时多加练习就可以了。
另外,弄清“代表元素”也是非常重要的。
如{x|y =x 2}, {y|y =x 2}, {(x ,y )|y =x 2}是三个不同的集合。
4、集合之间的关系●注意区分“从属”关系与“包含”关系 “从属”关系是元素与集合之间的关系。
“包含”关系是集合与集合之间的关系。
掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn 图描述集合之间的关系是基本要求。
●注意辨清Φ与{Φ}两种关系。
5、集合的运算集合运算的过程,是一个创造新的集合的过程。
在这里,我们学习了三种创造新集合的方式:交集、并集和补集。
一方面,我们应该严格把握它们的运算规则。
同时,我们还要掌握它们的运算性质:A B A B A A A AA A AB B A =⇔⊆Φ=Φ=Φ==B B A B A AA A AA A AB B A =⇔⊆=Φ=Φ== U AC B B C A B A AA C C A C A UA C A U U U U U U =⇔Φ=⇔⊆=Φ== )(还要尝试利用Venn 图解决相关问题。
二、典型例题例1. 已知集合}33,)1(,2{22++++=a a a a A ,若A ∈1,求a 。
解:∴∈A 1 根据集合元素的确定性,得:133,11,1222=++=+=+a a a a 或)或(若a +2=1, 得:1-=a , 但此时21332+==++a a a ,不符合集合元素的互异性。
若1)1(2=+a ,得:2-,0或=a 。
但2-=a 时,22)1(133+==++a a a ,不符合集合元素的互异性。
若,1332=++a a 得:。
或-2,1-=a1)1(-2a 1;2a ,-1a 2=+==+=a 时,时但,都不符合集合元素的互异性。
综上可得,a = 0。
【小结】集合元素的确定性和互异性是解决问题的理论依据。
确定性是入手点,互异性是检验结论的工具。
例2. 已知集合M ={}012|2=++∈x axR x 中只含有一个元素,求a 的值。
解:集合M 中只含有一个元素,也就意味着方程0122=++x ax 只有一个解。
(1)012,0=+=x a 方程化为时,只有一个解21-=x (2)只有一个解若方程时012,02=++≠x ax a 1,044==-=∆a a 即需要.综上所述,可知a 的值为a =0或a =1【小结】熟悉集合语言,会把集合语言翻译成恰当的数学语言是重要的学习要求,另外多体会知识转化的方法。
例3. 已知集合},01|{},06|{2=+==-+=ax x B x x x A 且B A ,求a 的值。
解:由已知,得:A ={-3,2}, 若B A ,则B =Φ,或{-3},或{2}。
若B =Φ,即方程ax +1=0无解,得a =0。
若B ={-3}, 即方程ax +1=0的解是x = -3, 得a = 31。
若 B ={2}, 即方程ax +1=0的解是x = 2, 得a = 21-。
综上所述,可知a 的值为a =0或a =31,或a = 21-。
【小结】本题多体会这种题型的处理思路和步骤。
例4. 已知方程02=++c bx x 有两个不相等的实根x 1, x 2. 设C ={x 1, x 2}, A ={1,3,5,7,9}, B ={1,4,7,10},若C B C C A =Φ= ,,试求b , c 的值。
解:由B C C B C ⊆⇒= , 那么集合C 中必定含有1,4,7,10中的2个。
又因为Φ=C A ,则A 中的1,3,5,7,9都不在C 中,从而只能是C ={4,10} 因此,b =-(x 1+x 2 )=-14,c =x 1 x 2 =40【小结】对C B C C A =Φ= ,的含义的理解是本题的关键。
例5. 设集合}121|{},52|{-≤≤+=≤≤-=m x m x B x x A , (1)若Φ=B A , 求m 的范围; (2)若A B A = , 求m 的范围。
解:(1)若Φ=B A ,则B =Φ,或m +1>5,或2m -1<-2 当B =Φ时,m +1>2m -1,得:m<2当m +1>5时,m +1≤2m -1,得:m>4当2m -1<-2时,m +1≤2m -1,得:m ∈Φ 综上所述,可知m<2, 或m>4 (2)若A B A = , 则B ⊆A , 若B =Φ,得m<2若B ≠ Φ,则⎪⎩⎪⎨⎧-≤+≤--≥+12151221m m m m ,得:32≤≤m综上,得 m ≤ 3【小结】本题多体会分析和讨论的全面性。
例6. 已知A ={0,1}, B ={x|x ⊆A},用列举法表示集合B ,并指出集合A 与B 的关系。
解:因为x ⊆A ,所以x = Φ, 或x = {0}, 或x = {1}, 或x = A , 于是集合B = { Φ, {0}, {1}, A}, 从而 A ∈B三、练习题1. 设集合M =,24},17|{=≤a x x 则( ) A. M a ∈B. M a ∉C. a = MD. a > M2. 有下列命题:①}{Φ是空集 ② 若N b N a ∈∈,,则2≥+b a ③ 集合}012|{2=+-x x x 有两个元素 ④ 集合},100|{Z x N x x B ∈∈=为无限集,其中正确命题的个数是( )A. 0B. 1C. 2D. 3 3. 下列集合中,表示同一集合的是( ) A. M ={(3,2)} , N ={(2,3)} B. M ={3,2} , N ={(2,3)}C. M ={(x ,y )|x +y =1}, N ={y|x +y =1}D.M ={1,2}, N ={2,1}4. 设集合}12,4{},1,3,2{22+-+=+=a a a N a M ,若}2{=N M , 则a 的取值集合是( )A.}21,2,3{- B. {-3} C. }21,3{- D. {-3,2}5. 设集合A = {x| 1 < x < 2}, B = {x| x < a}, 且B A ⊆, 则实数a 的范围是( )A. 2≥aB. 2>aC. 1≤aD. 1>a6. 设x ,y ∈R ,A ={(x ,y )|y =x}, B =}1|),{(=x yy x , 则集合A ,B 的关系是( )A. A BB. B AC. A =BD. A ⊆B7. 已知M ={x|y =x 2-1} , N ={y|y =x 2-1}, 那么M ∩N =( ) A. Φ B. M C. N D. R 8. 已知A = {-2,-1,0,1}, B = {x|x =|y|,y ∈A}, 则集合B =_________________ 9. 若A B },01|{},023|{22⊆=-+-==+-=且a ax x x B x x x A ,则a 的值为_____ 10. 若{1,2,3}⊆A ⊆{1,2,3,4,5}, 则A =____________11. 已知M ={2,a ,b}, N ={2a ,2,b 2},且M =N 表示相同的集合,求a ,b 的值12. 已知集合B,A }02|{},04|{22⊆>--=<++=且x x x B p x x x A 求实数p 的范围。
13. 已知}065|{},019|{222=+-==-+-=x x x B a ax x x A ,且A ,B 满足下列三个条件:① B A ≠ ② B B A = ③ ΦB A ,求实数a 的值。
四、练习题答案 1. B 2. A 3. D 4. C 5. A 6. B 7. C 8. {0,1,2} 9. 2,或310. {1,2,3}或{1,2,3,4}或{1,2,3,5}或{1,2,3,4,5}11. 解:依题意,得:⎩⎨⎧==22b b a a 或⎩⎨⎧==a b b a 22,解得:⎩⎨⎧==00b a ,或⎩⎨⎧==10b a ,或⎪⎩⎪⎨⎧==2141b a结合集合元素的互异性,得⎩⎨⎧==10b a 或⎪⎩⎪⎨⎧==2141b a 。
12. 解:B ={x|x<-1, 或x>2}① 若A = Φ,即 0416≤-=∆p ,满足A ⊆B ,此时4≥p② 若Φ≠A ,要使A ⊆B ,须使大根142-≤-+-p 或小根242≥---p (舍),解得:43≤≤p所以 3≥p13. 解:由已知条件求得B ={2,3},由B B A = ,知A ⊆B 。
而由 ①知B A ≠,所以A B 。
又因为ΦB A ,故A≠Φ,从而A ={2}或{3}。
当A ={2}时,将x =2代入01922=-+-a ax x ,得019242=-+-a a 53或-=∴a经检验,当a = -3时,A ={2, - 5}; 当a =5时,A ={2,3}。
都与A ={2}矛盾。
当A = {3}时,将x =3代入01922=-+-a ax x ,得019392=-+-a a 52或-=∴a经检验,当a = -2时,A ={3, - 5}; 当a =5时,A ={2,3}。